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Abstract

We study the Mordell-Weil group MWXY) for cubic surfaced/ over finite fields that are not necessarily
irreducible and smooth. We construct a surjective map frovk(M) to a group that can by computed ex-
plicitly. For #MW(V), this yields a lower bound, which is (often but) not alwasgial. To distinguish
cases, we follow the classification of cubic surfaces, nally due to Schlafli and Cayley.

On the other hand, we describe an algorithm that a priorisgareupper bound for MVW/(). We report
on our experiments for “randomly” chosen surfaces of théousrtypes, showing that in all but one case
lower and upper bounds agree.

Finally, we give two applications to the number field casesti-ive prove that the number of generators
of MW(V) is unbounded. A second application explains why, for maaction types, the Brauer-Manin
obstruction may not distinguish points reducing to the stinpart.
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1. Introduction

The quasi group of a cubic surface.

1.1. —— According to Yu.l. Manin [Mal], a cubic surfadécarries a structure of guasi group For us,
this shall simply mean the collinearity relation.

Definition. LetV be a cubic surface over a finite figtd Then by thequasi groupassociated t&, we mean
the following ternary relation ol'"9(K).

[P1, P2, P3] ;= Py, P>, P; € V®Y(K), intersection points 0¥ with a linel, | not contained inv .

Here, as usual, intersection points are taken with mutiijsis.

1.2. Definition. — Let (I',[]) be a quasi group andX +) be an abelian group. By a homomorphism
g: I' - G, we mean a mapping satisfying the following condition.

There exists an elemehte G such that for all triplesR;, P>, Ps) € T fulfilling [ Py, P2, Ps],

g(P1) +9(P2) +9(Ps) = h.
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1.3. Lemma-Definition. —— The category of all homomorphisms from a quasi grbup abelian groups
has an initial object. The corresponding abelian groud’is= ZI'/N, for N the subgroup generated by
1P +1-P, +1-P3 - 1-P; — 1-P, — 1-P; for all [Py, P2, Ps] and [P}, P,, P,].

The groupl” carries a surjective augmentation homomorphisni's— 7Z. We will callkers the abelian
group associatedith T". O

1.4. Definitions. — Let V be a cubic surface over a fielkl

i) We will call the abelian group associated with the quasiugrvV™9(K) the Mordell-Weil groupof V.
It will be denoted by MWY/).

i) Two points Py, P, € V™Y(K) will be said to beequivalentf [ P,] — [P.] = 0 € MW(V).

1.5. Remark. —— This definition coincides with the one used by Yu. . Maninig2], but not with the
one suggested in [Mal]. Theftirence is whether three points on a line lying entirely orstiréace cause

a relation or not. If there is n-rational line contained i then the two definitions agree. In general, the
Mordell-Weil group considered in this article canonicallyrjects to the one from [Ma1l].

1.6. Example. — LetV be theCayley cubigiven by the equation

XoX1 X + Xo XL X3 + XX Xe + X1 %X =0

in P® over a fieldK. Then for a non-singular poi = (% : % : % : %) € V(K), either no coordinate
vanishes or exactly two of them. Accordingly, deftieV(K) — K* by

- JIx otherwise
ii %#0

XoXiXexs if x #0,i=1,...,4,
c(P) =

Further, let be a line inP? not contained iV and denote by, P», andPs the intersection points witk,
taken with multiplicity. Supposey, P,, andP; to be non-singular ank-rational.

Thenc(P1)c(P.)c(Ps) is a square irK.

Proof. This observation is easily checked by calculationgdple, treating the possible cases separately.
Let us present the generic case of a line through three puwittitsall coordinates dierent from zero.
We parametrize the line by (ap + tho : a; + thy : ay +tby : ag + thg) for a, b € K. The product
¢(P1)c(P2)c(Ps) then evaluates to

1
(boblbz + b0b1b3 + b0b2b3 + b1b2b3)4

[] (@b —ajb)?. O

O<i<j<3

The mapc therefore induces a homomorphism of groups
T MW(V) — K*/(K)2.

Further, this homomorphism is a surjection. Indeed, to getdquare class of € K*, take the point
(1: (=X :0:0)e V(K). If the base field is not of characteristic two and figthen the points

(=29 : (=29 : (x+ 1) : X(x + 1)) € V(K)

for x # 0, —1 have non-zero coordinates and yield every square class.
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For instance, wheWV is the Cayley cubic ovef), the group MWY) has a surjection t@*/(Q*)2.
In particular, is not finitely generated.

On the other hand, for the Cayley cubic over a finite figjcbf odd characteristic, we have a surjection
MW(V) —» IE‘;/(IF(;‘)2 = 7/27. There are (at least) twoftiéerent kinds of smooth points dh Two points
Pi, P> € V'®Y(TFy) may be equivalent only i€(Py)c(P») is a square.

The purpose of this article is to investigate this phenomenore systematically. It seems natural to ask
whethert is a bijection and whether it may be somehow generalized @rlaitrary cubic surface ovelfy.

The results.

1.7. — In this article, forV a cubic surface over a finite fiel;, we will compare MWY) with a
group more tractable from the theoretical point of view. Mogeometrically irreducible and not a cone,
this will be Ag(V™9), the degree-0 part of Suslin’s homology grdwVv™9). We will establish a canonical
homomorphism

bV MW(V) e Ao(Vreg) s

which we will prove to be surjective fay > 23. Further, we will show that £V™9) = 7/27 whenV is
of types 4, Ag + 2A1, or As + Aq, Ap(V™9) = Z/37 whenV is of type 3 and some extra condition is
fulfilled, and Ay(V™9) = 0, otherwise. In the case of a reducible cubic surface or a,age will describe a
surjective map from MWY) in an elementary manner.

Finally, we will report experimental evidence for MW) and Ay(V'9) being actually isomorphic as
long as the base field is not too small.

1.8. Plan of the article. — We will start section 2 by recalling the classification of @usurfaces. Af-
ter this, we will consider two degenerate cases at first,ithat®on of a cone and the reducible case. In the
cone case, there is the surjection to the Mordell-Weil grofujhe underlying curve. In the reducible case,
there is a surjection MW() — Z*! that simply distinguishes thie components. Furthermore, in Ex-
ample 2.3.2, we will present one reducible type where nopailhts on one component are equivalent.
The argument is similar to that for the standard Cayley cudfiExample 1.6.

Then, in section 3, we will construct the homomorphism MW(V) — Ag(V'™9). After this, we will
establish the isomorphisms

Ag(V'™9) = ntl,geo(vreg)ab = [(PiC(VFfeg)primetop ® p) ATV
q

The remaining cases of the classification of cubic surfaceshen dealt with as follows. For cubic ruled
surfaces, we observe that*(Vv™9) = 0. Finally, for each of the remaining cases of the classificabf
cubic surfaces, we will compute the torsion of the geom@&tigard group.

At the end of the main body of the article, we will describe @xperiments comparing MW(
and Ay(V'™9) in a large sample of examples. An appendix is devoteditcdent algorithms for the compu-
tation of MW(V) for concrete cubic surfaces. Although our algorithms anpsiield only an upper bound
for MW(V), it turned out in practice that the bounds are sharp.

2. Elementary cases

2.1. The classification of cubic surfaces

2.1.1. Proposition L. Schlafliand A. Cayley — Over an algebraically closed field of characteris-
tic #2, let V be an integral cubic surface. Then exactly one of tHevfing is true.



1) V is a normal cubic surface. Then it is either

i) in one of the 21 classes of surfaces with finitely many doutiletg listed in [Do, Table 9.1]. This in-
cludes the case of a smooth cubic surface.

if) Or the cone over a smooth cubic curve C.

II) V is a non-normal, irreducible cubic surface. Then it is eith

i) a cubic ruled surface. There are two types of those, ordilaay Cayley’s cubic ruled surfaces.
if) Or the cone over a singular cubic curve. This might be a culiilc & self-intersection or a cusp.

Proof. This classification was given by L. Schlafli in [Schl], back1858. An independent presentation
was given by A. Cayley [Ca]. There is a modern proof due to Igachev [Do, Section 9.2]. For nor-

mal cubic surfaces, Dolgachev’s proof actually works intaaby characteristic. Further, the list after [Do,
Lemma 9.2.5] shows that each type may be realized over theepiield. The reader should also con-
sult [BW] where, for many of the types, the dimension of thedmostack is discussed. O

2.1.2. — In the situation of a finite base field, the classification afmetrically integral cubic surfaces
is actually a little finer.

I.i) Among these types, R, 3A1, 2A, A + 2A1, 4A1, 28 + Ay, As + 2A;, and I have symmetries.
Hence, the Frobenius may permute the singular points. Fonple, the type 4 breaks into five subtypes
according to the possible operations. All in all, when allogvwsingularities that are defined over extensions
of the ground field, the number of types rises from 21 to 34.

IL.i) An ordinary cubic ruled surface may have its normahfioZ +yw? = 0 only over a quadratic extension.
This causes a third type of cubic ruled surfaces over a firatd.fi

ILii) In the case of the cone over a cubic curve with seleisection, there are two variants as to whether
the two tangent directions at the point of intersection afinéd over the ground field or not.

2.1.3. Remark Reducible cubic surfacks— We will restrict ourselves to reduced cubic surfaces.
In other words, the following types of reducible surfacesatowed.

i) A reducible cubic surface might consist of a quadric andea@. There are four cases where the quadric
is nondegenerate. In fact, the quadric may split over themptdield or not and the plane may be tangent
or not. There are four more cases when the quadric is a coreintdrsection with the plane might be a
conic, two lines, a double line, or a point.

i) Finally, the surface might be reducible into three plan&here are two cases as to whether their inter-
section is a point or a line. Observe that it is possible thatdecomposition into three planes is defined
only after a finite field extension.

2.2. Cones

2.2.1. — LetC c P? be a reduced cubic curve over a fi#&dd Then in a manner analogous to the surface
case, there are a quasi group structur€€amd theMordell-Weil groupMW(C). This group is known in
every case.

i) It may happen that is reducible and aK-rational smooth points are contained in one componentgbein
a line. Then the quasi group structure is empty and @W£ ker(sum:Z[C(K)] — Z). This degenerate
case automatically occurs whene@contains a line defined over a proper extensiok 0Otherwise,

i) MW(C) = J(C)(K) for C smooth. HereJ(C) denotes the Jacobian ©f
iii) MW(C) = K* if Cis a cubic curve with a cusp.
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iv) If C is a cubic curve with a node then M@) = K* in the case that the two tangent directions at
the node are defined ovér If the tangent directions are defined over the quadratiersionF/K then
MW(C) = ker(N: F* — K*).

v) WhenC is reducible into a line and a conic then M@J(= ker(N: F* —» K*) & Z, MW(C) = K* @ Z or
MW(C) = K* @ Z depending on whether, ovi, there are no, one, or two points of intersection.

vi) WhenC is reducible into three components then M3y K* @ Z2 or MW(C) = K* @ Z? depending
on whether the three points of intersection coincide or not.

Proof. Parts ii), iii), and iv) are standard, cf. [Sil, Proposit®ltl.2.2 and 111.2.5]. The other assertions are
elementary, but have to be checked, one by one.

For example, let us explain the subcase of vi), where therthaee points of intersection. The summand
7Z? = ker(sum:Z3 — 7) collects the three augmentation maps. The sumnikdrappears as the collinear-
ity of three points on a triangle is characterized multiglicely, according to Menelaus’ Theorem [VY,
Theorem 22]. O

2.2.2. Lemma Cone3. — For V a cone over a cubic curve C, we have a canonical surjactio
MW(V) — MW(C).

Proof. Denote byr: V@ — C™ the canonical projection. 1P, P,,P; € V™9 are collinear then
7(Py), n(P,), 7(Ps) € C™9 are collinear, too. Thus; induces a homomorphism.: MW(V) - MW(C),
which is clearly surjective. O

2.3. Reducible cubic surfaces
2.3.1. — LetV be areducible cubic surface over a fig&ldThen there are two essentiallyfidrent cases.

i) There are two irreducible components, a pldand a quadric, but the quadric consists of two planes
defined over a quadratic extension. Then only the pERigentainsK-rational smooth points. We have an
empty quasi group structure and MW(= ker(sum:Z[E(K)] — 7).

i) Otherwise, whenV decomposes intck = 2,3 components, there is a canonical surjection
MW(V) — ker(sum:Zk — 7) = 7x1,

There is one very interesting situation where this sumecis systematically non-bijective. Consider the
following example.

2.3.2. Example. —Over a finite fieldlFy of characteristics 2, letV be a reducible cubic surface con-
sisting of a nondegenerate quadratic c@hand a plané=. Suppose thaE does not meet the vertex Qf
Then there is a canonical surjection

MW(V) — Z & 7/27. .

Proof. The homomorphism t@. is that from 2.3.1.ii). It remains to construct the homoniaesm toZ/27..

For this, we fix coordinates such that the cusp isin (1 : 0 : 0O ar@®) the pland is given byx = 0.
Further, we assume without restriction that the plaype-“0" is tangent to the con®. Then the cone is
given by, sayyz+ Lw? = 0 for L # 0. The whole cubic surface has the equation

xyz+ Lw?) = 0.

On the planeE, we define the homomorphism MW(V) — 7/27 simply asy2(L(yz + Lw?)) for y» the

quadratic character df;. On the coneyz+ Lw? = 0, we takey2(Xy), respectivelyy»(—Lx2) wheny = 0.
We have to show that this definition is indeed compatible whth quasi group structure. For this, let

Po=(x:y:z:w)eQy), P, =X :y :Z:w)e QlFy), andP; = (0 :y” : z/ : w’) € E(IFy) be
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three collinear points. Then we clearly have (@ :: 2 :w”’) = (0: Xy —-xy) : (Xz—xZ) : (XwW — xw)).
Furthermore,
ONXYILY'Z" + Lw'?) = LxX Y [(XY = %/ ) (X 2= 3Z) + L(X W = 3w )?]
= —LxXyy[xX (yZ + Y z+ 2Lww/ )]
= —LX?(-Ly*W? — Ly’?wW? + 2Lyy ww/)
= L2 X%(yW — y'w)?

is a square. Hence, wheny # 0, we see that(P;) + 7(P,) + 7(P3) = 0. The remaining cases are
treated analogously. O

3. Irreducible cubic surfaces not being cones

When a cubic surfac¥ is irreducible, but geometrically reducible, then it catsiof three planes acted
upon transitively by the Galois group. In this ca8&9K) = 0 and, therefore, MW{) = 0. Thus, we may
restrict ourselves to the geometrically irreducible case.

3.1. Suslin’s singular homology groumg

3.1.1. — For a scheme of finite type over a fifd the singular homology grous(S) were introduced
by A. Suslin [SV]. We will only needy(S), for which there is the following elementary description.

3.1.2. Proposition. —Let S be an integral scheme of finite type over a field K. Then
ho(S) = Zo(S)/ Ray(S) -
Here, Zo(S) is the group of0-cycles, i.e., the free abelian group over all closed pooftsS. Raf(S) is

generated by ald-cycles of the following kind.

Let C c S be an irreducible curve,’Gts normalization, ancC the corresponding smooth, proper model.
Then take all the cyclediv(f) where f % 0 is a rational function on C which, after pull-back ©, is
constantlyl onC\C'.

Proof. See [Schm, Theorem 5.1]. O
3.1.3. Notation. — i) ho(S) is equipped with a natural map delg(S) — Z. We will denote its kernel
by Aq(S).

ijLet i: S — S, be an arbitrary morphism of quasi-projective varietiesroie Then there
is the induced homomorphisia: ho(S1) — ho(S),[Pl +— [i(P]. This immediately yields a
mapi..: Ao(S1) — Ao(S).

3.1.4. Remark. — When S is proper, hy(S) coincides with the Chow group of zero cycles 8n
Then Ay(S) is nothing but the subgroup of zero cycles of degree zero.

3.1.5. Lemma. — Let V be a geometrically irreducible cubic surface o¥gr Then there is a canoni-
cal homomorphism
bV MW(V) e Ao(Vreg) .

Proof. To each combinatioa;[P;] + ... + a[F] for Pi,...,P« € V®K) anda; + ... + ax = O, the
homomorphisni, assigns the corresponding cycle. We take this as a defirfgion,. To show thatry is
well-defined, we have to verify the following.
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Assume thak;, Xz, X3 are collinear and{, X;, X, are collinear, too. Suppose that the connecting lines
are not contained iN. Then

[X] + [Xe] + [Xe] = [X(] = [X3] = [X5] = 0 € Ap(V™).

For this, consider the pencil of planes throdghX,, Xs. Generically, the intersection wilis a curve,
smooth atX;, X andXz. The only possible exceptions are the tangent planes. Wa that the generic
intersection curve is irreducible, too. Indeed, the cagtveould mean that all intersection curves contained
a line. Suppose, this is a line througfh. ThenV contains a pencil of lines through , which impliesV
contains a plane throughk . Hence)V is reducible, a contradiction.

Thus, take a plane throughti, X, X3, generating an irreducible intersection cu@¢hat is smooth in
X1, X2 andXz. Further, take a plane througd), X, X, generating an irreducible intersection cu/ethat
is smooth inX{, X, andX; and meet< only in smooth points<(’, X', X}'. The sublemma below, applied
to C andC’, immediately yields the assertion. O

3.1.6. Sublemma. ——Let C be an irreducible cubic curve. Assume thatm,P; € C*9 as well as

Q1, @, Q3 € C™®9 are triples of collinear points such th@Py, P, P3} N {Q1, @, Q3} = 0.

Then there is a rational function f on C having simple zerae’,aP,, P;, simple poles at Q @, Qs, no
other zeroes or poles, and the valuat the possible singular point.

Proof. According to J. Pliicker, an irreducible cubic curve mayehatmost one singular point. We may
therefore putf := K-l1/l, for formsl; andl, defining the lines. By assumption, these do not meet the
singular point. If necessary, we choose the condtastich that the value at the singularity is normalized

to 1. O
Surjectivity.
3.1.7. Corollary. — Let V be a geometrically irreducible cubic surface ofgr not being a cone. If

v MW(V) — Ag(V'™®9)

is not surjective then ¥9 has a nontrivial finite covering which is trivial over eveFy-rational point.

Proof. Under the assumption, the image of the canonical M&HIF,;) — ho(V™9) generates a subgroup
which is not dense. Hence, there are 1 and a surjective, continuous homomorphisnhg (V™% — Z/17
sending the whole image ®°Y(IF,) to zero.

The same is true for the compositio,..,: 715 (V™9 — Z/IZ. But this simply means that thesheeted
covering ofV'd defined by oy, has exactly IFy-rational points above everye VY(IF). O

Supposegy were not surjective. Then according to the lemma, we haven&rimial coveringW such
that #V(IFy) = |-#V™Y(IF,). The Weil conjectures, proven by P. Deligne, assure thatrtiay be possible
only for very small values od.

3.1.8. Proposition. —Let V be a geometrically irreducible cubic surface over timitdifield IF;, not
being a cone. Then the canonical homomorphism

v MW(V) — Ag(V'™®9)

is surjective for g> 23.

Proof. Assume the contrary. Then according to Corollary 3.1.7, esela twofold covering: V' — V
ramified at the 1< s < 4 singularities such that, over every smodihrational point ofV, there
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are two of V’. Being a geometrically irreducible cubic surfacé,has at least? — 5q + 1 points.
Hence, #"™Y(F,) > ¢> - 59 — 3.

On the other handywp(V) = 9 — 25 asV'™ is P?, blown up in six points, withs A, D-, or E-
configurations of lines deleted. Thereforey(V’) < 18- 3s < 15. Indeedy’ consists of the two sheets
aboveV'™9 and< s points of ramification.

We claim #'(F;) < ¢ + 13q + 1. For this, first observe that’ is simply connected as, otherwise,
V'@ had more coverings than the twofold one. kebe the number of blow-ups necessary in order to
desingulariz&/’. Then dimHgt(V, @Q)) < k+ 13 and one has the naive estima¥(#;) < g? + (k+13)q+ 1.
The claim follows.

Consequently, 2¢ — 5q — 3) < 2-#V"™YIF,) < #(V')°YIFy) < ¢ + 13q + 1, which impliesq < 23, im-
mediately. O

3.2. Computing f The tame fundamental group

3.2.1. — LetS be a smooth surface over the finite fi@llg for g = P and letS 2 S be a smooth com-
pactification. Then théame fundamental group;(S) of S classifies all finite coverings & which are
tamely ramified aB\ S.

The groupr|(S) is independent of the choice of the compactificaﬁ_bmtl(S) is a quotient ofrr"f‘(S).
By the purity of the branch locus [SGAL, Exp. X, Théorém#3one has

7 (92 = (718(S)%) prime top © (15(S)?®) ppower

Again, this decomposition is independent of the choic8.of

The structural morphisi® — SpedFy induces a surjection (S) — 71(SpedF,) the kernel of which we
will denote byr;9°%(S). Note thatr;%*%(S) differs fromz (S, ). The pointis that the analogue of the natural
short exact sequence [SGAL, Exp. IX, Théoréme 6.1] is dght exact for the tame fundamental group.

3.2.2. Theorem Gchmidt, SpieR — Let S be a surface over a finite figlj which is smooth and geo-
metrically irreducible, but not necessarily proper.

i) ThenAp(S) is a finite abelian group.
ii) There is a canonical isomorphism: Ao(S) — 7;%°YS).
Proof. See [SchS, Theorem 0.1]. O

3.2.3. Remarks. ——a) Concretelys is given as follows.
i) For a pointx: SpedFy — S, consider the induced homomorphism

78 : 7 = 28(SpedFy) — 75(S) — 4(S) — L (S)%.

Send i to n"j‘(x)(l). This defines a homomorphisg ho(S) — n‘l(S)ab.

i) The degree map dedo(S) — Z is compatible with the homomorphisa(S)® — #%(SpedF,) = 7
induced by the structural morphism.

iif) The homomorphisms is exactly the restriction af; to ker(deg).

b) The mapg defines an isomorphishﬁ — n‘l(S)ab.

3.2.4. Lemma. — Let V be a cubic ruled surface defined over the finite figjdThenz;%*%(v"9) = 0.
Proof. It will suffice to shows! (Vreg) 0. In the present situation, a smooth compactificatiovV.5f
is given by a projective plane, blowch up in one point. Thepeage of the singular locus is a (doublej line
through the point blown up. Consequenwggg is a ruled surface ovek!. This yleIdSnl(V%eg) 0. O
q q
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The Picard group.

3.2.5. Proposition. —Let V be a geometrically irreducible cubic surface olgf g = p, that is not
a cone. Suppose V is normal, i.e., of one of the types L.iya The

”tigeo(Vreg)ab = [(Pic(vgg)primewp ®y pl,) ATV
q

Here," denotes the Pontryagin dual, given by the fun¢tom(, Q/7Z).

Proof. First step. ptorsion.

We know a smooth compactificatidhof V9, explicitly. V]F is isomorphic taP? blown-up in six points.
In particular, we have®'(Vz ) = 0. This siffices forn! (Vg )ppower = 0 andr" 1 UV)3 ower = 0.

Second steplhe Pontryagin dual.

Let us compute the Pontryagin dual$*%(v"¢92%)". For| prime top, we have

Hom(z;%*%(Vvre9)® 17,/7) = Hom(x! (V™®92, 17,/7)/ Hom(r1(SpedFy), 17,/7)
Hom(r(V™9)?, 17,/7,)/ Hom(ri(SpedFy), +7/7)

Hi(v'es, 17/ 7) /H (Gal(Fy/Fy), $Z/Z).

According to the Hochschild-Serre spectral sequence
HP (Gal(Fy/TFy), H, (v“eg 17)7)) = HY (V' 17%/7)

the latter quotient is nothing blI:l*tét(Vreg 17,)7) S/ o),

Third step.The torsion part of the Plcard group.

We havel'(VS9, Gy = Fq In fact, theA-, D-, and E-configurations do not contain any principal divi-
reg

sor. This immediately yield$i, (VY ) = Plc(\/reg)| for any| prime top. On Vfg, the étale sheaves
o andTlZ/Z coincide up to the GaIr&s operation. °\Ne therefore have

Hom(ry (V9. 17/) = (HE(VE®, ) @7, ) >/
= (Fﬁc(\/%‘f)I &z 1)) 2T/
Summing this up over all we see that
TNV ™)” = (Pic(Vir Yorime op @2 1) ST
which is equivalent to the assertion. 0

3.2.6. Corollary. — Let V be a cubic surface over a finite fidhy.

a)If V is geometrically ruled theAy(V"9) = 0.

b) If V is geometrically of one of the types 1.i) thap(V"®9) = [(Pic(Vxprime top &7 (1Y )GaF Fopv
q

Proof. a) summarizes Theorem 3.2.2.ii) and Lemma 3.2.4, whilellvis from Theorem 3.2.2.ii) together
with Proposition 3.2.5. O

Thus, in order to compute £&V'9), we only need to know Pi&f®9),, for each of the 21 types of cubic
surfaces summarized in L.i).



The 21 types of normal cubic surfaces not being cones.

3.2.7. Lemma. — Let V be a normal, proper surface over an algebraically ctbfield andV its desin-
gularization. Then

Pic(v'®9) = Pic(V)/(Ex..... Ed)
where g, ..., E denote the irreducible components of the preimages of tttpikirities onV.

Proof. As V is non-singular, the restriction homomorphism Ric(— Pic(V'®) is surjective. Its kernel
consists of these invertible sheaves that allow a trivailizn onV/"™9, O

3.2.8. Theorem. —Let V be an irreducible cubic surface ovEg, not being a cone. Suppose that V is
normal, i.e., of one of the 21 types L.i).

Then the Picard grou@ic(V'™9) is torsion-free for 17 of the 21 types. For the four remaintgges, the
torsion is given in the table below.

[ type [ singularities [ Pic(V™)ors |

XVI a5, ZJ2Z
XV P + 28, ZJ2L
XIX P+ A Z.J2L
XXI 34 Z.J3L

Proof. We distinguish the cases systematically. Each time, weydppphma 3.2.7.

One has Pi&() = Z". The signature is (+-1, -1, -1, -1, -1, —1). I.e., we have torsion-freeness in the case
of a smooth cubic surface.

Otherwise, the-, D-, or E-configuration of £2)-curves generates a sublattice of Mic(The quotient has
torsion if and only if this sublattice can be refinedahwithout enlarging the rank. This immediately shows
torsion-freeness in the cas@sfor n # 3 andEg as the lattice discriminants are square-free.

For the other cases, the constructions described afterl[@rama 9.2.5] yield explicit generators for sub-
lattices of7Z’. We summarize them in the following table.
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Table 1: Sublattices ifZ.” generated by thé-, D-, andE-configurations

The assertions now follow from mechanical calculations.

In the cases where torsion-freeness is claimed, one may eatend the basis of the sublattice given to a
basis ofZ’. For example, consider the typas + A;. Then we have subsets of the lattice base consisting
of2e,—-e—---—e7,6 -6, fori=3,...,6,¢e, ande;.

In the cases A, A3 + 2A;, and As + A, the lattices may indeed be extended by the vec-
tor (1,0,-1,0,-1,0, —1) without changing the ranks. The lattices obtained in\fag are then maximal.

In the case B, the vectoryy + vz — V) — (V2 + V5 — Vg) = —3e3 + 365 is obviously 3-divisible. The refined
lattice has discriminant 3 and is, therefore, not refinabiefarther. O

3.2.9. Corollary. — Let V be a cubic surface ovély that is geometrically of typ&Ay. If g = 1
(mod 3)and Frobacts on the singular points by an even permutation ar § (mod 3)and Frobacts by
an odd permutation theAy(V™9) = 7/37. Otherwise Ao(V™9) = 0.

Proof. If 3|qthen Corollary 3.2.6.ii) immediately showg@®/"9) = 0. Otherwise, P|0( g)pnmetop = 7./37,
by Theorem 3.2.8. Further, Table 1 shows that permutinggbersd and third smgularlﬁes changes +es
into e; — e;. Thus, Frob operates on g)pr.metop via the sign of the permutation of the three singular
points. On the other hand, @&, Frob acts’as 1 or(1) according to whethers C IFy or not. Butus C I,
is equivalenttaj= 1 (mod 3). The assertion follows. O

3.2.10. Theorem. —Let V be a cubic surface over a finite fidly. Suppose that V is geometrically
ruled or of one of the 21 types in L.i).
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a)Let V be geometrically of typ®, Ag + 2A, or As + A If charlFy # 2 thenAo(V'™9) = Z/27Z.

b) Let V is geometrically of typ8A.. If g = 1 (mod 3)and Frobacts on the singular points by an even
permutation or ¢gg 2 (mod 3)and Frobacts by an odd permutation thép(V'™?) = 7Z/37Z.

c) Otherwise Ag(V™9) = 0.

Proof. For the geometrically ruled case, see Corollary 3.2.6.ijhe@vise, we use Corollary 3.2.6.ii).
This proves, in particular, V) = 0 for the 17 types where PM[) is torsion-free.

If Vis of type 47, Ag+2Aq, or As + A; then Corollary 3.2.6.ii) Immediately shows@/"9) = Z/27 un-
less the characteristic of the base field is two. Indeed, #iieiSoperation o,/ 27 is automatically trivial.
When chafyy = 2, the same formula yieldsgV™®9) = 0. The type 2y, was dealt with above. O

4. Experiments

4.1. Description of the sample. —We let p run through the prime numbers form 5 through 101.
For each of the primes, we followed the classification of cuhirfaces as described in 2.1.2 and 2.1.3.
Recall that, as the base field is finite, there are 34 typesrédces with finitely many double points.

For each type, equations for the corresponding surfacesiggested in [Do, Section 9.2]. We selected
codficients by help of a random number generator and worked witexamples per type. For those types
which clearly have no moduli [BW], we took only one examplee Aoided the surfaces decomposing
into three planes over a proper extensioftpfas, for these, MW() is known to degenerate. All in all, we
worked with 330 cubic surfaces per prime.

4.2. The results. —For each surface in the sample, we run Algorithm A.3 to deiteerthe partition
of V™®Y(IF,) into equivalence classes. A priori, the algorithm mighbdurce a partition that is too fine.
It turned out, however, that it could find the exact equivaerelation in each case.

Recall that in each case, according to the theory describeddtions 2 and 3, we have a lower bound
for MW(V). More precisely, we know an abelian group, MW(naturally maps to. On the other hand,
Algorithm A.3 provides an upper bound. l.e., another alpedisoup mapping onto MWY).

Astonishingly, both turned out to be the same with only oreeetion. The partition of the points found
allowed us to determine MW() for every surface in the sample.

Case L.i)Among the normal cubic surfaces having only double poinésaiways found MWY) = 0 except
for the cases A, As + 2A1, As + A1, and Fp. In the first three of these cases, we have N\ 7./ 27.

Finally, in the case &, we indeed found that MW() = Z/3Z for p = 1 (mod 3) and Frob acting on
the singular points by an even permutation andder 2 (mod 3) and Frob acting by an odd permutation.
Otherwise, MWY) = 0.

Cases l.ii) and Il.ii))lgnoring the exception described in Example 4.3 below, ffier tones, MVW) was
always equal to the Mordell-Weil group of the underlyingwair

Case IL.i)The cubic ruled surfaces always fulfilled M¥) = 0.

Two componentdVhen V consisted of a non-degenerate quadric and a plane, we alfways that
MW(V) = Z, two points being equivalent if and only if they belongedhe same component. When the
gquadric was a cone and the plane did not meet the cusp, idoutehat MWY) = Z&Z /27, the surjection
described in Example 2.3.2 being bijective.

A cubic surface consisting of a cone and a plane through thp isua cone over a reducible cubic curve.
Here, MW(V) was always isomorphic to the Mordell-Weil group of the airv
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Three componentsA cubic surface consisting of three planes meeting in a psthie cone over a triangle.
MW(V) was always equal to the Mordell-Weil group of the triangle.

Finally, three planes meeting in a line form a cone in may walience, two distinct points are never
equivalent to each other. We have MW(x (K*)? @ Z2.

4.3. Example. — Consider the con€ over the elliptic curve given by? = X + 2x overFs. This elliptic
curve has only twds-rational pointsP = (0, 0) andQ, the point at infinity. CorrespondinglZ™? has ten
points,Pi,...,Ps,Q1,..., Q. The lines define the relationB/[ P, Q;] and [Q;, Q;, Qj] fori, j=1,...,5.
Consequently, MWE) = (Z/27)°, generated by allf — Q;), subject to the relation) — Q;) = 0.

Here, the construction of MW/() degenerates as, @9, there are too feviFs-rational points. This ef-
fect clearly becomes worse for= 2 or 3. This is one of the reasons why these primes were exatfuo
the experiments.

4.4. Remark. — The case of a cubic surface consisting of three planes witheain common is the
easiest from the theoretical point of view. For AlgorithnBAit is, however, the most complicated one.
No simplification occurs as no equivalent points may be fodree running time is dominated by steps iv)
and v), which are otherwise negligible. For- 70, we excluded this case from the experiments.

4.5. Remark. —— We run an implementation of Algorithm A.3 itagma. On a Quad-Core AMD Opteron
Processor 2356, the average CPU time per surface vBasetonds fop = 5, 11 seconds fop = 37,
38 seconds fop = 71, and 1:55 minutes fqu = 101.

Some observations.

The facts presented in this subsection were obtained afteéndp seen the results of the experiments to
compute Mordell-Weil groups. Lemma 4.7.i) is important fbe application given in Proposition 5.2.
Although we have no applications for the other results, vimktthat they are nevertheless of interest.

4.6. Definition. — Let V be a cubic surface over the finite fiely and suppose there is a surjection
n: MW(V) — Z/27. Then, with respect ta, V'*Y(IF;) decomposes into exactly two equivalence classes.
We will call the equivalence claggldthat occurs an even number of times on each line, the othegeslan

4.7. Lemma. — Let V be a cubic surface over the finite fidllgl Fix a surjectiont: MW(V) —» Z/nZ.
Suppose that, in every equivalence class 6f(W;) according tor, there is a point not contained in any of
the lines lying on V.

i) Suppose = 2. Assume further that not all points of *{(IF;) are contained in a plane. Then for the two
equivalence classesgyM; of V'*9(IFy), we have the relatiohM, —#M_ = q.

ii) Suppose &= 3. Then the three equivalence classas Mi, M, of V'®Y(IF,) are of the same size.

Proof. i) Fix a pointX € M_ not contained in a line lying od. By assumption, there is sorx e V"™Y(IF,)
outside the plane tangent ¥t The lineg connectingX andX’ meetsV in two distinct pointsX'Y € M_
andinZ € M, . (We have eithel = X orZ = X'.)

Now, we intersectV with the pencil of planes containing We assert that each of the ¢ 1)
curvesC; arising contains as many points frodh. as fromM_. This immediately implies the assertion.
Indeed, equinumerosity occurs as soon as we count the pgilvisandZ multiply.

To verify the assertion, le€; be any of the intersection curves. We first observe ¥at G is a
smooth point. In fact, we do not inters&ttvith the tangent plane & since that does not contagnC; may
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be reducible. HowevekK is, by assumption, not contained in a line. Therefore, farg® e G (IF), there
is a uniqueP € C(IFy) such thatxX, P, andP are collinear. AsP andP’ are in diterent classes, the
assertion follows.

i) Here, there are two cases.

Firstcase.lf X € Mi, Y € Mj, andZ € My are the three points of intersection of a line wittheni+ j+k = 0

(mod 3).

We choose a poirX € My which is not contained in any of the lines ¥n Then for everyP € My, there is
a uniqueP € M, such thalX, P, andP’ are collinear. As this assignment is invertible, one s # #Vl,.

Analogously, a starting poiX € M; yields the equality M, = #V.

Second caself X € M, Y € M;, andZ € M are the three points of intersection of a line with
theni + j+ k= 0 (mod 3).

We may assume without restriction thatj+k = 1 (mod 3). Choose a poit € My which is not contained
in any of the lines ofv. The tangent plan&x contains, besideX, only points fromM;. Further, there are
exactlyq+ 1 of them, as, by the assumption of this case, there is nodimgent aiX of order three. On the
other hand, outsid&y, the setdVy andM; are equinumerous since the lines througbause a bijection.
Consequently, ¥; = #Mp + Q.

Analogously, we obtain M, = #M; + q and #M, = #M, + q when starting with a poinK € M; or
X € My, respectively. Thus, the second case is contradictory. O

4.8. Corollary. — Let V be a cubic surface over the finite fidig having at most finitely many dou-
ble points. Supposex¥ 101 Fix a surjectiont: MW(V) — Z/27. Then every point & V"®9(IF,) lying on
aline containedin V is even.

Proof. Suppose, to the contrary, thats odd. Being a smooth point on an irreducible cubic surfadies
onn < 3linesly,...,|, contained inV. As x is odd, outsidd,, ..., |, there are the same numbers of odd
and even points.

V is geometrically irreducible. HenceV#9(IF,) > g — 5 — 3. Since a plane cubic curve has at most
30 + 1 points, not all points 0¥/"9(IF;) are contained in a plane. Further, by the argument aboess tire
at least™=2%4 even and™=3-4 odd points. As the number of points on linesi27(q+ 1) andq > 101,
points of both kinds occur outside the lines.

Therefore, by Lemma 4.7.i) My —#M; = g. The same must apply for the numbers lying onritiees.
But n lines with a point in common contaimy+ 1 points, which is an even number fore 1, 3. Hence, we
necessarily have = 2. In particular, all points lying on exactly one line are eve

As the number of lines is bounded by 27, the two lines contamast 225+ 1 = 51 points that lie
on more than one line. Thus, at least-250 points are even and most 51 points are odd. This implies
29 -101= (29 - 50)- 51 < g, a contradiction. O

4.9. Lemma Connection to the Hessipgn—
Let V, given by EXp, ..., X3) = O, be a cubic surface over the finite fidl§ of characteristict 2. Sup-
pose, there is a surjectiddW(V) — 7Z/27. Then the following is true.

If P e V®Y(IF,) is a odd point not lying on a line contained in V then the Hessia

&°F

det-2"
S axax;

(P

is a non-square irfy.
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Proof. Consider the tangent plafig atP. The intersectiolCp := VN Tp is a cubic curve with a singularity
atP. Thus, in d@fine coordinates and locally neBrthe equation o€ is of the formQ(x,y) + G(x,y) = 0
for a quadratic fornQ and a cubic forn®.

By assumption, there is no line ifb meetingP with multiplicity 3. This means, in particular, that
P € Cp is a double point, not a triple point. Further, the two tarigirections aP are not defined oveFy.
In other words, the binary quadratic foighdoes not represent zero o\lgy. This exactly means that minus
the discriminant ofQ is a non-square ifiYy. It is a direct calculation to show that ¢liscQ) coincides, up
to square factors, with the Hessianfoat P. O

5. Applications

The Mordell-Weil problem.

5.1. —— The Mordell-Weil group is related to the famolordell-Weil problem[Ma2]. This may be
formulated as to determine the minimal number of generatd®N(V), most notably in the case thdtis
a cubic surface over a number field.

In the main part this article, we analyzed the Mordell-Wedwp for cubic surfaces over finite fields.
Of particular interest are the types for which MW(# 0. The pointis that there is the following application
to the number field case.

5.2. Proposition. — Let ¥ be a cubic surface oveR) and p,..., p be primes satisfying the follow-
ing conditions.

i) For every i, the reductiory,, has at most finitely many double points. Further>pL0L
ii) For each i, there is a surjectiom, : MW(¥}) — Z/27Z.

iif) No singularity of 7}, lifts to a smoothR-rational point on’?".

Then the specialization maps induce a natural homomorphism

1 MW(Y) — (Z/27)".

If 7 has weak approximation thenis a surjection. Then at least t elements are necessary iaram
generateMW(7¥).

Proof. We fixi € {1,...,t} and will construct the corresponding homomorphism MW(¥) — 7Z/27.
By assumption i), eac € ¥ (Q) specializes to a poin; € ”f/preg(IFp). Thus,nj is supposed to sen&]
to 7y ([%1), a condition that determines uniquely.

To show thatr; is a well-defined homomorphism, we need

7 (XPD) + 75 (XP1) + 70 OX) = 700 (KO = 700 (XP]) = 70 (XD = 0

for X1, X, X3 the intersection points of” with a linel and X[, X}, X, the intersection points with another
linel". If both| andl’ specialize to lines, not containedy , then this assertion follows from the definition
of MW(7}) and the fact that, is a homomorphism of groups. On the other hantisjfecializes to a line
A contained in#, then X ], [X], [Xs] € A are even by virtue of Corollary 4.8.

The final assertions are evident. O

5.3. Theorem. — For every t> 0, there exists a smooth cubic surfageover Q such that at least t
elements are necessary in order to genelW(7).
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Proof. We choose distinct prime numberpy, ..., p such thafp = 2,3 (mod 5) andg > 101 for everyi.
The first assumption implieB, ({5) = Fy. Further, the four lines iﬁ’% defined by
R

x+dy+2z2=0, k=1,...4,

are in general position. Indeed, intersecting three of the fines leads to the homogeneous system of
linear equations, the céiicient matrix of which is a non-trivial Vandermonde. The sixersection points
are & :Yp: 2p), (%, 1 Yp : Zp) and conjugates fax,, yp, 2, € Iy (¢s5) andX, vy, Z, € Iy (V5).

Further, choose sif1-rational points (5111) : 111) : 2(111)) e (X(161) : 161) : z(fl)) in general position o2,
This is possible, forinstance (1:0:1),(0:1:1),(3:4:%;3:1),(10:0:1),and (0:0: 1) will do.
Indeed, the first five points lie on the irreducible quadrieeg by +y? — 22 = 0, and no line through two
of these five points meets the last.

Choosex y,z € Z[Zs] and X, ¥, Z € Z[V5] such that, for every

X=¥% (modp), ..., Z=2z, (modp).

Further, make sure that under the homomorphigfgs] — 11, (X : y : 2) defines four of the si¥};-ratio-
nal points chosen and that, under the homomorph&w&] — Fyq, (X @y : Z) defines the other two.

The points K:y:2,(X Yy :Z)and their conjugates define a subscheBnaf P2 of length six.
Blow up P in Band obtain a schemg over@. The schem® defines six points oRZ-. These points are
in general position as their reduction modulo 11 alreadyiserefore,;?” is a smooth cubic surface. As its
Q-rational points are in bijection with those &3, ¥ has weak approximation.

At any of the primesa, ..., i, the reduction of/” is a singular cubic surface. Its resolution of singu-
larities is a weak Del-Pezzo surface obtained from bIowm@’iEl in the subscheme of length six defined
by (% 1 ¥p 1 Zp) and (K, 1 Y, 1 ;). Hence ¥, is a cubic surface with finitely many double points.

By [Do, list after Lemma 9 2.5]7, is of type 4. The four singularities correspond to the four lines
through three blow-up points. Hence, none of them is definet B, . In particular, they do not lift
to Q-rational points. Thus, assumptions i) through iii) of Resppion 5.2 are thus fulfilled. The proof
is complete. O

5.4. Remarks. —i) Conjecturally, MW(¥') is finitely generated for every smooth cubic surfacever
a number field. Recall from Example 1.6 that the same is wrortlge singular case.

i) Recently, S. Siksek [Sik] announced that he can prove MW O for a certain class of smooth cu-
bic surfaces. Observe, however, that he works with the diefmof the Mordell-Weil group as suggested
by [Mal], cf. Remark 1.5.

Brauer equivalence.

5.5. —— There is another application, which is related to the séedd@rauer-Manin obstruction. This is
a method, invented by Yu. I. Manin [Mal, Chapter VI], to explte failure of the Hasse principle or weak
approximation in certain cases. It is based on the congidaraf a non-trivial Brauer class € Br(*") and
the corresponding-adic evaluation maps

&Vip: 7(Qp) — Br(Qp) = Q/Z, X+ alx.

Proposition. Let p# 2,3 be a prime number and E Zy[Xy, X, X2, X3] a cubic form defining a smooth
cubic surface?” over Q,. Suppose that all & 7 (Q;) specialize to/;-° and thatMW(7;) = 0

Theney,  is constant for every € Br(¥).
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Proof. It is known that ey ,(P) depends only on the reduction Bfmodulo p [Br, Theorem 1]. Fur-
ther, MW(7;) is the quotient of zero cycles modulo the relation generagerational equivalence on cu-
bic curves. Hence, an application of Lichtenbaum duality Torollary 1] proves that ey, is induced by
a group homomorphism MW() — Q/Z. As MW(%;) = 0, the assertion follows. O

5.6. Remark. — In [EJ], we studied explicit examples of cubic surfaces fbiak the Brauer-Manin ob-
struction works. |.e., such that there are a Brauer elassd certain primep leading to non-constamptadic
evaluation maps g\. It was noticeable in the experiments that the reductiorsyat the relevant primes
were distributed in an unusual way. Reducible reductiomlsraductions to the Cayley cubic occurred fre-
quently. This observation was actually the starting pofriur investigations on the Mordell-Weil group.

As our theory gives only lower bounds for M), Proposition 5.5 does not have immediate conse-
quences for a large number of cases. Nevertheless, onetisdedjecture that gy, may distinguish points
specializing t(ﬂ/p'eg only when there is reducible reduction, reduction to a coneeduction to one of the
types #q, As + 2A1, As + Aq, Or 3Ap.

5.7. Remark (Comparison with other concepts of equivalejce—

Equivalence with respect to MW] clearly implies rational equivalence, cf. Propositiod.2. For this
reason, it implies Brauer equivalence. We do not know whathenplies R-equivalence [Mal, Defini-
tion 14.1].

On the other handR-equivalence certainly does not imply equivalence witipeesto MW{/). An ob-
vious counterexample is provided by the cone over an dlliptirve with only oneK-rational point.
Here, MW{) = ker(sum:Z[V(K)] — 7Z), no two points being equivalent although any two are
R-equivalent. Example 2.3.2 provides another case that is mteresting.

A. Algorithms

A.1. Algorithm ( Two equivalent poinfs — i) Using a random number generator, choose four distinct
pointsXi1, X2, Xo1, Xo2 € V'Y (IFy).

ii) Determine four points<s, Xos, X31, Xa2 € V™®Y(IF) such that the relations{1, Xi2, Xi3], [Xo1, Xo2, X23],
[X11, Xo1, Xa1], and X2, X2, X32] are fulfilled. If this turns out to be impossible a% (, X12), (X1, X22),
(X1, X21), or (X2, X22) are lying on a line contained M then output FAIL and terminate prematurely.

iii) Determine points<gz andX;, such that K3, X3, Xa3] and [Xs1, Xs2, X},]. If this turns out to be impossi-
ble as K3, Xo3) or (Xs1, X32) are lying on a line contained Wi then output FAIL and terminate prematurely.

iv) Output “X33 and X}, are equivalent.”

A.2. Algorithm (A point being equivalent to a giveXy € V®Y(IF)). —
i) Execute Algorithm A.1 in order to find two mutually equiealt pointsX; andX;.

ii) Determine a poini] such that K, X, X{]. If this turns out to be impossible aXy(, Xo) are lying on a
line completely contained i¥ then output FAIL and terminate prematurely.

i) Now, determine a poink| such thatX;, X, Xj]. If this turns out to be impossible aX(, X;) are lying
on a line completely contained Withen output FAIL and terminate prematurely.

iv) Output “X; is equivalent tox,.”

A.3. Algorithm ( Partition of the poinfs —
i) Choose a natural numbatk

ii) Decompose/™9(IFy) into a setht = {Ny,..., Nn} = {{X},...,{Xn}} of singletons.
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iiiy Execute Algorithm A.1,N¢f times. When two equivalent poin¥ € My andX, € M, for k # | are
found, uniteMy with M, and reducenby 1.

iv) List the singletons still contained B, i.e., the points that were never met in step iii). For eaemeint
in the list obtained, execute Algorithm AN times. When two equivalent poin¥s € My andX; € M, for
k # | are found, uniteM with M, and reducenby 1.

V) If sets of size less thapremain in9)t then choose a single element from each of these sets. Foeleach
ment in the list obtained, execute Algorithm Atimes. When two equivalent poinks € My andX; € M,
for k # | are found, uniteMx with M, and reducen by 1.

vi) Output the partition ol/"9(IFy) found.

A.4. Remarks. — i) Algorithm A.3 finds a partition which is possibly too fine @omparison with the
actual partition into equivalence classes.

i) In practice, the valueN = 7 seems to work perfectly, fqu = 5 as well as for the biggest primes for
which such an algorithm seems reasonable.
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