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Étale cohomology

Consider (smooth proper) varieties over a field of characteristic p [or 0].

The l-adic (étale) cohomology theory shares many properties of the usual
(topological) cohomology of varieties over C. Differences:

Z or Q may not be used as coefficients. Only Zl or Ql for l � p.

There is an operation of Frob on H i
étpSFq

,Zlpjqq.

There is even an operation of GalpQ{Qq on H i
étpSQ,Zlpjqq, for S a over Q

[although the operation of GalpQ{Qq on SC is far from continuous].

The characteristic polynomial Φ
piq
j of Frob is independent of l � p and has

coefficients in Q.
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Functional equation, sign, det Frob

Theorem (Deligne, Suh)

Let S be a proper and smooth scheme over a finite field Fq of characteristic
p ¡ 0.

1 The polynomial Φ
piq
j P QrT s fulfils the functional equation

T NΦpqi�2j{T q � �q
N
2
pi�2jqΦpT q , (1)

for N :� rk H i
étpSFq

,Zlpjqq.

2 The sign in the functional equation is that of

detp�Frob: H i
étpSFq

,Qlpjqqýq

� p�1qNdetpFrob: H i
étpSFq

,Qlpjqqýq .

It is independent of the Tate twist, i.e., of the choice of j .

3 If i is even then detp�Frob: H i
étpSFq

,Qlpi{2qqýq is either p�1q or
p�1q. I.e., it gives the sign in (1) exactly.

4 If i is odd then N is even and the plus sign always holds.
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A twofold étale covering

Goal

We want to study the behaviour of the sign in the functional equation

r� detp�Frob: H i
étpSFq

,Qlpi{2qqýqs

within families, thereby varying S and p.

Theorem (det Frob in families – T. Saito 2012)

Let K be a number field, OK its ring of integers, X an irreducible
OK -scheme, and π : F Ñ X a smooth and proper family of schemes. As-
sume that π is pure of even relative dimension i .

Then there exists naturally a [unique] twofold étale covering % : Y Ñ X
such that, for every closed point x P X , the determinant of Frob on
H i

étpFx ,Qlpi{2qq is p�1q if and only if x splits under %.

Remark

In the projective case, the same is true for non-middle cohomology.
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A twofold étale covering II

Idea of proof. The higher direct image sheaf R iπ�Zlpi{2q on X is twisted
constant [according to smooth base change]. Hence,

ΛmaxR iπ�Zlpi{2q

is twisted constant of rank one. It is therefore given by a representation

r : πét
1 pX , ηq ÝÑ Z�l ,

for η any geometric point on X .

Moreover, Poincaré duality yields a perfect pairing

ΛmaxR iπ�Zlpi{2q � ΛmaxR iπ�Zlpi{2q ÝÑ Zl .

As this must be compatible with the operation of πét
1 pX , ηq, the image of r

is actually contained in t�1u. Thus, r gives rise to a twofold étale covering
% : Y Ñ X .

[Technical issues: The argument works only away from the prime l .
The higher direct image sheaf R iπ�Zlpi{2q might have torsion, . . . ]
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Concrete description

Lemma

p�q Let X :� PzD, for P a non-singular, integral, separated, and Noethe-
rian scheme and D � P a closed subscheme. Furthermore, let a twofold
étale covering Y Ñ X be given.

Then there exist an invertible sheaf D P PicpPq being divisible by 2
and a global section ∆ P ΓpP,Dq such that div ∆ is a reduced divisor,
supp div ∆ � D, and Y Ñ X is described by the equation

w 2 � ∆ .

For a closed point x P X with finite residue field kpxq, the following state-
ments are equivalent.

detpFrob: H i
étpFx ,Qlpi{2qqýq � 1,

∆pxq P pkpxq�q2.
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A criterion for non-triviality

Theorem (Non-triviality criterion – Costa/Elsenhans/J. 2015)

Let K be a number field, OK its ring of integers, P a non-singular, irreducible
scheme that is flat over OK , D � P a closed subscheme, and X :� PzD.

As above, let π1 : F 1 Ñ X be a smooth and proper family of schemes.
Suppose, moreover, that π1 extends to a proper and flat family π : F Ñ P
of even relative dimension i , in which F is still non-singular.

p��q Furthermore, assume that, for some geometric point z : K Ñ D, the
fibre Fz has exactly one singular point, which is an ordinary double
point.

Then the twofold étale covering % : Y Ñ X , associated with π, is obstructed
at D. [In particular, it is non-trivial.]

Idea of proof. The Picard-Lefschetz formula [SGA7] describes the mon-
odromy operation around singular fibres of R iπ�Zlpi{2q. One ordinary dou-
ble point in the fibre leads to one eigenvalue p�1q.
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The normalised discriminant (model case)

Definition

If P is proper and X � P the exact subset over which π is smooth then one
calls D � PzX the discriminant locus.

Assume that the discriminant locus D � D1Y. . .YDm is a union of divisors.
If the non-triviality criterion applies to every divisor Di then

div ∆ � pD1q � . . .� pDmq .

Classically, every section Λ such that div Λ � pD1q � . . .� pDmq is called a
discriminant.

If P is proper over a field K then the discriminant is thus unique up to
a scaling factor from K�.

If P is proper over Z then the discriminant is unique up to sign.
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The normalised discriminant (model case) II

Definition (The normalised discriminant)

Let P be a non-singular, integral, and proper Z-scheme and X :� PzD, for
D � P a closed subscheme. Furthermore, let π : F Ñ X be a smooth and
proper family of schemes, which is pure of even relative dimension i .

Then, the property

∆pxq P pkpxq�q2 ðñ detpFrob: H i
étpFx ,Qlpi{2qqýq � 1 (2)

provides a unique section ∆. We call ∆ the normalised discriminant of the
family π.

Thus, in the situation above, property (2) distinguishes a sign for the dis-
criminant.

The assumptions are not hard to fulfil.
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Complete intersections

V :� Proj Sym
à

1¤i¤c

H0pPn
Z,Opdi qq

_

is a naive parameter space for complete intersections in Pn of multidegree
pd1, . . . , dcq. V is smooth over Z.

Lemma
1 There is an irreducible closed subscheme D � V of codimension 1

such that the fibre Fx is non-singular of dimension n � c if and only if
x R D. The restriction of π to π�1pV zDq is smooth.

2 There is a closed subscheme Z � D such that dim Fx � n � c if and
only if x R Z . The restriction of π to π�1pV zZ q is flat.

3 There exists a closed point z P pDzZ qQ � VQ such that Fz has exactly
one singular point, which is an ordinary double point.

Idea of proof. This is mostly standard algebraic geometry. Part 3 and the
fact that D is irreducible of codimension 1 are due to O. Benoist (2012).
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Complete intersections II

Thus, we naturally have a distinguished sign for the discriminant of an
even-dimensional complete intersection.

Theorem (Normalised discriminant for complete intersections, Costa/
Elsenhans/J. 2015)

Let i � n � c be even. Then the normalised discriminant ∆ is a section
∆ P OV pDq such that div ∆ � pDq. It has the property below.

Let K be a number field and x P pV zDqpK q be any K -rational point.
Then, for any prime p � OK of good reduction,

detpFrob: H i
étppFxqFp

,Qlpi{2qqýq �

�
∆pxq

p



.
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A particular case: Hypersurfaces

In this case, several simplifications occur.

the subscheme Z � V is empty.

An explicit example of a hypersurface of degree d with exactly one
singular point, which is an ordinary double point, is provided by the
equation

X d�2
0 pX 2

1 � � � � � X 2
n q � X d

1 � � � � � X d
n � 0 .

Theorem (G. Boole 1841/45)

The discriminant of degree d hypersurfaces in Pn is of degree pd�1qnpn�1q.
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Double covers

Let d be even. Then

W :� Proj SympZ` H0pPn
Z,Opdqq

_q

is a naive parameter space for double covers tw 2 � s of Pn ramified at a
degree d hypersurface. W is smooth over Z.

Lemma

The closed subset D � W parametrising singular double covers of Pn is
the union of three irreducible components. These are

the cone CDd
over the locus Dd � V parametrising singular hypersur-

faces in Pn of degree d [i.e., the ramification locus is singular],

the hyperplane H0 [corresponding to the case t � 0], and

the special fibre W2.
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Double covers II

Theorem (Normalised discriminant for double covers, Costa/Elsen-
hans/J. 2016)

Let i � n be even. Then the normalised discriminant ∆ is a section
∆ P OW pDq such that supppdiv ∆qQ � pCDd

YH0qQ. It has the prop-
erty below.

Let K be a number field and x P pW zpCDd
YH0qqpK q be any K-rational

point. Then, for any prime p � OK of good reduction,

detpFrob: H i
étppFxqFp

,Qlpi{2qqýq �

�
∆pxq

p



.

Idea of proof. Everything except for supppdiv ∆qQ � pCDd
Y H0qQ just

follows from the model case. The double cover, given by

w 2 � X d�2
0 pX 2

1 � � � � � X 2
n q � X d

1 � � � � � X d
n

has exactly one singular point, which is an ordinary double point. Thus, the
non-triviality criterion applies to CDd

. As deg CDd
� pd � 1qnpn� 1q is odd,

supp div ∆ � H0 is enforced, too.

The non-occurrence of W2 is slightly more subtle.
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Double covers III

Remarks
1 The result says, in particular, that the relationship between the nor-

malised discriminant of the double cover tw 2 � s and the discriminant
of the hypersurface s � 0 is given by the formula

∆pt, sq � �t∆hyppsq .

However, as pn�1q is odd, for the discriminant of a hypersurface in Pn,
we do not have a canonical choice of sign, anyway.

2 If we adopt Demazure’s convention that X d
0 �� � ��X d

n � 0 has positive
discriminant then the sign is p�1q

nd
4 .
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K3 surfaces–Generalities

Let S be a K 3 surface over a number field K .

One has dim H2
étpSK ,Qlp1qq � 22.

The theory above shows that

detpFrob: H2
étpSFp

,Qlp1qqýq

extends to a quadratic character GalpK{K q Ñ t1,�1u. I.e.,

detpFrob: H2
étpSFp

,Qlp1qqýq �

�
∆H2pSq

p




for some ∆H2pSq P K�, unique up to squares.

If S � Fx is a member of a “reasonable” family of K 3 surfaces then
∆H2pSq � p∆pxq mod pK�q2q, for ∆pxq the normalised discriminant.

There are the algebraic part Halg :� impc1 : PicpSK q Ñ H2
étpSK ,Qlp1qqq

and its orthogonal complement T :� pHalgq
K, the transcendental part of

the cohomology H2
étpSK ,Qlp1qqq.
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K3 surfaces–Generalities II

The field of definition of PicpSK q is a finite Galois extension L of K .

Lemma

L{K is unramified at every prime, where S has good reduction.

Idea of proof. This follows directly from smooth base change.

Definition

The field of definition of Λmax PicpSK q is an at most quadratic extension
K p
a

∆algpSqq � L.

Fact

One has

detpFrobp : Halg ýq �

�
∆algpSq

p



.
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Application to K3 surfaces: Rank jumps

Proposition (Rank jumps)

Let S be a K3 surface over a number field K and p � OK be a prime of
good reduction of residue characteristic �2.

1 Then rk Pic SFp
¥ rk Pic SK .

2 Assume that rk Pic SK is even. Then the following is true.
If det Frobp |T � �1 then rk Pic SFp

¥ rk Pic SK � 2.

Idea of proof. 1. Upon Pic SK , GalpK{K q operates via the finite quo-
tient GalpL{K q. Hence, some power of Frobp acts as the identity. Tate’s
conjecture [proven for K 3 surfaces by Charles, Madapusi Pera, and Lieblich/
Maulik/Snowden 2013/15] implies the claim.

2. According to the Weil conjectures [Deligne 1973], every eigenvalue of
Frob on T has absolute value 1. Those different form 1 and p�1q come in
pairs of conjugates. Thus, to have determinant p�1q, at least one eigenvalue
must be p�1q and at least one must be 1. Use the Tate conjecture.
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Application to K3 surfaces: Rank jumps II

Theorem (Costa/Elsenhans/J. 2015)

Let S be a K 3 surface over a number field K and p � OK be any prime of
good reduction.

1 Then one has

detpFrobp : T ýq�

�
∆H2pSq∆algpSq

p



.

2 Assume that rk Pic SK is even. If
�

∆H2 pSq∆algpSq
p

	
� �1 then one has

rk Pic SFp
¥ rk Pic SK � 2 .

Remark

Thus, unless ∆H2pSq∆algpSq is a square in K , the Picard rank jumps for at
least half the primes. We call

�
∆H2 pSq∆algpSq

p

	
the jump character of S .
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Application to K3 surfaces: Rank jumps III

Remarks

∆H2pSq is a product of only bad primes. Thus, for a given surface, it
can be computed by just counting points.

To compute ∆algpSq, some information on PicpSK q is necessary.

Example

For the diagonal surface S : X 4
0 � X 4

1 � X 4
2 � X 4

3 � 0 over Q, one has

∆H2pSq � 1 and

∆algpSq � �1.

Idea of proof. 2 is the only bad prime of S . To exclude the options that
∆H2pSq might be p�1q or �2, it suffices to count points on the reductions
S3 and S5.

On the other hand, the Galois operation on Pic SQ is completely described
in the Ph.D. thesis of M. Bright.
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Special space quartics

Theorem (Costa/Elsenhans/J. 2016)

Let K be a number field and S the space quartic

S : cX 4
3 � f2pX0,X1,X2qX

2
3 � f4pX0,X1,X2q � 0 .

Then rk Pic SK ¥ 8. Assuming rk Pic SK � 8, one has

1 one has ∆algpSq � δpf 2
2 � 4cf4q.

2 The jump character is p
cδpf4qδpf 2

2 �4cf4q
. q.

Idea of proof. The surface cw 2 � f2pX0,X1,X2qw � f4pX0,X1,X2q � 0,
which is Del Pezzo of degree 2, is covered 2 : 1 by S . This shows that
rk Pic SK ¥ 8 and claim 1.

The discriminant splits on this subfamily into c , δpf4q, and a third factor
that enters quadratically.

Remark

The discriminant δ of ternary quartics is of degree 27 and [thanks to the
efforts of A.-S. Elsenhans] easily computable using magma.
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Special space quartics II

Example (Surfaces with CM by Qpiq)

Let S be a space quartic of type

X 4
3 � f4pX0,X1,X2q � 0 ,

which is of geometric Picard rank 8. Then the jump character is p�1
. q.

Idea of proof. δpf4qδp�4f4q � p�4q27δpf4q
2.

Example (A surface with with trivial jump character)

Consider the space quartic S : X 4
3 � f2pX0,X1,X2qX

2
3 � f4pX0,X1,X2q � 0,

for
f2pX0,X1,X2q :� X 2

0 � X0X1 � X0X2 � X1X2 and
f4pX0,X1,X2q :� � X 3

0 X2 � X0X 2
1 X2 � X 4

1 � X 4
2 .

Then the geometric Picard rank of S is 8 and the jump character of S
is trivial.

Idea of proof. The reduction modulo, e.g., 19 has geometric Picard rank 8.
Moreover, δpf4q � �28334312 and δpf 2

2 � 4f4q � �26033472.
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Another application to K3 surfaces: Infinitely many
rational curves

Conjecture

Every K 3 surface S over an algebraically closed field K contains infinitely
many rational curves.

Evidence. Odd rank case was proven by Li/Liedtke (2012), based on ideas
of Bogomolov, Hassett, and Tschinkel. Further sufficient conditions include
that S has infinitely many automorphisms or that S is elliptic.
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Another application to K3 surfaces: Infinitely many
rational curves II

Theorem (Costa/Elsenhans/J. 2016)

Let S be a K 3 surface over a number field K . Assume that rk Pic SK is
even,

that SK has neither real nor complex multiplication, and

that ∆H2pSq∆algpSq is a non-square in K .

Then SK contains infinitely many rational curves.

Idea of proof. The approach of Li/Liedtke shows that one needs infinitely
jump primes p such that Sp is not supersingular. Infinitely many jump
primes are provided by the second assumption. The first one assures that
only modulo a small subset of these, the reduction is supersingular.
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Thanks

Thank you!!

J. Jahnel (Universität Siegen) On the distribution of the Picard ranks Banff, March 16, 2017 25 / 25


	Titlepage
	Étale cohomology
	A twofold étale covering
	Normalising the discriminant
	Concrete families
	Application to K3 surfaces
	Thanks

