
DEL PEZZO SURFACES OF DEGREE FOURVIOLATING THE HASSE PRINCIPLEARE ZARISKI DENSE IN THE MODULI SCHEMEby Jörg Jahnel and Damaris S
hindlerAbstra
t. We show that, over every number �eld, the degree four del Pezzo surfa
es thatviolate the Hasse prin
iple are Zariski dense in the moduli s
heme.Résumé. Nous montrons que, sur 
haque 
orps de nombres, les surfa
es de del Pezzo de degréquatre qui violent le prin
ipe de Hasse sont denses pour la topologie de Zariski dans le s
hémade modules. 1. Introdu
tionA del Pezzo surfa
e is a smooth, proper algebrai
 surfa
e S over a �eld K with an ample anti-
anoni
al sheaf K −1. Over an algebrai
ally 
losed �eld, every del Pezzo surfa
e of degree d 6 7 isisomorphi
 to P2, blown up in (9 − d) points in general position [14, Theorem 24.4.iii)℄.A

ording to the adjun
tion formula, a smooth 
omplete interse
tion of two quadri
s in P4 isdel Pezzo. The 
onverse is true, as well. For every del Pezzo surfa
e of degree four, its anti
anoni
alimage is the 
omplete interse
tion of two quadri
s in P4 [8, Theorem 8.6.2℄.Although del Pezzo surfa
es over number �elds are generally expe
ted to have many ratio-nal points, they do not always ful�l the Hasse prin
iple. The �rst example of a degree four delPezzo surfa
e for whi
h the Hasse prin
iple is violated was 
on
eived by B. Bir
h and Sir PeterSwinnerton-Dyer [3, Theorem 3℄. It is given in P4Q by the equations
T0T1 = T 2

2 − 5T 2
3 ,

(T0 + T1)(T0 + 2T1) = T 2
2 − 5T 2

4 .Meanwhile, more 
ounterexamples to the Hasse prin
iple have been 
onstru
ted, see, e.g., [5, Ex-amples 15 and 16℄. Quite re
ently, N.D.Q. Nguyen [18, Theorem 1.1℄ proved that the degree fourdel Pezzo surfa
e, given by
T0T1 = T 2

2 − (64k2 + 40k + 5)T 2
3 ,

(T0 + (8k + 1)T1)(T0 + (8k + 2)T1) = T 2
2 − (64k2 + 40k + 5)T 2

4is a 
ounterexample to the Hasse prin
iple if k is an integer su
h that 64k2+40k+5 is a prime num-ber. In parti
ular, under the assumption of S
hinzel's hypothesis, this family 
ontains in�nitelymany members violating the Hasse prin
iple.Keywords: Del Pezzo surfa
e, Hasse prin
iple, moduli s
heme.2010 Mathemati
s Subje
t Classi�
ation: Primary 11G35; Se
ondary 14G25, 14J26, 14J10.



2 JÖRG JAHNEL AND DAMARIS SCHINDLERIn this arti
le, we prove that del Pezzo surfa
es of degree four that fail the Hasse prin
iple areZariski dense in the moduli s
heme. In parti
ular, we establish, for the �rst time un
onditionally,that their number up to isomorphism is in�nite. We show, in addition, that these results hold overan arbitrary number �eld K.Before we 
an state our main results, we need to re
all some notation and fa
ts about the 
oarsemoduli s
heme of degree four del Pezzo surfa
es.For this we 
onsider a del Pezzo surfa
e X of degree four given as the zero set of two quinaryquadri
s
Q1(T0, . . . , T4) = Q2(T0, . . . , T4) = 0 .The pen
il (uQ1 + vQ2)(u:v)∈P1 of quadri
s de�ned by the forms Q1 and Q2 
ontains exa
tly �vedegenerate elements. The 
orresponding �ve values t1, . . . , t5 ∈ P1(K) of t := (u : v) are uniquelydetermined by the surfa
eX , up to permutation and the natural operation of Aut(P1) ∼= PGL2(K).Let U ⊂ (P1

K)5 be the Zariski open subset given by the 
ondition that no two of the �ve
omponents 
oin
ide. Then there is a K-isomorphism
j : U/(S5 × PGL2)

∼=−→ Mto the 
oarse moduli s
heme M of degree four del Pezzo surfa
es [12, Se
tion 5℄.The quotient of U modulo S5 alone is the spa
e of all binary quinti
s without multiple roots, upto multipli
ation by 
onstants. This is part of the stable lo
us in the sense of Geometri
 InvariantTheory, whi
h is formed by all quinti
s without roots of multipli
ity >3 [16, Proposition 4.1℄.Furthermore, 
lassi
al invariant theory tea
hes that, for binary quinti
s, there are three funda-mental invariants I4, I8, and I12 of degrees 4, 8, and 12, respe
tively, that de�ne an open embedding
ι : U/(S5 × PGL2) →֒ P(1, 2, 3)Kinto a weighted proje
tive plane. This result is originally due to Ch. Hermite [13, Se
tion VI℄, 
f.[21, Paragraphs 224�228℄. A more re
ent treatment from a 
omputational point of view is due toA. Abdesselam [1℄.Altogether, this yields an open embedding I : M →֒ P(1, 2, 3)K . More generally, every family

π : S → B of degree four del Pezzo surfa
es over a K-s
heme B indu
es a morphism
Iπ = I : B → P(1, 2, 3)K ,whi
h we 
all the invariant map asso
iated with π.Remark 1.1. � There 
annot be a �ne moduli s
heme for degree four del Pezzo surfa
es, asgeometri
ally every su
h surfa
e X has at least 16 automorphisms [8, Theorem 8.6.8℄. (The state-ment of Theorem 8.6.8 in [8℄ 
ontains a misprint, but it is 
lear from the proof that the des
ribedquotient group may either be isomorphi
 to one of the listed groups or be trivial).Let us, for simpli
ity of notation, identify the spa
e S2((K5)∗) of all quinary quadrati
 forms with
oe�
ients in K with K15. This is 
learly a non-
anoni
al isomorphism. To give an interse
tion oftwo quadri
s in P4

K is then equivalent to giving a K-rational plane through the origin of K15, i.e. a
K-rational point on the Graÿmann s
heme Gr(2, 15)K . The open subset Ureg ⊂ Gr(2, 15)K thatparametrises non-singular surfa
es is isomorphi
 to the Hilbert s
heme [10℄ of del Pezzo surfa
esof degree four in P4

K . We will not go into the details as they are not ne
essary for our purposes.Using this identi�
ation, we 
an now state our main result in the following form.



DEL PEZZO SURFACES OF DEGREE FOUR VIOLATING THE HASSE PRINCIPLE 3Theorem 1.1. � Let K be a number �eld, Ureg ⊂ Gr(2, 15)K the open subset of the Graÿmanns
heme that parametrises degree four del Pezzo surfa
es, and H C K ⊂ Ureg(K) be the set of alldegree four del Pezzo surfa
es over K that are 
ounterexamples to the Hasse prin
iple.Then H C K is Zariski dense in Gr(2, 15)K .Remark 1.2. � An analogous result for 
ubi
 surfa
es has re
ently been established by A.-S. Elsenhans together with the �rst author [9℄. Our approa
h is partly inspired by the methodsapplied in the 
ubi
 surfa
e 
ase. The 
on
rete 
onstru
tion of del Pezzo surfa
es of degree fourthat violate the Hasse prin
iple is motivated by the work [18℄ of N.D.Q. Nguyen. In parti
ular, allthe failures of the Hasse prin
iple we 
onsider below are due to the Brauer-Manin obstru
tion.The following result 
ould be seen as a 
orollary of Theorem 1.1, but it is, in fa
t, more orless equivalent. Our strategy will be to prove Theorem 1.2 �rst and then to dedu
e Theorem 1.1from it.Theorem 1.2. � Let K be a number �eld, Ureg ⊂ Gr(2, 15)K the open subset of the Graÿmanns
heme that parametrises degree four del Pezzo surfa
es, and H C K ⊂ Ureg(K) be the set of alldegree four del Pezzo surfa
es over K that are 
ounterexamples to the Hasse prin
iple.Then the image of H C K under the invariant map
I : Ureg −→ P(1, 2, 3)Kis Zariski dense.Remark 1.3 (Parti
ular K3 surfa
es that fail the Hasse prin
iple). � In their arti
le [23℄,A. Várilly-Alvarado and B. Viray provide, among other things, families of K3 surfa
es ofdegree eight that violate the Hasse prin
iple. These K3 surfa
es allow a morphism p : Y → Xbeing generi
ally 2:1 down to a degree four del Pezzo surfa
e X that fails the Hasse prin
iple.Sin
e X(K) = ∅, the existen
e of the morphism alone ensures that Y (K) = ∅. Examples of thesame kind also appear in [18℄.The 
onstru
tion of these families easily generalises to our setting. One has to interse
t the 
one

CX ⊂ P5 over the del Pezzo surfa
e with a quadri
 that avoids the vertex. The interse
tion Y isthen a degree eight K3 surfa
e, provided it is smooth, whi
h it is generi
ally a

ording to Bertini'stheorem. Thus, Y is a 
ounterexample to the Hasse prin
iple provided it has an adeli
 point.For Y , the failure of the Hasse prin
iple may be explained by the Brauer-Manin obstru
tion(
f. Se
tion 3 for details). If α ∈ Br(X) explains the failure for X then p∗α does so for Y .However, the K3 surfa
es obtained in this way do 
learly not dominate the moduli spa
e ofdegree eight K3 surfa
es. Indeed, the pull-ba
k homomorphism p∗ : Pi
(XK) → Pi
(YK) doublesthe interse
tion numbers and is, in parti
ular, inje
tive. This means that Y has geometri
 Pi
ardrank at least six, while a general degree eight K3 surfa
e is of geometri
 Pi
ard rank one.A
knowledgements. The authors would like to thank Christian Liedtke, Daniel Loughran, andthe anonymous referee for useful 
omments.2. A family of degree four del Pezzo surfa
esWe 
onsider the surfa
e S := S(D;A,B) over a �eld K, given by the equations
T0T1 = T 2

2 − DT 2
3 ,(2.1)

(T0 + AT1)(T0 + BT1) = T 2
2 − DT 2

4(2.2)



4 JÖRG JAHNEL AND DAMARIS SCHINDLERfor A, B, D ∈ K. We will typi
ally assume that D is not a square in K and that S is non-singular.If S is non-singular then S is a del Pezzo surfa
e of degree four.Proposition 2.1. � Let K be a �eld of 
hara
teristi
 6=2 and A, B, D ∈ K.a) Then the surfa
e S(D;A,B) is non-singular if and only if ABD 6= 0, A 6= B, and
A2 − 2AB + B2 − 2A − 2B + 1 6= 0.b) If D 6= 0 then S(D;A,B) is not a 
one and has at worst isolated singularities.Proof. a) The surfa
e S(D;A,B) is de�ned by the two quadri
s Q1 and Q2 that are given by thesymmetri
 matri
es

M1 =




0 1
2 0 0 0

1
2 0 0 0 0

0 0 −1 0 0

0 0 0 D 0

0 0 0 0 0




and M2 =




1 A+B
2 0 0 0

A+B
2 AB 0 0 0

0 0 −1 0 0

0 0 0 0 0

0 0 0 0 D




,respe
tively. Therefore,
det(uM1 + vM2) = −D2[ABv2 − (Av+Bv+u)2

4 ](u + v)uv

= 1
4D2[u2 + 2(A + B)uv + (A2 − 2AB + B2)v2](u + v)uv .It is well-known [20, Proposition 2.1℄ that S is non-singular if and only if det(uM1 + vM2) has �vedistin
t roots in P1(K).In parti
ular, S is 
learly singular for D = 0. Otherwise, the roots are u/v = −(A+B)±2

√
AB,

0, −1, and ∞. The �rst two 
oin
ide exa
tly when AB = 0. It therefore remains to investigate the
ases that −(A + B) ± 2
√

AB = 0 or −(A + B) ± 2
√

AB = −1.Clearly, the �rst equality is equivalent to ±2
√

AB = (A + B), hen
e to 4AB = (A + B)2,and A = B. On the other hand, −(A+B)±2
√

AB = −1 means nothing but ±2
√

AB = A+B−1,hen
e 4AB = A2 + 2AB + B2 + 1 − 2A − 2B, and A2 − 2AB + B2 − 2A − 2B + 1 = 0.b) First of all, the binary quinti
 form det(uM1 + vM2) does not entirely vanish. Therefore, thepen
il of quadri
s de�ning S 
ontains one of full rank, whi
h is enough to show that S is not a 
one.On the other hand, a point (t0 : . . . : t4) ∈ S(K) is singular if and only if the Ja
obian matrix
(

t1 t0 −2t2 2Dt3 0

2t0 + (A + B)t1 (A + B)t0 + 2ABt1 −2t2 0 2Dt4

)is not of full rank. In parti
ular, this means that t20 = ABt21 and that at least two of the 
oordinates
t2, t3, and t4 must vanish. Together these 
onditions de�ne six lines in P4, whi
h 
ollapse to threein the 
ase that AB = 0.If there were in�nitely many singular points then at least one of these lines would be entirely
ontained in S. But this is not the 
ase, as, on ea
h of the six lines, one equation of the form

F (T1) = T 2
2 , F (T1) = −DT 2

3 , or F (T1) = −DT 2
4remains from the equations of S. �Remark 2.1. � Assume that D ∈ K is a non-square and that S(D;A,B) is non-singular.Then there is neither a K-rational point (t0 : t1 : t2 : t3 : t4) ∈ S(K) su
h that t0 = t1 = 0,nor one su
h that t0 + At1 = t0 + Bt1 = 0. Indeed, in view of A 6= B either 
ondition implies that

t0 = t1 = 0, so t22 = Dt23 = Dt24. Sin
e D is a non-square, there is no K-rational point satisfyingthese 
onditions.



DEL PEZZO SURFACES OF DEGREE FOUR VIOLATING THE HASSE PRINCIPLE 53. A 
lass in the Grothendie
k-Brauer groupIt is a dis
overy of Yu. I. Manin [14, �47℄ that a non-trivial element α ∈ Br(S) of the Grothen-die
k-Brauer group [11℄, [15, Chapter IV℄ of a variety S may 
ause a failure of the Hasse prin
iple.Today, this phenomenon is 
alled the Brauer-Manin obstru
tion. Its me
hanism works as follows.Let K be a number �eld, l ⊂ OK a prime ideal, and Kl be the 
orresponding 
ompletion.The Grothendie
k-Brauer group is a 
ontravariant fun
tor from the 
ategory of s
hemes to the
ategory of abelian groups. In parti
ular, for an arbitrary s
heme S and a Kl-rational point
x : Spe
Kl → S, there is a restri
tion homomorphism x∗ : Br(S) → Br(Spe
Kl) ∼= Q/Z. For aBrauer 
lass α ∈ Br(X), we 
allevα,l : S(Kl) −→ Q/Z , x 7→ x∗(α)the lo
al evaluation map, asso
iated to α. Analogously, for σ : K →֒ R a real prime, there is thelo
al evaluation map evα,σ : S(Kσ) → 1

2Z/Z.Proposition 3.1 (The Brauer-Manin obstru
tion to the Hasse prin
iple). � Let S be a pro-je
tive variety over a number �eld K and α ∈ Br(S) be a Brauer 
lass.For every prime ideal l ⊂ OK , suppose that S(Kl) 6= ∅ and that the lo
al evaluation map evα,lis 
onstant. Analogously, assume that, for every real prime σ : K →֒ R, one has S(Kσ) 6= ∅ andthat the lo
al evaluation map evα,σ is 
onstant. Denote the values of evα,l and evα,σ by el and
eσ, respe
tively. If, in this situation,

∑

l⊂OK

el +
∑

σ:K →֒Reσ 6= 0 ∈ Q/Zthen S is a 
ounterexample to the Hasse prin
iple.Proof. The assumptions imply, in parti
ular, that S is not the empty s
heme. Consequently, thereare Kτ -rational points on S for every 
omplex prime τ : K →֒ C. The Hasse prin
iple would assertthat S(K) 6= ∅.On the other hand, by global 
lass �eld theory [22, Se
tion 10, Theorem B℄ one has a short exa
tsequen
e
0 → Br(K) →

⊕

ν

Br(Kν) → Q/Z→ 0 ,where the dire
t sum is taken over all pla
es ν of the number �eld K. Assume that there is a point
x : Spe
K → S. Then x∗(α) ∈ Br(Spe
K) is a Brauer 
lass that naturally maps to an element of⊕

l Br(Kl)⊕
⊕

σBr(Kσ) ∼=
⊕

lQ/Z⊕⊕
σ

1
2Z/Z of a non-zero sum, whi
h is a 
ontradi
tion to theexa
tness of the above sequen
e. �Proposition 3.2. � Let K be a �eld of 
hara
teristi
 6= 2 and A, B, D ∈ K \{0} be arbi-trary elements. Suppose that D is a non-square and set L := K(

√
D). Assume that S := S(D;A,B)is non-singular.a) Then the quaternion algebra (see [19, Se
tion 15.1℄ for the notation)

A :=
(
L(S), τ, T0+AT1

T0

)over the fun
tion �eld K(S) extends to an Azumaya algebra over the whole of S. Here, by
τ ∈ Gal(L(S)/K(S)), we denote the nontrivial element.b) Assume that K is a number �eld and denote by α ∈ Br(S) the Brauer 
lass, de�ned by theextension of A . Let l be any prime of K.



6 JÖRG JAHNEL AND DAMARIS SCHINDLERi) Let (t0 : t1 : t2 : t3 : t4) ∈ S(Kl) be a point and assume that at least one of the quotients
(t0 + At1)/t0, (t0 + At1)/t1, (t0 + Bt1)/t0, and (t0 + Bt1)/t1 is properly de�ned and non-zero.Denote that by q. Then evα,l(t0 :t1 :t2 :t3 :t4) =

{
0 if (q, D)l = 1 ,
1
2 if (q, D)l = −1 ,for (q, D)l the Hilbert symbol.ii) If l is split in L then the lo
al evaluation map evα,l is 
onstantly zero.Proof. a) (Cf. [24, Lemma 3.2℄.) First of all, A is, by 
onstru
tion, a 
y
li
 algebra of degree two.In parti
ular, A is simple [19, Se
tion 15.1, Corollary d℄. Furthermore, A is obviously a 
entral

K(S)-algebra.To prove the extendability assertion, it su�
es to show that A extends as an Azumaya algebraover ea
h valuation ring that 
orresponds to a prime divisor on S. Indeed, this is the 
lassi
alTheorem of Auslander-Goldman for non-singular surfa
es [2, Proposition 7.4℄, 
f. [15, Chapter IV,Theorem 2.16℄.For this, we observe that the prin
ipal divisor div((T0 + AT1)/T0) ∈ Div(S) is the norm of adivisor on SL. In fa
t, it is the norm of the di�eren
e of two prime divisors, the 
oni
, given by
T0 + AT1 = T2 −

√
DT4 = 0, and the 
oni
, given by T0 = T2 −

√
DT3 = 0. In parti
ular, A de�nesthe zero element in H2(〈σ〉,Div(SL)). Under su
h 
ir
umstan
es, the extendability of A over thevaluation ring 
orresponding to an arbitrary prime divisor on S is worked out in [14, Paragraph42.2℄.b.i) The quotients

T0+AT1

T0

/T0+AT1

T1

=
T 2

2
−DT 2

3

T 2

0

, T0+BT1

T0

/T0+BT1

T1

=
T 2

2
−DT 2

3

T 2

0

, and T0+AT1

T0

/T0+BT1

T0

=
T 2

2
−DT 2

4

(T0+BT1)2are norms of rational fun
tions. Thus, ea
h de�nes the zero 
lass in H2(〈σ〉, K(SL)∗) ⊆ BrK(S),and hen
e in BrS. In parti
ular, the four expressions (T0+AT1)/T0, (T0+AT1)/T1, (T0+BT1)/T0,and (T0 + BT1)/T1 de�ne the same Brauer 
lass.The general des
ription of the evaluation map, given in [14, Paragraph 45.2℄ shows thatevα,l(t0 : t1 : t2 : t3 : t4) is equal to 0 or 1
2 depending on whether q is in the image of the normmap NLL/Kl

: L∗
L → K∗

l , or not, for L a prime of L lying above l. This is exa
tly what is tested bythe Hilbert symbol (q, D)l.ii) If l is split in L then the norm map N : K(SLL
)∗ → K(SKl

)∗ is surje
tive. In parti
ular,
T0+AT1

T0

∈ K(SKl
)∗ is the norm of a rational fun
tion on SLL

. Therefore, it de�nes the zero 
lassin H2(〈σ〉, K(SLL
)∗) ⊆ BrK(SKl

), and thus in BrSKl
. Finally, we observe that every Kl-rationalpoint x : Spe
Kl → S fa
tors via SKl

. �Geometri
ally, on a rank four quadri
 in P4, there are two pen
ils of planes. In our situation,these are 
onjugate to ea
h other under the operation of Gal(K(
√

D)/K). The equation T0 = 0
uts two 
onjugate planes out of the quadri
 (2.1) and the same is true for T1 = 0. The equations
T0 + AT1 = 0 and T0 + BT1 = 0 ea
h 
ut two 
onjugate planes out of (2.2).Remark 3.1. � A. Várilly-Alvarado and B. Viray [24, Theorem 5.3℄ prove for a 
ertain 
lassof degree four del Pezzo surfa
es that the Brauer-Manin obstru
tion is the only obstru
tion to theHasse prin
iple and to weak approximation. Their result is 
onditional under the assumption ofS
hinzel's hypothesis and the �niteness of Tate-Shafarevi
h groups of ellipti
 
urves and based onideas of O. Wittenberg [26, Théorème 1.1℄. The 
lass 
onsidered in [24℄ in
ludes our family (2.1, 2.2).



DEL PEZZO SURFACES OF DEGREE FOUR VIOLATING THE HASSE PRINCIPLE 7One might formulate our strategy to prove S(D;A,B)(K) = ∅ for K a number �eld and parti
ular
hoi
es of A, B, and D in a more elementary way as follows.Suppose that there is a point (t0 :t1 :t2 :t3 :t4) ∈ S(K). Then (t0, t1) 6= (0, 0). Among (t0+At1)/t0,
(t0 + At1)/t1, (t0 + Bt1)/t0, and (t0 + Bt1)/t1, 
onsider an expression q that is properly de�nedand non-zero. Then show that, for every prime l of K in
luding the Ar
himedean ones, but withthe ex
eption of exa
tly an odd number, the Hilbert symbol (q, D)l is equal to 1. Finally, observethat su
h a behaviour 
ontradi
ts the Hilbert re
ipro
ity law [17, Chapter VI, Theorem 8.1℄.In other words, the element q ∈ Kl belongs to the image of the norm map N : LL → Kl,for L := K(

√
D) and L a prime of L lying above l, for all but an odd number of primes. Whi
h isin
ompatible with [17, Chapter VI, Corollary 5.7℄ or [22, Theorem 5.1 together with 6.3℄.4. Unrami�ed primesLemma 4.1. � Let K be a �eld of 
hara
teristi
 6=2 and A, B, D ∈ K be elements su
h that

D 6= 0. Then the minimal resolution of singularities S̃ of S := S(D;A,B) is geometri
ally isomorphi
to P2, blown up in �ve points (some of whi
h may be in�nitely near points).Proof. By Proposition 2.1.b), we know that SK is not a 
one and has at worst isolated singularities.In this situation, it is well-known that all the singularities of SK are of ADE-type. The usualargument for this is based on the 
lassi�
ation of singularities of 
ubi
 surfa
es (e.g. [8, Se
tion 9.2℄).Cf. [6, Se
tion 5, parti
ularly Proposition 5.1℄ for details.Consequently, a

ording to [6, Example 0.7.b)℄, SK is either a del Pezzo surfa
e of degree 4or a singular del Pezzo surfa
e of degree 4 in the sense of [6℄. That is, its minimal resolution ofsingularities S̃K is a generalised del Pezzo surfa
e of degree 4 [7℄. But those are isomorphi
 to P2
K
,blown up in �ve points [6, Proposition 0.4℄. �Corollary 4.1. � Let Fℓ be a �nite �eld of 
hara
teristi
 6= 2 and A, B, D ∈ Fℓ su
h that

D 6= 0. Then S := S(D;A,B) has a regular Fℓ-rational point.Proof. By Lemma 4.1, the minimal resolution of singularities S̃ of S is geometri
ally isomorphi
to P2, blown up in �ve points. In su
h a situation, the Weil 
onje
tures have been established byA. Weil himself [25, page 557℄, 
f. [14, Theorem 27.1℄.At least one of the eigenvalues of Frobenius on Pi
(S̃Fℓ
) is equal to (+1). Say, the number ofeigenvalues (+1) is exa
tly n > 1. The remaining (6 − n) eigenvalues are of real part > (−1).Hen
e, #S̃(Fℓ) > ℓ2 + (2n − 6)ℓ + 1.Among these, at most (n − 1)(ℓ + 1) points may have originated from blowing up the singularpoints of Sl. Indeed, ea
h time an Fℓ-rational point is blown up, a (+1)-eigenspa
e is added to thePi
ard group. Therefore,

#Sreg(Fℓ) > ℓ2 + (2n − 6)ℓ + 1 − (n − 1)(ℓ + 1) = ℓ2 − 5ℓ + 2 + n(ℓ − 1) > ℓ2 − 4ℓ + 1 .For ℓ > 5, this is positive.Thus, it only remains to 
onsider the 
ase that ℓ = 3. Then S is the 
losed subvariety of P4F3
,given by

T0T1 = T 2
2 − DT 2

3 ,

(T0 + aT1)(T0 + bT1) = T 2
2 − DT 2

4



8 JÖRG JAHNEL AND DAMARIS SCHINDLERfor D = ±1 and 
ertain a, b ∈ F3. Independently of the values of a and b, S has the regularF3-rational point (1 : 0 : 1 : 1 : 0) in the 
ase that D = 1 and (1 : 0 : 0 : 0 : 1) in the 
ase that D = −1.
�Proposition 4.2 (Unrami�ed primes). � Let K be a number �eld, A, B, D ∈ OK , and l ⊂ OKbe a prime ideal that is unrami�ed under the �eld extension K(

√
D)/K. Consider the surfa
e

S := S(D;A,B).a) If #OK/l is not a power of 2 then S(Kl) 6= ∅.b) Assume that A 6≡ B (mod l), that S is non-singular, and that S(Kl) 6= ∅. Let α ∈ Br(S) be theBrauer 
lass, des
ribed in Proposition 3.2.a). Then the lo
al evaluation map evα,l : S(Kl) → Q/Zis 
onstantly zero.Proof. We put ℓ := #OK/l. Furthermore, we normalise D to be a unit in OKl
. This is possiblebe
ause l is unrami�ed.a) It su�
es to verify the existen
e of a regular Fℓ-rational point on the redu
tion Sl of S. For this,we observe that (D mod lOKl

) 6= 0, whi
h shows that Corollary 4.1 applies.b) If l is split then this is Proposition 3.2.b.ii). Otherwise, let (t0 : t1 : t2 : t3 : t4) ∈ S(Kl) be anarbitrary point. Normalise the 
oordinates su
h that t0, . . . , t4 ∈ OKl
and at least one is a unit.We �rst observe that one of t0 and t1 must be a unit. Indeed, otherwise one has l|t0, t1. A

ord-ing to equation (2.1), this implies that l|NKl(

√
D)/Kl

(t2 + t3
√

D). Su
h a divisibility is possible onlywhen l|t2, t3, sin
e Kl(
√

D)/Kl is an unrami�ed, proper extension and √
D ∈ Kl(

√
D) is a unit.But then t4 is a unit, in 
ontradi
tion to equation (2.2).Se
ond, we 
laim that t0+At1 or t0+Bt1 is a unit. Indeed, sin
e A 6≡ B (mod l), the assumption

l|t0 + At1, t0 + Bt1 implies l|t0, t1.We have thus shown that one of the four expressions (t0+At1)/t0, (t0+At1)/t1, (t0+Bt1)/t0, and
(t0 + Bt1)/t1 is a unit. Write q for that quotient. As the lo
al extension Kl(

√
D)/Kl is unrami�edof degree two, we see that (q, D)l = 1. Proposition 3.2.b.i) implies the assertion. �If l is a split prime then an even stronger statement is true.Lemma 4.2 (Split primes). � Let K be a number �eld, A, B, D ∈ OK , and l ⊂ OK a primeideal that is split under K(

√
D)/K. Consider the surfa
e S := S(D;A,B).a) Then S(Kl) 6= ∅.b) Furthermore, if S is non-singular and α ∈ Br(S) is the Brauer 
lass, des
ribed in Proposition3.2.a), then the lo
al evaluation map evα,l : S(Kl) → Q/Z is 
onstantly zero.Proof. a) The assumption that l is split under the �eld extension K(

√
D)/K is equivalent to√

D ∈ Kl. Therefore, the point (1 :0 :1 : 1√
D

:0) is de�ned over Kl. In parti
ular, S(Kl) 6= ∅.b) This is the assertion of Proposition 3.2.b.ii). �Remark 4.3. � If l is inert, 0 6≡ A ≡ B (mod l), and (A/D mod l) ∈ OK/l is a non-square thenthe assertion of Proposition 4.2.b) is true, too.Indeed, t0 or t1 must be a unit by the same argument as before. The assumption l|t0+At1, t0+Bt1does not lead to an immediate 
ontradi
tion, but to l|t2, t4 and t0/t1 ≡ −A (mod l). In par-ti
ular, both t0 and t1 must be units. But then equation (2.1) implies the 
ongruen
e
−At21 ≡ −Dt23 (mod l).



DEL PEZZO SURFACES OF DEGREE FOUR VIOLATING THE HASSE PRINCIPLE 9Remark 4.4 (Inert primes�the 
ase of residue 
hara
teristi
 2). � We note that a statementanalogous to Proposition 4.2.a) is true for any inert prime l under some more restri
tive 
onditionson the 
oe�
ients A and B.For this suppose that A, B, D ∈ OK and that l ⊂ OK is a prime ideal that is inert under
K(

√
D)/K. Let e be a positive integer su
h that x ≡ 1 (mod le) is enough to imply that x ∈ Kl isa square. Assume that νl(B−1) = f > 1 and that νl(A) is an odd number su
h that νl(A) > 2f +e.Then S(Kl) 6= ∅.Indeed, let us show that there exists a point (t0 : t1 : t2 : t3 : t4) ∈ S(Kl) su
h that t3 = t4and t1 6= 0. This leads to the equation (T0 + AT1)(T0 + BT1) = T0T1, or

T 2
0 + (A + B − 1)T0T1 + ABT 2

1 = 0 .The dis
riminant of this binary quadri
 is (A + B − 1)2 − 4AB = (B−1)2 + A(A − 2B−2), whi
his a square in Kl by virtue of our assumptions. Thus, there are two solutions in Kl for T0/T1 andtheir produ
t is AB, whi
h is of odd valuation. We may therefore 
hoose a solution t0/t1 su
h that
νl(t0/t1) is even. This is enough to imply that (t0 + At1)(t0 + Bt1) = t0t1 is a norm from Kl(

√
D).Remark 4.5 (Ar
himedean primes). � i) Let σ : K →֒ R be a real prime. Then, for A, B ∈ Karbitrary and D ∈ K non-zero, one has Sσ(R) 6= ∅.Indeed, we 
an put t1 := 1 and 
hoose t0 ∈ R su
h that t0, t0 + σ(A), and t0 + σ(B) are positive.Then C := t0 > 0 and C′ := (t0 + σ(A))(t0 + σ(B)) > 0 and we have to show that the system ofequations

T 2
2 − σ(D)T 2

3 = C

T 2
2 − σ(D)T 2

4 = C′is solvable in R. For this one may 
hoose t2 su
h that t22 > max(C, C′) if σ(D) > 0 and su
h that
t22 6 min(C, C′), otherwise. In both 
ases it is 
lear that there exist real numbers t3 and t4 su
hthat the resulting point is 
ontained in Sσ(R).Moreover if σ(D) > 0 then the lo
al evaluation map evα,σ : S(Kσ) → 1

2Z/Z is 
onstantly zero.Indeed, then one has (q, D)σ = 1 for every q ∈ Kσ
∼= R, di�erent from zero.ii) For τ : K →֒ C a 
omplex prime and A, B, and D ∈ K arbitrary, we 
learly have that S(Kτ ) 6= ∅.Furthermore, (q, D)τ = 1 for every non-zero q ∈ Kτ
∼= C.5. Rami�
ation�Redu
tion to the union of four planesThe goal of this se
tion is to study the evaluation of the Brauer 
lass at rami�ed primes l.Under 
ertain 
ongruen
e 
onditions on the parameters A and B we dedu
e that the evaluationmap is 
onstant on the Kl-rational points on S, and we determine its value depending on A and B.Proposition 5.1 (Rami�ed primes in residue 
hara
teristi
 6=2). �Let K be a number �eld, A, B, D ∈ OK , and l ⊂ OK a prime ideal su
h that #OK/l is not apower of 2 and that is rami�ed under the �eld extension K(

√
D)/K. Suppose that A := (A mod l)

∈ OK/l is a square, di�erent from 0 and (−1), that A
2

+ A + 1 6= 0, and that
B ≡ − A

A+1 (mod l) .Consider the surfa
e S := S(D;A,B).a) Then S(Kl) 6= ∅.



10 JÖRG JAHNEL AND DAMARIS SCHINDLERb) Assume that S is non-singular and let α ∈ Br(S) be the Brauer 
lass, des
ribed in Proposition3.2.a).i) If A+1 ∈ OK/l is a square then the lo
al evaluation map evα,l : S(Kl) → Q/Z is 
onstantly zero.ii) If A+1 ∈ OK/l is a non-square then the lo
al evaluation map evα,l : S(Kl) → Q/Z is 
onstant ofvalue 1
2 .Proof. First of all, we note that νl(D) is odd. Indeed, assume the 
ontrary. We may then normalise

D to be a unit and write Kn
l for the unrami�ed quadrati
 extension of Kl. Then (D mod lOKn

l
) isa square and, sin
e OKn

l
/lOKn

l
is a �eld of 
hara
teristi
 di�erent from 2, Hensel's Lemma ensuresthat D is a square in Kn

l . I.e., Kl(
√

D) ⊆ Kn
l , a 
ontradi
tion.Let us normalise D su
h that νl(D) = 1. Then the redu
tion Sl of S is given by the equations

T0T1 = T 2
2 ,(5.1)

(T0 + AT1)(T0 − A
A+1

T1) = T 2
2 ,(5.2)whi
h geometri
ally de�ne a 
one over four points in P2.a) We write ℓ := #OK/l. It su�
es to verify the existen
e of a regular Fℓ-rational point on Sl.For this, it is 
learly enough to show that one of the four points in P2, de�ned by the equations(5.1) and (5.2), is simple and de�ned over Fℓ.Equating the two terms on the left hand side, one �nds the equation

T 2
0 + A

2
−A−1
A+1

T0T1 − A
2

A+1
T 2

1 = 0 ,whi
h obviously has the two solutions T0/T1 = 1 and T0/T1 = − A
2

A+1
. By virtue of our assumptions,both are Fℓ-rational points in P1, di�erent from 0 and ∞. They are di�erent from ea
h other, sin
e

A
2

+ A + 1 6= 0.Consequently, the four points de�ned by the equations (5.1) and (5.2) are all simple. The twopoints 
orresponding to (t0 :t1) = 1 are de�ned over Fℓ. The two others are de�ned over Fℓ if andonly if (−A − 1) ∈ Fℓ is a square.b) Let (t0 : t1 : t2 : t3 : t4) ∈ S(Kl) be any point. We normalise the 
oordinates su
h that
t0, . . . , t4 ∈ OKl

and at least one of them is a unit. Then l 
annot divide both t0 and t1. In-deed, this would imply l2|t22 − Dt23 and l2|t22 − Dt24 and, as νl(D) = 1, this is possible only for
l|t2, t3, t4.Therefore, ((t0+At1)/t1 mod l) = A+(t0/t1 mod l) is either equal to (A+1) or to A− A

2

A+1
= A

A+1
.Both terms are squares in Fℓ under the assumptions of b.i), while, under the assumptions of b.ii),both are non-squares.As a unit in OKl

is a norm from the rami�ed extension Kl(
√

D) if and only if its residue modulo lis a square, for q := (t0 + At1)/t1, we �nd that (q, D)l = 1 in 
ase i) and (q, D)l = −1 in 
ase ii).Proposition 3.2.b.ii) implies the assertion. �6. Zariski density in the 
oarse moduli s
hemeWe are now in the position to formulate su�
ient 
onditions on A, B, D, under whi
h the 
or-responding surfa
e S(D;A,B) violates the Hasse prin
iple.Theorem 6.1. � Let D ∈ K be non-zero and (D) = (qk1

1 · . . . ·qkl

l )2 p1 · . . . ·pk its de
ompositioninto prime ideals with p1, . . . , pk being distin
t. Suppose thati) k > 1,



DEL PEZZO SURFACES OF DEGREE FOUR VIOLATING THE HASSE PRINCIPLE 11ii) the quadrati
 extension K(
√

D)/K is unrami�ed at all primes of K lying over the rationalprime 2,iii) for every real prime σ : K →֒ R, one has σ(D) > 0.iv) For every prime l of K that lies over the rational prime 2 and is inert under K(
√

D)/K, assume
that νl(B − 1) = fl > 1 , that νl(A) is odd , and that νl(A) > 2fl + el ,for el a positive integer su
h that x ≡ 1 (mod lel) is enough to ensure that x ∈ Kl is a square.v) For every i = 1, . . . , k, suppose that

• (A mod pi) ∈ OK/pi is a square, di�erent from 0, (−1), and the primitive third roots of unity.If #OK/pi is a power of 3 then assume (A mod pi) 6= 1, too.
• B ≡ − A

A+1 (mod pi).
• 1 + (A mod pi) ∈ OK/pi is a non-square for i = 1, . . . , b, for an odd integer b, and a square for
i = b + 1, . . . , k.vi) Finally, assume that (A − B) is a produ
t of only split primes.Then S(D;A,B)(AK) 6= ∅. If S(D;A,B) is non-singular then S(D;A,B)(K) = ∅.Remark 6.1. � Without any 
hange, one may assume q1, . . . , ql distin
t, too. Note, on the otherhand, that we do not suppose {p1, . . . , pk} and {q1, . . . , ql} to be disjoint.Proof of Theorem 6.1. By i), D is not a square in K, hen
e K(

√
D)/K is a proper qua-drati
 �eld extension. It is 
learly rami�ed at p1, . . . , pk. A

ording to ii), these are the onlyrami�ed primes. In view of assumption iv), S(AQ) 6= ∅ follows from Proposition 4.2.a) and Propo-sition 5.1.a), together with Lemma 4.2.a), Remark 4.4, and Remark 4.5.On the other hand, let α ∈ Br(S) be the Brauer 
lass, des
ribed in Proposition 3.2.a). Then, inview of assumptions vi), v) and iii), Proposition 4.2.b) and Proposition 5.1.b), together withLemma 4.2.b) and Remark 4.5, show that the lo
al evaluation map evα,l is 
onstant of value 1

2 for
l = p1, . . . , pb and 
onstantly zero for all others. Proposition 3.1 proves that S is a 
ounterexampleto the Hasse prin
iple. �Example 6.2. � Let S be the surfa
e in P4Q, given by

T0T1 = T 2
2 − 17T 2

3 ,

(T0 + 9T1)(T0 + 11T1) = T 2
2 − 17T 2

4 .Then S(AQ) 6= ∅ but S(Q) = ∅.Proof. We have K = Q and D = 17. Furthermore, A = 9 and B = 11 su
h that Proposition 2.1ensures that S = S(D;A,B) is non-singular.The extension L := Q(
√

17)/Q is real-quadrati
, i.e. D > 0, and rami�ed only at 17. Un-der Q(
√

17)/Q, the prime 2 is split, whi
h 
ompletes the veri�
ation of i)�iii) and shows thativ) is ful�lled trivially.For v), note that 17 6≡ 1 (mod 3), su
h that there are no nontrivial third roots of unity in F17.Furthermore, 9 6= 0, (−1) is a square modulo 17, but 10 is not, and 11 ≡ − 9
10 (mod 17). Finally,for vi), note that (A − B) = (−2) = (2) is a prime that is split in Q(

√
17). �Remark 6.3. � The assumption on S to be non-singular may be removed from Theorem 6.1.Indeed, the elementary argument des
ribed at the very end of se
tion 3 works in the singular
ase, too.



12 JÖRG JAHNEL AND DAMARIS SCHINDLERThe goal of the next lemma is to 
onstru
t dis
riminants D ∈ K, for whi
h we will later be ableto 
onstru
t 
ounterexamples to the Hasse prin
iple, via the previous theorem.Lemma 6.4. � Let K be an arbitrary number �eld and p, r1, . . . , rn be distin
t prime idealssu
h that OK/p and OK/ri are of 
hara
teristi
s di�erent from 2. Then there exists some D ∈ Ksu
h thati) the prime p is rami�ed in K(
√

D),ii) all primes lying over the rational prime 2 are split in K(
√

D).iii) For every real prime σ : K →֒ R, one has σ(D) > 0.iv) The primes ri are unrami�ed in K(
√

D).In parti
ular, assumptions i)�iv) of Theorem 6.1 are ful�lled.Proof. Let l1, . . . , lm be the primes of K that lie over the rational prime 2. We impose the 
on-gruen
e 
onditions D ≡ 1 (mod le1

1 ), . . . , D ≡ 1 (mod lem

m ), for e1, . . . , em large enough that thisimplies that D is a square in Kl1 , . . . , Klm .Furthermore, the assumptions imply that p, r1, . . . , rn are di�erent from l1, . . . , lm. We impose,in addition, the 
onditions D ∈ p\p2 and D 6∈ r1, . . . , rn.A

ording to the Chinese remainder theorem, these 
onditions have a simultaneous solution D′.Put D := D′ + k · #(OK/le1

1 . . . lem

m p2r1 . . . rn), for k an integer that is su�
iently large to ensure
σ(D) > 0 for every real prime σ : K →֒ R. Then assertion iii) is true. Furthermore, the 
ongruen
es
D ≡ 1 (mod lei

i ) imply ii), while D ∈ p\p2 yields assertion i) and D 6∈ r1, . . . , rn ensures that iv)is true. �Before we 
ome to the next main theorem of this se
tion, we need to formulate two te
hni
allemmata.Lemma 6.5. � Let K be a number �eld, I ⊂ OK an ideal, and x ∈ OK \ I any element.Then there exists an in�nite sequen
e of pairwise non-asso
iated elements yi ∈ OK su
h that, forea
h i ∈ N, one has that (yi) is a prime ideal and yi ≡ x (mod I).Proof. The invertible ideals in K relatively prime to I modulo the prin
ipal ideals generated byelements from the residue 
lass (1 mod I) form an abelian group that is 
anoni
ally isomorphi
 tothe ray 
lass group ClIK
∼= CK/CI

K of K [17, Chapter VI, Proposition 1.9℄. Thus, the Chebotarevdensity theorem applied to the ray 
lass �eld KI/K, whi
h has the Galois group Gal(KI/K) ∼= ClIK ,shows that there exist in�nitely many prime ideals ri ⊂ OK with the property below.There exist some ui, vi ∈ OK , ui ≡ vi ≡ 1 (mod I) su
h that
ri ·(ui) = (x)·(vi) .Take one of these prime ideals. Then ri ·(ui) = (xvi). As ri ⊂ OK , this shows that xvi is divisibleby ui. Put yi := xvi/ui. Then (yi) = ri. Furthermore, yi ≡ x (mod I). �Lemma 6.6. � Let Fq be a �nite �eld of 
hara
teristi
 6=2 having >25 elements. Then thereexist elements a00, a01, a10, and a11 ∈ Fq, di�erent from 0, (−1), (−2) and su
h that a2

ij+aij+1 6= 0,that ful�l the 
onditions below.i) a00, (a00 + 1), and (a00 + 2) are squares in Fq.ii) a01 and (a01 + 1) are squares in Fq, but (a01 + 2) is not.iii) a10 and (a10 + 2) are squares in Fq, but (a10 + 1) is not.iv) a11 is a square in Fq, but (a11 + 1) and (a11 + 2) are not.



DEL PEZZO SURFACES OF DEGREE FOUR VIOLATING THE HASSE PRINCIPLE 13Proof. Let C1 ∈ F∗
q be a square in the 
ases i) and ii), and a non-square, otherwise. Similarly, let

C2 ∈ F∗
q be a square in the 
ases i) and iii), and a non-square, otherwise. The problem thentranslates into �nding an Fq-rational point on the 
urve E, given in P3 by

U2
1 + U2

0 = C1U
2
2 ,

U2
1 + 2U2

0 = C2U
2
3 ,su
h that Ui 6= 0 for i = 0, . . . , 3 and (U1/U0)

4 +(U1/U0)
2 +1 6= 0. Note that the 
onditions U2 6= 0and U3 6= 0 imply that (

U1

U0

)2 6= −1,−2.Sin
e the 
hara
teristi
 of the base �eld is di�erent from two, a dire
t 
al
ulation shows that E isnon-singular, i.e. a smooth 
urve of genus 1. The extra 
onditions de�ne an open subs
heme Ẽ ⊂ Ethat ex
ludes not more than 32 points. Thus, Hasse's bound yields #Ẽ(Fq) > q − 2
√

q − 31, whi
his positive for q > 44.An experiment shows that the four a�ne 
urves have points, too, over F27, F29, F31, F37, F41,and F43. �The following theorem provides us with Hasse 
ounterexamples in the family S(D;A,B) for suitabledis
riminants D. For us, the important feature is that one may 
hoose the parameters A and Bto lie in (almost) arbitrary 
ongruen
e 
lasses modulo some prime ideal l ⊂ OK , unrami�ed in
K(

√
D), provided only that A 6≡ B (mod l).Theorem 6.2. � Let K be an arbitrary number �eld and D ∈ K a non-zero element. Write

(D) = (qk1

1 · . . . · qkl

l )2p1 · . . . · pk for its de
omposition into prime ideals, the pi being distin
t.Assume thati) k > 1,ii) all primes lying over the rational prime 2 are split in K(
√

D),iii) for every real prime σ : K →֒ R, one has σ(D) > 0,iv) all primes with residue �eld F3 are unrami�ed in K(
√

D).Suppose further that among the primes p of K that are rami�ed in K(
√

D), there is one su
h that
#OK/p > 25.Then, for every prime l ⊂ OK , unrami�ed in K(

√
D), and all a, b ∈ OK/l su
h that a 6= b,there exist A, B ∈ OK su
h that (A mod l) = a, (B mod l) = b, and S(D;A,B)(AK) 6= ∅, but

S(D;A,B)(K) = ∅.Proof. First step. Constru
tion of A and B.Let M ∈ {1, . . . , k} be su
h that #OK/pM > 25. Besides(6.1) (A mod l) = a and (B mod l) = b ,we will impose further 
ongruen
e 
onditions on A and B. For ea
h i 6= M , we 
hoose a square
ai ∈ OK/pi su
h that ai 6= 0, (−1), (−2) and a2

i + ai + 1 6= 0. This is possible sin
e OK/pi is of
hara
teristi
 6=2 and #OK/pi > 3. For instan
e, ai := 1 may be taken ex
ept when pi is of residue
hara
teristi
 3.We require(6.2) (A mod pi) = ai and (B mod pi) = − ai

ai + 1
.Finally, we 
hoose a square aM ∈ OK/pM su
h that aM 6= 0, (−1), (−2) and a2

M + aM + 1 6= 0,satisfying the additional 
onditions below.
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• If, among the elements a1 + 1, . . . , aM−1 + 1, aM+1 + 1, . . . , ak + 1, there are an odd number ofnon-squares then aM + 1 is a square. Otherwise, aM + 1 is a non-square.
• If, among the elements a1 + 2, . . . , aM−1 + 2, aM+1 + 2, . . . , ak + 2, there are an odd number ofnon-squares then aM + 2 is a square. Otherwise, aM + 2 is a non-square.Lemma 6.6 guarantees that su
h an element aM ∈ OK/pM exists. We impose the �nal 
ongru-en
e 
ondition(6.3) (A mod pM ) = aM and (B mod pM ) = − aM

aM + 1
.A

ording to the Chinese remainder theorem, one may 
hoose an algebrai
 integer B ∈ OKsu
h that the 
onditions on the right hand sides of (6.1), (6.2), and (6.3) are ful�lled. Then, byLemma 6.5, there exist in�nitely many non-asso
iated elements yi ∈ OK su
h that (yi) is a primeideal and (yi + B, B) a simultaneous solution of the system of 
ongruen
es (6.1, 6.2, 6.3).We 
hoose some i ∈ N su
h that r := (yi) is of residue 
hara
teristi
 di�erent from 2, that

r 6= p1, . . . , pk, q1, . . . , ql, and su
h that A2 − 2AB + B2 − 2A − 2B + 1 6= 0 for A := yi + B.Note that r 6= p1, . . . , pk, q1, . . . , ql is equivalent to r 6∋ D.Se
ond step. The surfa
e S := S(D;A,B) is a 
ounterexample to the Hasse prin
iple.To show this, let us use Theorem 6.1. Our assumptions on D imply that assumptions i)�iv) ofTheorem 6.1 are ful�lled. Assumption v) is satis�ed, too, by 
onsequen
e of the 
onstru
tion ofthe elements ai. Observe, in parti
ular, that among the elements a1 + 1, . . . , ak + 1, there are anodd number of non-squares. Furthermore, S is non-singular.It therefore remains to 
he
k assumption vi). The only prime p ⊂ OK , for whi
h A ≡ B (mod p),is p = r (=(A−B)). We have to show that r is split under K(
√

D)/K.For this, we observe that, for i = 1, . . . , k,
A − B ≡ A + A

A+1 = AA+2
A+1 (mod pi) .As A is a square modulo pi, this shows

k∏

i=1

(A − B, D)pi
=

k∏

i=1

(A + 2, D)pi

/ k∏

i=1

(A + 1, D)pi
.Here, by our 
onstru
tion, both 1+(A mod pi) and 2+(A mod pi) are non-squares, an odd numberof times. Consequently,

k∏

i=1

(A − B, D)pi
= 1 .On the other hand, D is a square in Kli for li the primes of residue 
hara
teristi
 2 and forevery real prime, by assumption iii). Thus, (A − B, D)l = 1 unless l divides either (A − B) or D.I.e. for l 6= r, p1, . . . , pk, q1, . . . , ql. Moreover, (A−B, D)q = 1 for q ∈ {q1, . . . , ql}\{p1, . . . , pk} sin
eboth arguments of the Hilbert symbol are of even q-adi
 valuation. The Hilbert re
ipro
ity law [17,Chapter VI, Theorem 8.1℄ therefore reveals the fa
t that

(A − B, D)r ·
k∏

i=1

(A − B, D)pi
= 1 .Altogether, this implies (A − B, D)r = 1. Consequently, the prime ideal r splits in K(

√
D). �
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U/(S5 × PGL2), given on points by
(a1, a2) 7→ (a1, a2, 0,−1,∞) ,is dominant.Proof. It su�
es to prove that the rational map κ̃ : A2 − //__ U/(S5 × PGL2), given by

(a1, a2) 7→ (a1, a2, 0,−1,∞) is dominant. For this, re
all that dominan
e may be tested after baseextension to the algebrai
 
losure. Moreover, it is well-known that three distin
t points on P1
K
maybe sent to 0, (−1), and ∞ under the operation of PGL2(K). �Lemma 6.8. � Let K be a �eld of 
hara
teristi
 6= 2 and 0 6= D ∈ K. Let π : S → U be thefamily of degree four del Pezzo surfa
es over an open subs
heme U ⊂ A2

K , given by
T0T1 = T 2

2 − DT 2
3 ,

(T0 + a1T1)(T0 + a2T1) = T 2
2 − DT 2

4 .I.e., the �bre of π over (a1, a2) is exa
tly the surfa
e S(D;a1,a2). Then the invariant map
Iπ : U −→ P(1, 2, 3)asso
iated with π is dominant.Proof. As dominan
e may be tested after base extension to the algebrai
 
losure, let us assumethat the base �eld K is algebrai
ally 
losed. Write

Q1(a1, a2; T0, . . . , T4) := T0T1 − (T 2
2 − DT 2

3 ) and

Q2(a1, a2; T0, . . . , T4) := (T0 + a1T1)(T0 + a2T1) − (T 2
2 − DT 2

4 ),and 
onsider the family (uQ1 + vQ2)(u:v)∈P1 of pen
ils of quadri
s that is parametrised by
(a1, a2) ∈ A2(K).We see that, independently of the values of the parameters, degenerate quadri
s o

ur for
(u : v) = 0, ∞, and (−1). The two other degenerate quadri
s appear for (u : v) the zeroes ofthe determinant

∣∣∣∣
1 (a1 + a2 + t)/2

(a1 + a2 + t)/2 a1a2

∣∣∣∣ = − 1
4 [t2 + 2(a1 + a2)t + (a1 − a2)

2] .Thus, Iπ is the 
omposition of the rational map ρ : A2 ⊃ U − //__ A2/S2, sending (a1, a2) to the pairof roots of t2+2(a1+a2)t+(a1−a2)
2, followed by the rational map κ : A2/S2 − //__ U/(S5×PGL2),studied in Sublemma 6.7, and the open embedding ι : U/(S5 ×PGL2) →֒ P(1, 2, 3), de�ned by thefundamental invariants. It remains to prove that ρ : U − //__ A2/S2 is dominant.For this, as 
oordinates on A2/S2 one may 
hoose the sum and the produ
t of the 
oordinateson A2. Indeed, these generate the �eld of S2-invariant fun
tions on A2. Thus, we a
tually 
laimthat the map A2 → A2, given by (a1, a2) 7→ (−2(a1+a2), (a1−a2)

2) is dominant, whi
h is obvious.
�We are now, �nally, in the position to prove that the set of 
ounterexamples to the Hasse prin
ipleis Zariski dense in the moduli s
heme of del Pezzo surfa
es of degree four. For this, we will 
onsiderthe family S(D;A,B) for some �xed dis
riminant D and use Theorem 6.2.Theorem 6.3. � Let K be a number �eld, Ureg ⊂ Gr(2, 15)K the open subset of the Graÿmanns
heme that parametrises degree four del Pezzo surfa
es, and H C K ⊂ Ureg(K) be the set of alldegree four del Pezzo surfa
es over K that are 
ounterexamples to the Hasse prin
iple.



16 JÖRG JAHNEL AND DAMARIS SCHINDLERThen the image of H C K under the invariant map
I : Ureg −→ P(1, 2, 3)Kis Zariski dense.Proof. A

ording to Lemma 6.4, there exists an algebrai
 integerD ∈ OK ful�lling the assumptionsof Theorem 6.2. Suppose that the image of I were not Zariski dense. By Lemma 6.8, this impliesthat there exists a (possibly redu
ible) 
urve C ⊂ A2 of 
ertain degree d su
h that, for all surfa
esof the form

T0T1 = T 2
2 − DT 2

3 ,

(T0 + AT1)(T0 + BT1) = T 2
2 − DT 2

4that violate the Hasse prin
iple, one has (A, B) ∈ C(K).On the other hand, let l ⊂ OK be an unrami�ed prime and put ℓ := #OK/l. Then, by The-orem 6.2, we know 
ounterexamples to the Hasse prin
iple having ℓ(ℓ − 1) distin
t redu
tionsmodulo l. But an a�ne plane 
urve of degree d has 6ℓd points over Fℓ [4, the lemma in Chapter 1,Paragraph 5.2℄. For a prime ideal l su
h that ℓ > d + 2, this yields a 
ontradi
tion. �7. Zariski density in the Hilbert s
hemeThis se
tion is devoted to Zariski density of the 
ounterexamples to the Hasse prin
iple in theHilbert s
heme. Our result is, in fa
t, an appli
ation of the Zariski density in the moduli s
hemeestablished above.Theorem 7.1. � Let K be a number �eld, Ureg ⊂ Gr(2, 15)K the open subset of the Graÿmanns
heme that parametrises degree four del Pezzo surfa
es, and H C K ⊂ Ureg(K) be the set of alldegree four del Pezzo surfa
es over K that are 
ounterexamples to the Hasse prin
iple.Then H C K is Zariski dense in Gr(2, 15)K .Proof. Let us �x an algebrai
 
losure K and an embedding of K into K. Assume for the sake ofassertion that H C K ⊂ Ureg ⊂ Gr(2, 15)K is not Zariski dense. It is well-known that the Graÿmanns
heme Gr(2, 15)K is irredu
ible and proje
tive of dimension (15 − 2)·2 = 26. The Zariski 
losure
H C K ⊂ Gr(2, 15)K is therefore of dimension at most 25.By Theorem 6.3, the invariant map H C K → P(1, 2, 3) is dominant. Its generi
 �bre thus mustbe of dimension at most 23. In parti
ular, outside of a �nite union of 
urves C ⊂ P(1, 2, 3), thespe
ial �bres are of dimension 623, as well.Now, let us 
hoose a K-rational point s ∈ [P(1, 2, 3)\C](K) that is the image of a degree four delPezzo surfa
e S ∈ H C K under the invariant map. The geometri
 �bre I−1(s)K over s of the fullinvariant map I : Ureg → P(1, 2, 3) parametrises all reembeddings of S into P4

K
and is therefore atorsor under PGL5(K)/Aut(SK). In parti
ular, I−1(s)K is of dimension 24.This implies that I−1(s) 6⊆ H C K . But the orbit of s under PGL5(K) parametrises 
ounterex-amples to the Hasse prin
iple, and is therefore 
ontained in H C K . As PGL5(K) is Zariski densein PGL5(K), this is a 
ontradi
tion. �
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