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Cubic surfaces

Almost two years ago, Daniel Loughran asked me the following question.

Question

Is there a non-singular cubic surface S over Q having a line over each of
the fields Qp for p = 2, 3, 5, 7, 11, . . ., but no line defined over Q?

Classical Algebraic Geometry teaches that a non-singular cubic surface al-
ways contains exactly 27 lines. But, although S is defined overQ, this count
concerns the lines that are defined over the algebraically closed field Q.

Remark

A non-singular cubic surface defined over R always contains real lines.

In fact, there is a classification due to Schläfli into five types. These have
3, 3, 7, 15, and 27 real lines, accordingly.
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Hasse-type principles

Definition (classical Hasse principle)

A class of varieties over a number field k satisfies the Hasse principle if
for each variety in the class, the existence of a rational point over every
completion of k implies the existence of a rational point over k.

Definition (Hasse principle for linear subspaces)

A class of varieties embedded into a fixed projective space Pn over k satisfies
the Hasse principle for linear subspaces of dimension r if for each variety
in the class, the existence of a linear subspace of dimension r over every
completion of k implies the existence of a linear subspace of dimension r
over k .
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The Hasse principle for zero-dimensional schemes

Remarks
1 For r = 0 we recover the classical Hasse principle.

2 There is a Hilbert scheme parametrising the linear subspaces of fixed
dimension. We are asking whether this scheme satisfies the classical
Hasse principle.

E.g., for cubic surfaces, the Hilbert schemes of lines is a zero-dimensional,
reduced scheme of degree 27.

Zero-dimensional scheme may well violate the Hasse principle.

Example

Let X ⊂ A1
Q be defined by (x2 − 2)(x2 − 17)(x2 − 34) = 0. Then X fails

the Hasse principle.

Question

Can the Hasse principle for lines fail for cubic surfaces?
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Del Pezzo surfaces

Definition

Let k be a field. A del Pezzo surface over k is a smooth projective surface
S over k with ample anticanonical divisor (−KS). The degree of S is the
self-intersection number d = (−KS)2.

This is the natural class of surfaces cubic surfaces belong to, namely they
are the del Pezzo surfaces of degree 3.

If k is algebraically closed then any del Pezzo surface is either isomorphic
to

P2 (d = 9),

P1 × P1 (d = 8),

or the blow-up of P2 in 9− d points in general position (d ≤ 8).
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Del Pezzo surfaces II

Facts (Lines on del Pezzo surfaces)

Let S be a del Pezzo surface of degree d over k. Then the Hilbert scheme
L(S) of lines on S is a reduced projective scheme over k, which satisfies the
following:

1 L(S)×k k̄ ∼= P2, if d = 9.

2 L(S)×k k̄ = P1 t P1, if S ×k k̄ ∼= P1 × P1.

3 L(S) is a finite reduced zero-dimensional scheme of degree

d 8 7 6 5 4 3 2 1

deg L(S) 1 3 6 10 16 27 56 240

otherwise.
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Our results concerning del Pezzo surfaces

Theorem (J.+Loughran 2014)

Let k be a number field and let 1 ≤ d ≤ 9. Then the class of del Pezzo
surfaces of degree d fails the Hasse principle for lines if and only if

d = 8, 5, 3, 2 or 1 .

Our proof is constructive. For example, an explicit counter-example in de-
gree 3 over Q is given by

−5x2w − 5xy2 − 2xyw + 5xz2 − 9xzw − 5xw2 + 9y3 − 11y2z + 29y2w

+43yz2 − 52yzw − 4yw2 − 13z3 + 14z2w − 96zw2 + 45w3 = 0 .

Corollary

Let k be a number field. Then there exist smooth cubic surfaces over k
which fail the Hasse principle for conics.
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Our results concerning del Pezzo surfaces II

Any del Pezzo surface of degree d may be embedded anticanonically into

Xd :=


P(1, 1, 2, 3), if d = 1 ,
P(1, 1, 1, 2), if d = 2 ,
Pd if d ≥ 3 .

Notation

For k a base field, let Hd denote the Hilbert scheme over k which
parametrises those subschemes of Xd , which are anticanonically embedded
del Pezzo surfaces of degree d .

Lemma

Let 1 ≤ d ≤ 9.

1 Then Hd is smooth.

2 When d 6= 8, it is geometrically connected. When d = 8, it consists of
two connected components, each of which is geometrically connected.
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Our results concerning del Pezzo surfaces III

Definition (Serre 1997)

Given a variety X over a number field k, a subset Ω ⊂ X (k) is said to be
thin if it is a finite union of subsets which are either

contained in a proper closed subvariety of X , or

in some π(Y (k)) where π : Y → X is a generically finite dominant
morphism of degree exceeding 1, with Y irreducible.

Example

The set of all rational squares,{
q2 | q ∈ Q

}
⊂ A1

Q(Q) ,

is Zariski dense but a thin subset.
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Our results concerning del Pezzo surfaces IV

Theorem (Thinness of the counterexamples, J.+Loughran 2014)

Let k be a number field and let 1 ≤ d ≤ 9.

There exists a thin subset Ωd ⊂ Hd(k) such that the Hasse principle
for lines holds for those del Pezzo surfaces corresponding to the points
of Hd(k)\Ωd .

Theorem (Zariski density of the counterexamples, J.+Loughran 2014)

Let k be a number field and let 1 ≤ d ≤ 9.

1 The collection of del Pezzo surfaces of degree 8 in H 1
8 (k) which fail

the Hasse principle for lines is Zariski dense in H 1
8 .

2 If d = 5, 3, 2 or 1 then the collection of del Pezzo surfaces of de-
gree d in Hd(k) which fail the Hasse principle for lines is Zariski dense
inside Hd .
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Degrees 9 and 8

Elementary cases

d = 9: Here, L(S) is a Brauer-Severi surface (a twist of P2), which
satisfies the Hasse principle, according to Chatelet. Hence, S fulfills
the Hasse principle for lines.

d = 8: Two cases.

Sk is P2 blown up in one point:

Then Sk contains exactly one line, which must be fixed by Gal(k/k).
The Hasse principle for lines is therefore fulfilled.

Sk is isomorphic to P1 × P1: Then L(S)k is isomorphic to P1 t P1.

Suppose that the components are interchanged under Gal(k(
√

d)/k),
for some non-square d ∈ k∗. Then, for all inert primes ν, L(S) has no
kν-rational point. The Hasse principle for lines is fulfilled trivially.

Remaining case: S ∼= C1 × C2 for conics C1,C2. Then L(S) ∼= C1 t C2.
C1(kν) = ∅ iff ν ∈ S1 and C2(kν) = ∅ iff ν ∈ S2.
If S1 and S2 are non-empty and disjoint then C1×C2 is a counterexample
to the Hasse principle for lines.
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A group-theoretic condition

If d ≤ 7 then Sk contains only finitely many lines. Gal(k/k) permutes them.

E.g., if d = 3 then we have a permutation representation

ιS : Gal(k/k) −→ S27 .

Do we know more about this permutation representation?

We do!

1 Each element σ ∈ Gal(k/k) must respect the intersection matrix.

2 The permutations respecting the intersection matrix form a subgroup
W ⊂ S27 isomorphic to the Weyl group W (E6) of order 51, 840.
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A group-theoretic condition II

In general, the permutations respecting the intersection matrix form a group
that is isomorphic to the group below.

d 7 6 5 4 3 2 1

W (E9−d) Z/2Z D6 W (A4) W (D5) W (E6) W (E7) W (E8)

#W (E9−d) 2 12 120 1920 51,840 2,903,040 696,729,600

#lines 3 6 10 16 27 56 240

Let us use W (E9−d) as a general notation. We understand W (E9−d) as a
permutation group, acting on the lines.

Thus, we have

Lemma

Let k be a number field, 1 ≤ d ≤ 7, and S a del Pezzo surface of degree d
over k. Then the image of the permutation representation ιS is a subgroup
of W (E9−d).
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A group-theoretic condition III

Proposition (Reduction to a group-theoretic question—
ignoring ramification)

Let k be a number field, 1 ≤ d ≤ 7, and S a del Pezzo surface of degree d
over k. Put G := im ιS and let K be the field of definition of the lines
on Sk . Then

1 S contains a line over k if and only if G has a fixed point.

2 S contains a line over kν for every prime ν that is either archimedean
or unramified in K if and only if each element of G has a fixed point.

Idea of proof: 1. is clear.

2. One has Gal(K/Q) ∼= G .

The local Galois group Gal(Kw/kν) is isomorphic to the decomposition
group Dw ⊆ G . For ν unramified, Dw is cyclic, generated by the Frobenius
Frobν . Moreover, according to Chebotarev’s density theorem, Frobν runs
through all conjugacy classes of elements of G .

J. Jahnel (University of Siegen) On the Hasse principle for lines Göttingen, July 3, 2015 14 / 35



A group-theoretic condition IV

Hence, to have a counterexample to the Hasse principle for lines, we need
a subgroup G ⊆W (E9−d) satisfying the following

Group-theoretic condition

G ⊆W (E9−d) is fixed-point free, but every element of G has a fixed point.

Observation
1 Cyclic subgroups never satisfy this condition.

2 Neither do transitive ones.

Idea of proof: 1. is clear.

2. (C. Jordan) Let G ⊆ Sn, n ≥ 2, be transitive. Then exactly #G/n
elements fix 1, exactly #G/n elements fix 2, exactly #G/n elements fix 3,
etc.

Altogether, #G/n + #G/n + #G/n + . . . = #G . Hence, if every element
of G had a fixed point then no element of G could have more than one.
But the neutral element has n fixed points.
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Degrees 7 and 6

High degrees

d = 7: The three lines form the path graph on three vertices. The
automorphism group of the graph fixes a vertex, so there is always a
line defined over k. The Hasse principle for lines trivially holds.

d = 6: Here, the six lines form the cycle graph on six vertices, which
one may identify with a regular hexagon. The automorphism group is
the dihedral group D6, acting in the usual way.

In this case, every non-cyclic subgroup contains a non-trivial rotation.
Hence, no subgroup of D6 fulfills the group-theoretic condition above.
The Hasse principle for lines holds.
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Low degrees—A computer experiment

For 1 ≤ d ≤ 5, we used a computer. An experiment in magma quickly finds
all conjugacy classes of subgroups of W (E9−d) fulfilling the group-theoretic
condition.

d 5 4 3 2 1

#conjugacy classes 19 197 350 8074 62092

#satisfying condition 2 0 3 60 8742

In particular, this proves the Hasse principle for lines for del Pezzo surfaces
of degree 4.

J. Jahnel (University of Siegen) On the Hasse principle for lines Göttingen, July 3, 2015 17 / 35



Low degrees—A computer experiment

For 1 ≤ d ≤ 5, we used a computer. An experiment in magma quickly finds
all conjugacy classes of subgroups of W (E9−d) fulfilling the group-theoretic
condition.

d 5 4 3 2 1

#conjugacy classes 19 197 350 8074 62092

#satisfying condition 2 0 3 60 8742

In particular, this proves the Hasse principle for lines for del Pezzo surfaces
of degree 4.

J. Jahnel (University of Siegen) On the Hasse principle for lines Göttingen, July 3, 2015 17 / 35



Low degrees—The subgroups

d = 5:
Here, W (A4) ∼= S5. The operation on the 10 lines is the operation of S5

on pairs. The two subgroups are

G orbit type

V4 [2, 2, 2, 4]

A4 [4, 6]

The size four orbits consist of skew lines. Thus, surfaces with these group
operations on the lines may be obtained by blowing up P2 in a closed point
of degree 4 in general position.

Remark

In fact, all degree 5 del Pezzo surfaces with these group operations are
obtained in this way.

Indeed, blowing down the four skew lines leads to a del Pezzo surface of
degree 9. But, according to a theorem of Enriques and Swinnerton-Dyer,
every degree 5 del Pezzo surface contains a rational point.
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Low degrees—The subgroups II

d = 3:
The three subgroups are

isomorphy type of G orbit type

D5 [2, 5, 5, 5, 10]

Z/5Zo Z/4Z [2, 5, 10, 10]

S5 [2, 5, 10, 10]

Construction

1 Choose two closed points P and Q in P2 of degrees 2 and 5, respec-
tively, such that P t Q is in general position.

2 The del Pezzo surface S = BlPtQP2 of degree 2 contains exactly two
rational lines. These are the strict transforms L̃ and C̃ of the line L
through the two quadratic points and the conic C passing through the
five quintic points over k .

3 Contracting L̃, we obtain a cubic surface S which contains no lines,
since L̃ and C̃ intersect.
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Low degrees—The subgroups III

The lines on S correspond to the following curves:

1 The 2 singular cubic curves which pass through all 7 points and which
have a double point at exactly one of the quadratic points.

2 The 5 exceptional curves above the quintic points.
3 The 10 conics passing through the two quadratic points and three of

the five quintic points.
4 The 10 lines passing through one of the quadratic points and one of

the quintic points.

d = 2: For example, G := V4 × T or G := A4 × T , for T ⊆ S3 transitive,
operating on the seven blow-up points in the obvious way.

d = 1: For example, G := V4 × T or G := A4 × T , for T ⊆ S4 transitive,
operating on the eight blow-up points in the obvious way.

Thus, although the inverse Galois problem for del Pezzo surfaces is, in
general, unsolved, we do not run into difficulties with this. In each of
the degrees 5, 3, 2, 1, some of the subgroups sought for are extremely easy
to realize.
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Ramified primes

Lemma (Sonn 2008)

Let k be a number field and let G be a solvable group. Then there exists
a Galois extension K/k with Galois group G , all of whose decomposition
groups are cyclic.

Let G be one of the groups above. Take K as in the lemma. Then, making
K the field of definition of the lines on S , one achieves that S has lines over
kν for all primes ν. And there is no line over k .

This completes the proof for the existence of del Pezzo surfaces of degrees 5,
3, 2, and 1 over any number field, violating the Hasse principle for lines.

Example (d = 5, G = V4)

Take rational primes p, q such that p ≡ 1 (mod 8), q ≡ 1 (mod p), and
k(
√

p,
√

q)/k is of degree 4. Then all decomposition groups are cyclic.

Moreover, P2 blown up in the closed point which is the union of
(±
√

p : ±
√

q : 1), is a del Pezzo surface of degree 5 violating the Hasse
principle for lines.
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Explicit examples

Concrete examples are often easier to achieve by looking at the splitting
behaviour at the ramified primes rather than the decomposition groups.

Example (d = 5, G = A4)

For k := Q, let
f (x) := x4 − x3 − 7x2 + 2x + 9

and L be the field defined by f . Then P2 blown up in a generic closed point
with residue field L is a degree 5 del Pezzo surface being a counterexample
to the Hasse principle for lines.

In fact, disc L = 1632 and its Galois closure has Galois group A4. Moreover,
there is the factorisation (163) = p1p

3
2 into prime ideals.

As e(p1|163) = f (p1|163) = 1, there is a homomorphism L → Q163.
Thus, the surface contains a line defined over Q163.

The polynomial f [as well as all explicit polynomials used in this project] was
taken from the database http://galoisdb.math.upb.de/, maintained by
J. Klüners and G. Malle.
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Explicit examples II

Example (d = 3, G = D5)

For k := Q, let
f (x) := x5 − 2x4 + 2x3 − x2 + 1

and L be the field defined by f . Then disc L = 472 and its Galois closure
has Galois group D5. The unique quadratic subfield is Q(

√
−47).

Moreover, in L there is the factorisation (47) = p1p
2
2p

2
3 into prime ideals of

inertia degree 1.

BlPtQP2, for closed points P and Q of residue fields L and Q(
√
−47) such

that PtQ is in general position, is a del Pezzo surface of degree 2 containing
two Q-rational lines. Blowing down one of them yields a cubic surface that
is a counterexample to the Hasse principle for lines.

Explicit equation:

−5x2w − 5xy2 − 2xyw + 5xz2 − 9xzw − 5xw2 + 9y3 − 11y2z + 29y2w

+ 43yz2 − 52yzw − 4yw2 − 13z3 + 14z2w − 96zw2 + 45w3 = 0 .
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Explicit examples III

Example (d = 3, G = Z/5Zo Z/4Z)

For k := Q, let
f (x) := x5 − 101

and L be the field defined by f . Then disc L = 53·1014 and its Galois closure
has Galois group Z/5Zo Z/4Z. The unique quadratic subfield is Q(

√
5).

Moreover, 101 splits in Q(
√

5) and in L there is the factorisation (5) = p1p
4
2

into prime ideals of inertia degree 1.

BlPtQP2, for closed points P and Q of residue fields L andQ(
√

5) such that
P t Q is in general position, is a del Pezzo surface of degree 2 containing
two Q-rational lines. Blowing down one of them yields a cubic surface that
is a counterexample to the Hasse principle for lines.

Explicit equation:

5x2y − 10x2z − 5x2w + 6xy2 − xyz − 2xyw − 6xz2 + xzw + 5xw2+y3

+ 9y2z +8y2w−yz2 − yzw + 17yw2 − 10z3 − 9z2w + 13zw2 + 19w3 = 0 .
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Explicit examples IV

Example (d = 3, G = S5)

For k := Q, let

f (x) := x5 − x4 − 5x3 + 5x2 + 2x − 1

and L be the field defined by f . Then disc L = 101833, which is prime, and
the Galois closure of L has Galois group S5. The unique quadratic subfield
is Q(

√
101833).

Moreover, in L there is the factorisation (101833) = p1p2p3p
2
4 into prime

ideals of inertia degree 1.

BlPtQP2, for closed points P and Q of residue fields L and Q(
√

101833)
such that P t Q is in general position, is a del Pezzo surface of degree 2
containing two Q-rational lines. Blowing down one of them yields a cubic
surface that is a counterexample to the Hasse principle for lines.

Explicit equation:

−4x3+4x2y +9x2z−x2w +2xy2−4xyz +6xyw +2xz2+xzw +10xw2

− 2y3−7y2z +6y2w−15yz2+23yzw +13yw2+z3−11z2w +zw2+w3 =0 .
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How to obtain the explicit equations

Algorithm

1 Determine three linearly independent cubic forms c0, c1, c2 on P2 that
vanish at the seven blow-up points. Choose c0 to be the product of
a linear form vanishing on the size-two orbit and a quadratic form
vanishing on the size-five orbit.

2 Also determine a sextic form s which admits a double point at each of
the seven blow-up points, and is not a linear combination of products
of the cubic forms found.

3 Calculate the unique relation of the type

s2 + f2(c0, c1, c2)s + f4(c0, c1, c2) = 0

between these forms. This leads to a del Pezzo surface of degree 2
with the explicit equation

w2 + f2(x0, x1, x2)w + f4(x0, x1, x2) = 0 ⊂ P(1, 1, 1, 2) .

[Calculations up to here: Only linear algebra.]
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How to obtain the explicit equations II

4 Moreover, the pre-image of the “x0 = 0” splits. Thus, a linear trans-
formation yields an equation of the form

w2 + f ′2(x0, x1, x2)w + x0 ·f3(x0, x1, x2) = 0 .

5 Explicitly blow down one of the lines over “x0 = 0”. The result is

x0 ·w2 + f ′2(x0, x1, x2)w + f3(x0, x1, x2) = 0

[C. F. Geiser 1869].

6 To obtain small coeficients, one may apply Kollar’s reduction and min-
imisation algorithm (Kollar 1997+Elsenhans).
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Degrees 2 and 1

Here, we constructed examples only for some of the admissible Galois groups.

Rational surfaces:

Blow up a degree 5 counterexample to the Hasse principle for lines in a
generic closed point of degree 3 [4]. Then the result is a del Pezzo surface
of degree 2 [1] violating the Hasse principle for lines.

Non-rational surfaces: Unlike degrees 5 and 3, the lists here also contain
groups corresponding to surfaces that are non-rational over the base field.

Example

Let S be a conic bundle surface of the shape

f (t)x2 + g(t)y2 + h(t)z2 = 0 ⊂ A1 × P2 ,

where

f (t) = a(t−13)(2−t) , g(t) = b(t +14)(3−t) , h(t) = (t +2)(t−11) ,

and a, b ∈ k∗.
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Degrees 2 and 1 II

By work of Browning, Matthiesen, and Skorobogatov from 2014, the closure
of this in P1 × P2 is a del Pezzo surface S of degree 2.

The projection to P1 realises S as a conic bundle over P1, with exactly six
singular fibres splitting over Q(

√
a), Q(

√
b), and Q(

√
ab). Choosing a and

b as above [degree 5], for each prime ν at least of them splits into two lines.

The orbit type is [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4]. By work of
Iskovskikh (1970), such conic bundle surfaces cannot be rational over the
base field.

Remark

There is a similar, but more complicated, example in degree 1.
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Thinness of the counterexamples

d = 5, 3, 2, 1:

Let `d : Ld → Hd be the universal family of lines over the Hilbert
scheme Hd . The generic fiber of `d is a thick point of degree 10, 27,
56 or 240.

By Hilbert irreducibility, outside of a thin subset Ωd ⊂ Hd , the special
fibres are irreducible. But then the Galois operation on the lines is transitive.
The Hasse principle for lines therefore holds.

d = 8:

Consider the Stein factorisation

L 1
8

`18 //

""DD
DD

DD
DD

H 1
8

P .

OO

P is irreducible as L 1
8 is. P →H 1

8 is finite étale of degree 2. Outside of
a thin subset Ω8 ⊂ H 1

8 , the special fibres are irreducible. But then L(S)
does not split over k . The Hasse principle for lines holds.
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Zariski density of the counterexamples

Idea of proof: d = 5, 3, 2, 1:

Suppose not. Then the counterexamples would be contained in a closed
subvariety X ⊂ Hd . Put δ := dim Hd . By the Lang-Weil estimates,
X (Fl) ≤ C · lδ−1, for a constant C . Thus, it suffices to find a sequence of
primes tending to ∞ such that the number of different reductions of the
counterexamples grows faster than C ·lδ−1.

Consider the examples constructed by blow-up [and down] points defined
over a field extension K/k. Let pi the sequence of primes that are com-
pletely split. Without destroying general position, one may require arbitrary
locations in P2(F#k/pi

) for the reductions of the blowup points. This alone
leads to a growth of type c ·lδ. Contradiction!

d = 8:

Let S ⊂ P8 be a counterexample to the Hasse principle for lines. Identify S
with an element of H 1

8 (k). As H 1
8 is a PGL9-homogeneous space, Zariski

density follows.
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A complementary result

Theorem (J.+Loughran 2014)

Over every number field k, there exists a cubic surface S violating the Hasse
principle for lines such that the Galois group operating on the 27 lines is
isomorphic to S5.

Idea of proof: Decomposition groups are always solvable. The only solv-
able subgroups of S5 not fixing a line are those of order 20 [isomorphic to
Z/5Zo Z/4Z]. We need

Lemma

Let k be a number field. Then there exists an S5-extension K/k such that
no decomposition group is isomorphic to Z/5Zo Z/4Z.

[This concerns only the ramified primes.] The result follows from work of
K. Kedlaya from 2012. He shows existence of infinitely many S5-extensions
F/Q of square-free discriminant. Then F/Q(

√
disc F ) is unramified.

Hence, the decomposition group must have a normal subgroup of order 2,
which Z/5Zo Z/4Z does not have. Take Fk/k .
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Intersections of two quadrics

Theorem (J.+Loughran 2014)

Let n ≥ 0 and let k be a number field. Let X be a smooth 2n-dimensional
complete intersection of two quadrics over k. Then X satisfies the Hasse
principle for n-planes.

This explains more conceptually why the Hasse principle for lines is fulfilled
for del Pezzo surfaces of degree 4.

Idea of proof: Let X be given by Q1(x) = Q2(x) = 0 in Pn+2. Then one
associates the discriminant D := “ det(λQ1 + µQ2) = 0 ” ⊂ P1 parametris-
ing the singular quadrics in the pencil. One has D ∼= Spec K for an étale
k-algebra K of degree 2n + 3. It turns out (e.g., Reid 1972) that L(S) is a
torsor under the group scheme RK/k(µ2)/µ2.

For any commutative group scheme G , let

X(k ,G ) := ker
(
H1(k ,G ) −→

∏
ν

H1(kν ,G )
)

be the associated Tate-Shafarevich group. Then, what we need is
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Intersections of two quadrics II

Proposition

Let k be a number field and let K be an étale k-algebra of odd degree.
Then

X(k ,RK/k(µ2)/µ2) = 0 .

Idea of proof: As K is of odd degree, RK/k(µ2)/µ2 is isomorphic to the
norm-1 subgroup of RK/k(µ2), the sequence

0→ R1
K/k(µ2)→ RK/k(µ2)→ RK/k(µ2)/µ2 → 0

being split. Thus, it suffices to show the vanishing of X(k ,RK/k(µ2)),
which, by Shapiro’s lemma coincides with

∏
iX(Ki , µ2), for K =

∏
iKi .

However, H1(Ki , µ2) classifies quadratic extensions of Ki , hence this follows
from the fact that any quadratic extension is non-split at at least one prime.
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Thank you!!
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