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A Diophantine equation

Example

Consider the Diophantine equation

3x3 +2x2z +xy 2−2xyz−2xyw−xzw +2xw 2−yzw−yw 2−z3 +z2w = 0 .

Observation

There are 18 non-trivial solutions of height ≤10:
(0 : 0 : 0 : 1), (0 : 0 : 1 : 1), (0 : 1 : 0 : 0), (0 : 2 : −3 : 9), (0 : 3 : −2 : 4), (0 : 4 : −6 : −3), (0 : 9 : −6 : −2),

(1 : −6 : 5 : −8), (1 : 0 : 5 : 4), (2 : −4 : −3 : −1), (2 : −2 : −3 : −1), (2 : 2 : 3 : 5), (3 : −6 : −5 : −2),

(3 : 6 : −1 : 8), (3 : 6 : 3 : 2), (4 : −2 : 9 : 1), (4 : 4 : 6 : 1), (4 : 8 : 0 : 7),

Fact

There are no solutions (x : y : z : w) ∈ P3(Z) such that the reduction
modulo 3 is (1 : 0 : 0 : 0), (1 : 0 : 1 : 1), or (1 : 0 : 1 : −1).
Thus, weak approximation is violated.
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A Diophantine equation II

Modulo 3, this equation has exactly ten solutions, six of which occur as
reductions of integral solutions. These are (0 : 0 : 0 : 1), (0 : 0 : 1 : 1),
(0 : 1 : 0 : 0), (1 : 0 : −1 : 1), (1 : 1 : 0 : 1), and (1 : −1 : 0 : 1).

Further, there are the three solutions given above and (1 : 1 : 1 : 0).
The latter does not lift to a 3-adic solution.

Remark

From the geometric point of view,

3x3 + 2x2z + xy 2−2xyz−2xyw −xzw + 2xw 2−yzw −yw 2−z3 + z2w = 0

defines a smooth cubic surface C overQ. Classical algebraic geometry gives
us a lot of information about such surfaces.

In our case, C has bad reduction at 2, 3, and 5. The reduction mod-
ulo 3 is of the type of a Cayley cubic, having four isolated singular points.
Among these, (1 : 1 : 0 : 1) is the only F3-rational one. The three others
are defined over F27.
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Another Diophantine equation

Example

Consider the Diophantine equation

z2 = x(x − 1)(x − 25)u(u + 25)(u + 36) .

Trivial solutions: x ∈ {0, 1, 25} or u ∈ {0,−25,−36}.

Observation

There are 64 non-trivial solutions of height <100:
(−2,−24;±216), (9,−24;±576), (−2,−3;±594), (4,−18;±756), (5,−20;±800), (4,−14;±924), (−5,−20;±1200),

(9,−3;±1584), (29,−29;±1624), (10,−40;±1800), (5,−45;±1800), (8,−8;±1904), (−7,−18;±2016),

(4,−50;±2100), (22,−11;±2310), (−7,−14;±2464), (−5,−45;±2700), (18,−8;±2856), (−10,−11;±3850),

(−15,−40;±4800), (−7,−50;±5600), (−24,−40;±8400), (5,−80;±8800), (−5,−80;±13200), (−32,−44;±20064),

(14,−88;±24024), (−55,−11;±30800), (−63,−11;±36960), (−27,−64;±52416), (64, 14;±65520), (64, 27;±117936)

(−56,−63;±129276),
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Another Diophantine equation II

Fact

There are no solutions (x , u, z) ∈ Z3 such that x ≡ 2 (mod 5) and u ≡ 5
(mod 25).
Thus, weak approximation is violated.

Observe that x = 2 and u = 5 lead to a solution in 5-adic integers. Indeed,
2·(2− 1)·(2− 25)·5·(5 + 25)·(5 + 36) = −11 316·52 is a 5-adic square.

Remark

From the geometric point of view, z2 = x(x − 1)(x − 25)u(u + 25)(u + 36)
defines a K 3 surface S over Q, more precisely a Kummer surface.
It is obtained form the product E × E ′ of the elliptic curves

E : y 2 = x(x − 1)(x − 25) and E ′ : y ′2 = u(u + 25)(u + 36)

by identifying (x , y , u, y ′) with (x ,−y , u,−y ′).
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The Hilbert symbol

Definition

For k a local field and 0 6= α, β ∈ k define (α, β)k ∈ 1
2Z/Z by

(α, β)k := {
0 if αX 2 + βY 2 − Z 2 non-trivially represents 0 over k ,
1
2 otherwise .

This is called the Hilbert symbol of α and β.

Fact

For 0 6= α, β ∈ Q, there is the sum formula
∑

p∈{2,3,5,...;∞}
(α, β)p = 0.
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The Hilbert symbol II

For 3x3+2x2z +xy 2−2xyz−2xyw−xzw +2xw 2−yzw−yw 2−z3+z2w = 0,
there is a homogeneous form F30 ∈ Q[x , y , z ,w ] of degree 30 such that

for every real or p-adic solutions (p 6= 3), one automatically has
(F30(x , y , z ,w),−3)p = 0.

There are 3-adic solutions such that (F30(x , y , z ,w),−3)p = 1
2 .

For the equation z2 = x(x − 1)(x − 25)u(u + 25)(u + 36), we may show
the following

For every non-trivial real or p-adic solution (p 6= 5), one automatically
has ((x − 1)(x − 25), (u + 25)(u + 36))p = 0.

There are, however, non-trivial 5-adic solutions such that
((x − 1)(x − 25), (u + 25)(u + 36))5 = 1

2 .

Thus, C (Q3) and S(Q5) split into two sorts of points (red and green
points). We have colourings on these p-adic manifolds. Only one sort
may be approximated by Q-rational points.
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The Brauer group

Definition

Let S be any scheme. Then the (cohomological) Brauer group of S is
defined by Br(S) := H2

ét(S ,Gm).

Remarks
1 This definition is not very explicit. In general, Brauer groups are not

easily computable.

2 One has Br(Qp) ∼= Q/Z, Br(R) ∼= 1
2Z/Z, and

Br(Q) = ker(sum:
⊕

p∈{2,3,5,...}
Br(Qp)⊕

⊕
ν : K→R

Br(R)→ Q/Z) .

3 Let α ∈ Br(S) be any Brauer class. Then, for every K -rational point
p ∈ S(K ), there is α|p ∈ Br(Spec K ).
Hence, an adelic point not fulfilling the condition that the sum zero
cannot be approximated by Q-rational points.
This is called the Brauer-Manin obstruction to weak approximation.
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The Brauer group II

The cohomological Brauer group of a variety S over a field k is equipped with
a canonical filtration, defined by the Hochschild-Serre spectral sequence.

1 Br0(S) ⊆ Br(S) is the image of Br(k) under the natural map. At least
when S has a k-rational point, Br0(S) ∼= Br(k). Br0(S) does not
contribute to the Brauer-Manin obstruction.

2 One has

Br1(S)/Br0(S) ∼= H1(Gal(ksep/k),Pic(Sksep)) .

This subquotient is called the algebraic part of the Brauer group. For k
a number field, it is responsible for the so-called algebraic Brauer-
Manin obstruction.

3 Finally, Br(S)/Br1(S) injects into Br(Sksep). This quotient is called
the transcendental part of the Brauer group. For k a number field, the
corresponding obstruction is called a transcendental Brauer-Manin ob-
struction.

J. Jahnel (University of Siegen) Brauer-Manin obstruction Sydney, March 7, 2013 9 / 41



Smooth cubic surfaces—Algebraic Brauer-Manin obstruction

Let C ⊂ P3 be a smooth cubic surface over an algebraically closed field.

C is isomorphic to P2, blown up in six points. These are in general
position.

C contains precisely 27 lines.

The configuration of the 27 lines is highly symmetric. The group of all
permutations respecting the intersection pairing is isomorphic to the
Weyl group W (E6) of order 51 840.

There are many combinatorial structures determined by the 27 lines.
For example, the are 72 sixers of mutually skew lines, forming 36
double-sixes.

There is a pentahedron associated with general C (Sylvester).

There are (at least) two kinds of moduli spaces, coming out of the
classical invariant theory.

The coarse moduli space of smooth cubic surfaces (Salmon, Clebsch).
The fine moduli space of marked cubic surfaces (Cayley, Coble).
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The Brauer group of smooth cubic surfaces

Lemma

Let C be a smooth cubic surface over an algebraically closed field. Then
Br(C ) = 0.

Idea of proof: One has Br(P2) = 0 and a blow-up does not change the
Brauer group.

Corollary

Let C be a smooth cubic surface over a field k of characteristic zero.

Then the transcendental part Br(C )/Br1(C ) of the Brauer group van-
ishes.

The canonical map

δ : H1(Gal(k/k),Pic(Ck)) −→ Br(C )/Br(k)

is an isomorphism.
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The Brauer group of smooth cubic surfaces II

Theorem (Manin 1969)

Let C be a smooth cubic surface over a field k. Then

H1(Gal(k/k),Pic(Ck)) ∼= Hom((NF ∩ F0)/NF0,Q/Z)

Here, F ⊂ Div(C ) is the subgroup generated by the 27 lines on C . F0 ⊂ F
is the subgroup pf all principal divisors in F . Finally, N is the norm map
from the field of definition of the 27 lines to k.

Thus, the Gal(k/k)-module structure on F ∼= Z27, i.e. the Galois operation
on the 27 lines, determines the Brauer group Br(C )/Br(k) completely.

Remark

Gal(k/k) permutes the 27 lines in such a way that the intersection matrix
is respected. Thus, every smooth cubic surface over k defines a homomor-
phism % : Gal(k/k) → W (E6) ⊆ S27. The subgroup im % determines the
Brauer group.
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Systematic computation

There are 350 conjugacy classes of subgroups in W (E6).

It turns out that H1(Gal(k/k),Pic(Ck)) is isomorphic to

0 for 257 classes,
Z/2Z for 65 classes,
Z/3Z for 16 classes,
(Z/2Z)2 for 11 classes,
(Z/3Z)2 for one class.

Fact (Swinnerton-Dyer 1993, Elsenhans+J. 2009)

Let C be a smooth cubic surface over a field k.

1 If H1(Gal(k/k),Pic(Ck)) = Z/2Z then, on C , there is a Galois-invari-
ant double-six.

2 If H1(Gal(k/k),Pic(Ck)) = Z/2Z×Z/2Z then, on C , there are three
Galois-invariant double-sixes that are azygetic to each other. Azygetic-
ity means every pair has six lines in common.
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The hexahedral form

We constructed examples over Q for each of the 350 conjugacy classes.

Cubic surfaces with a Galois invariant double-six are related to the hexahe-
dral form.

Definition (Hexahedral form)

The cubic surface S (a0,...,a5) given in P5 by

X 3
0 + X 3

1 + X 3
2 + X 3

3 + X 3
4 + X 3

5 = 0 ,

X0 + X1 + X2 + X3 + X4 + X5 = 0 ,

a0X0 + a1X1 + a2X2 + a3X3 + a4X4 + a5X5 = 0 .

is said to be in hexahedral form.

Remarks

There are the 15 obvious lines given by the equations
Xi0 + Xi1 = Xi2 + Xi3 = Xi4 + Xi5 = 0 for {i0, . . . , i5} = {0, . . . , 5}.
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The hexahedral form II

Remarks (continued)

The twelve non-obvious lines form a double-six. I.e., a configuration
of the type {l0, . . . , l5, l ′0, . . . , l ′5} with li meeting l ′j if and only if l 6= j ,
the li being pairwise skew, and the l ′i being pairwise skew.

The group of all permutations of {l0, . . . , l5, l ′0, . . . , l ′5} respecting the
intersection product is isomorphic to S6 ×Z/2Z of order 1440, gener-
ated by the permutations of the indices and the flip.

A permutation of the coordinates X0, . . . ,X5 operates on the double-six
as an element of S6 ⊂ S6 × Z/2Z. However, an outer automorphism
of S6 comes in!

A cubic surface has 45 tritangent planes cutting the surface in
three lines. There are 15 obvious tritangent planes, given by
Xj0 + Xj1 = 0 for 0 ≤ j0 < j1 ≤ 5, and 30 non-obvious ones.

Every obvious tritangent plane contains three obvious lines. A non-
obvious plane contains two non-obvious lines and one obvious line.

J. Jahnel (University of Siegen) Brauer-Manin obstruction Sydney, March 7, 2013 15 / 41



The hexahedral form III

Definition

Let σi denote the i-th elementary symmetric function in a0, . . . , a5.
Then, the form

d4 := σ2
2 − 4σ4 + σ1(2σ3 − 3

2σ1σ2 + 5
16σ

3
1)

is called the Coble quartic.

Theorem (Coble 1915)

The field of definition of the 27 lines on S (a0,...,a5) is Q(
√

d4).
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The trace construction

Algorithm (Trace construction—Computation of the Galois descent)

Given a separable polynomial f ∈ Q[T ] of degree six, this algorithm com-
putes a cubic surface S(a0,...,a5).

1 Compute, according to the definition, the traces ti := trT i

for i = 0, . . . , 5. Use these values to compute t6 := trT 6.

2 Determine the kernel of the 2×6-matrix(
t0 t1 t2 t3 t4 t5

t1 t2 t3 t4 t5 t6

)
.

Choose linearly independent kernel vectors (c0
i , . . . , c

5
i ) ∈ Q6 for

i = 0, . . . , 3.

3 Compute the term
[∑5

j=0(c j
0 x0+. . .+c j

3 x3)T j
]3

modulo f (T ). This is
a cubic form in x0, . . . , x3 with coefficients in Q[T ]/(f ).

4 Finally, apply the trace coefficient-wise and output the resulting cubic
form in x0, . . . , x3 with 20 rational coefficients.
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The trace construction II

Remark

S(a0,...,a5) is a cubic surface over Q such that S(a0,...,a5) ×SpecQ SpecQ is

isomorphic to the surface S (a0,...,a5) in P5 given by

X 3
0 + X 3

1 + X 3
2 + X 3

3 + X 3
4 + X 3

5 = 0 ,

X0 + X1 + X2 + X3 + X4 + X5 = 0 ,

a0X0 + a1X1 + a2X2 + a3X3 + a4X4 + a5X5 = 0 .

Here, a0, . . . , a5 ∈ Q are the zeroes of f .

Proposition (Elsenhans+J. 2009)

An element σ ∈ Gal(Q/Q) flips the double-six if and only if it defines the
conjugation of Q(

√
D) for D := d4 ·∆(f ).
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The local evaluation map

Proposition (Elsenhans+J. 2009)

Let f ∈ Q[T ] be a polynomial of degree six and C := S(a0,...,a5) be the
corresponding cubic surface. Then there is a Brauer class α ∈ Br(C )2 such
that, for every prime p, the local evaluation map

evα : C (Qp)→ 1
2Z/Z

is given by

(x : y : z : w) 7→ evα(x : y : z : w) = (F30(x ,y ,z,w)
F 2

15(x ,y ,z,w)
,D)p

for every (x : y : z : w) ∈ C (Qp), not contained in any of the 27 lines.

Here, D := d4 ·∆(f ), F15 is a product of linear forms corresponding to the
15 obvious tritangent planes and F30 is a product of linear forms correspond-
ing to the 30 non-obvious tritangent planes.
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The local evaluation map II

Idea of proof (only for generic orbit structure [12, 15]):

Manin’s formula: Need a rational function F such that div F = ND for
a (non-principal) divisor D ∈ Div(C

Q(
√

D)).

Put D1 :=
∑

l non-obv. line

l and D2 :=
∑

l obv. line

l . Then the intersection matrix is(
48 60

60 75

)
Thus, 5D1 − 4D2 is a principal divisor.

On the other hand, div F30 = 5D1 + 2D2 and div F15 = 3D2. Hence,
5D1 − 4D2 = div(F30/F 2

15).

Finally, over Q(
√

D), the double-six is split, D1 = D
(1)
1 + D

(2)
1 . There-

fore,
5D1 − 4D2 = N

Q(
√

D)/Q(5D
(1)
1 − 2D2) . �
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Constancy of the evaluation map

Proposition (Elsenhans+J. 2009)

Let C be a non-singular cubic surface and α ∈ Br(C ). Then, for a prime
number p such that

the field extension Q(
√

D)/Q splitting the double-six is unramified
at p,

the reduction Cp is geometrically irreducible and no Qp-rational point
on C reduces to a singularity of Cp,

the value of evα(x) is independent of x ∈ C (Qp).

In particular, the evaluation is constant on C (Qp), for p any prime of good
reduction.
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Back to the introductory example

The equation

3x3 + 2x2z + xy 2−2xyz−2xyw −xzw + 2xw 2−yzw −yw 2−z3 + z2w = 0

was obtained using the starting polynomial

F := T (T 5 − 60T 3 − 90T 2 + 675T + 810) .

One has disc(F ) = −21232158132, while Coble’s radicand d4 is a per-
fect square. Thus, D = −3.

The proposition shows that the local evaluation map is constant for all
primes p 6= 2, 3, 5, and ∞. Constancy at 2, 5, and ∞ is true as well.
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Transcendental Brauer-Manin obstruction –
Particular Kummer surfaces

Proposition (Skorobogatov/Zarhin 2011)

Let E : y 2 = x(x − a)(x − b) and E ′ : v 2 = u(u− a′)(u− b′) be two elliptic
curves over a field k, chark = 0. Suppose that their 2-torsion points are
defined over k and that Ek and E ′

k
are not isogenous to each other.

Further, let S := Kum(E×E ′) be the corresponding Kummer surface. Then

Br(S)2/Br(k)2 = im(Br(S)2 → Br(Sk)2) ∼= ker(µ : F4
2 → (k∗/k∗2)4) ,

where µ is given by the matrix

Maba′b′ :=


1 ab a′b′ −aa′

ab 1 aa′ a′(a′ − b′)

a′b′ aa′ 1 a(a− b)

−aa′ a′(a′ − b′) a(a− b) 1

 .
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Transcendental Brauer-Manin obstruction –
Particular Kummer surfaces II

Remarks
1 In general, there is the short exact sequence

0→ Pic(S)/2 Pic(S)→ H2
ét(S , µ2)→ Br(S)2 → 0 .

2 S := Kum(E×E ′) over algebraically closed field k . Then Br(S)2
∼= F4

2 .
More canonically,

Br(S)2
∼= H2

ét(E×E ′, µ2)/(H2
ét(E, µ2)⊕H2

ét(E ′, µ2)) ∼= Hom(E [2],E ′[2]).

3 S := Kum(E × E ′) over an arbitrary field k , chark = 0. Then the
assumption that the 2-torsion points are defined over k implies that
Gal(k/k) operates trivially on Br(Sk)2. Nevertheless, in general,

Br(S)2/Br(k)2 $ Br(Sk)
Gal(k/k)
2

∼= F4
2 .
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Algebraic versus transcendental Brauer-Manin obstruction

Algebraic Brauer-Manin obstruction:

Explicit computations have been done for many classes of varieties.
Most examples were Fano.

Cubic surfaces:
The example from above is rather typical.
The classical counterexamples to the Hasse principle (Mordell and
Cassels/Guy) are in fact algebraic Brauer-Manin obstruction (Manin).

Computations for diagonal quartic surfaces, due to M. Bright.

Transcendental Brauer-Manin obstruction:

Much less understood, seemingly more difficult.
First explicit example: Harari 1993.
Literature still very small. Often enormous efforts.
E.g., a whole Ph.D. thesis on one diagonal quartic surface, by Th. Preu.
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The local evaluation map

Remark

The result of Skorobogatov/Zarhin gives us a class of varieties, for which
the transcendental Brauer group is exceptionally well accessible. The same
is true for the local evaluation map.

Fact

Over the function field k(S), each of the 16 vectors in F4
2 defines a

Brauer class. Consider the four quaternion algebras

Aµ,ν := ((x − µ)(x − b), (u − ν)(u − b′)), µ = 0, a, ν = 0, a′.

Then e1 corresponds to Aa,a′ , e2 to Aa,0, e3 to A0,a′ , and e4 to A0,0.
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The local evaluation map II

Lemma

Let k be a local field, chark = 0, a, b, a′, b′ ∈ k be such that

E : y 2 = x(x − a)(x − b) and E ′ : v 2 = u(u − a′)(u − b′)

are elliptic curves. Consider S := Kum(E × E ′), given explicitly by

z2 = x(x − a)(x − b)u(u − a′)(u − b′) .

Let α ∈ Br(S) be a Brauer class, represented over k(S) by the central
simple algebra

⊗
i Aµi ,νi .

Then the local evaluation map evα : S(k)→ 1
2Z/Z is given by

(x , u; z) 7→ evα((x , u; z)) =
∑

i

((x − µi )(x − b), (u − νi )(u − b′))k .
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Constancy near the singular points

Lemma (Elsenhans+J. 2012)

Let p > 2 be a prime number and a, b, a′, b′ ∈ Zp be such that
E : y 2 = x(x − a)(x − b) and E ′ : v 2 = u(u − a′)(u − b′) are elliptic
curves, not isogenous to each other. Suppose gcd(a, b) = gcd(a′, b′) = 1
and put

l := max(νp(a), νp(b), νp(a− b), νp(a′), νp(b′), νp(a′ − b′)) .

Consider the surface S over Qp, given by

z2 = x(x − a)(x − b)u(u − a′)(u − b′) .

Then, for every α ∈ Br(S)2, the evaluation map S(Qp)→ Q/Z is constant
on the subset

T := {(x , u; z) ∈ S(Qp) | νp(x) < 0 or νp(u) < 0 or

x ≡ µ, u ≡ ν (mod pl+1), µ = 0, a, b, ν = 0, a′, b′} .
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The case of good reduction

Proposition

Let E : y 2 = x(x − a)(x − b) and E ′ : v 2 = u(u− a′)(u− b′) be two elliptic
curves over a local field k, not isogenous to each other. Suppose that
a, b, a′, b′ ∈ k. Further, let S := Kum(E × E ′) be the corresponding
Kummer surface.

Suppose that either k = R or k is a p-adic field and both E and E ′

have good reduction. Then, for every α ∈ Br(S)2, the evaluation map
evα : S(k)→ Q/Z is constant.

The case k = Qp is a particular case of a very general result, due to
J.-L. Colliot-Thélène and A. N. Skorobogatov. It also follows from the
lemma above.

J. Jahnel (University of Siegen) Brauer-Manin obstruction Sydney, March 7, 2013 29 / 41



The case of good reduction II

k = R: Without loss of generality, suppose a > b > 0 and a′ > b′ > 0.
Then

Maba′b′ =


+ + + −
+ + + +

+ + + +

− + + +


has kernel 〈e2, e3〉. Representatives for e2 and e3 are
((x − a)(x − b), u(u − b′))R and (x(x − b), (u − a′)(u − b′))R.

e2: ((x − a)(x − b), u(u − b′))R = 1
2 would mean (x − a)(x − b) < 0

and u(u − b′) < 0. Hence, b < x < a and 0 < u < b′. But then
x(x − a)(x − b)u(u − a′)(u − b′) < 0. There is no real point on S
corresponding to (x , u).

For e3, the argument is analogous.
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An algorithm determining the local evaluation map

Algorithm

Let the parameters a, b, a′, b′ ∈ Z, a Brauer class α ∈ Br(S)2 as a combi-
nation of Hilbert symbols, and a prime number p be given.

1 Calculate l := max(νp(a), νp(b), νp(a− b), νp(a′), νp(b′), νp(a′ − b′)).

2 Initialize three lists S0, S1, and S2, the first two being empty, the third
containing all triples (x0, u0, p) for x0, u0 ∈ {0, . . . , p − 1}. A triple
(x0, u0, p

e) shall represent the subset

{(x , u; z) ∈ S(Qp) | νp(x − x0) ≥ e, νp(u − u0) ≥ e} .

3 Run through S2. For each element (x0, u0, p
e), execute, in this order,

the following operations.

• Test whether the corresponding set is non-empty. Otherwise, delete it.

• If e ≥ l + 1, νp(x − µ) ≥ l + 1 and νp(u − ν) ≥ l + 1 for some
µ ∈ {0, a, b} and ν ∈ {0, a′, b′} then move (x0, u0, p

e) to S0.
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An algorithm determining the local evaluation map II

• Test naively, using the elementary properties of the Hilbert symbol,
whether the elements in the corresponding set all have the same evalu-
ation. If this test succeeds then move (x0, u0, p

e) to S0 or S1, accord-
ingly.

• Otherwise, replace (x0, u0, p
e) by the p2 triples (x0 +ipe , u0 +jpe , pe+1)

for i , j ∈ {0, . . . , p − 1}.
4 If S2 is empty then output S0 and S1 and terminate. Otherwise, go

back to step 3.

Remark

This algorithm terminates after finitely many steps only because constancy
near the singular points is known.
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Back to the introductory example

The introductory example S : z2 = x(x − 1)(x − 25)u(u + 25)(u + 36) has
the Skorobogatov-Zarhin matrix

M =


1 25 900 25

25 1 −25 −275

900 −25 1 −24

25 −275 −24 1

 =̂


1 1 1 1

1 1 −1 −11

1 −1 1 −6

1 −11 −6 1

 ,

with ker M = 〈e1〉. Thus, there is a non-trivial Brauer class.

Furthermore, S has bad reduction at 2, 3, 5, and 11. Running the algorithm
for these four primes, one sees that the local evaluation maps at 2, 3, and 11
are constant, while that at 5 is not.
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Some kind of normal form

Observation

Let k be a field, a, b, a′, b′ ∈ k∗, a 6= b, a′ 6= b′, and S be the Kummer
surface z2 = x(x − a)(x − b)u(u − a′)(u − b′). There are two types of
non-trivial Brauer classes α ∈ Br(S)2/Br(k)2.

Type 1. α may be expressed by a single Hilbert symbol.
There are nine cases for the kernel vector of Maba′b′ . A suitable trans-
lation of A1 × A1 transforms the surface into one with kernel vector e1.
Then ab, a′b′, (−aa′) ∈ k∗2.
This implies (−ba′), (−ab′), (−bb′) ∈ k∗2, too.

Type 2. To express α, two Hilbert symbols are necessary.
There are six cases for the kernel vector of Maba′b′ . A suitable translation
of A1 × A1 transforms the surface into one with kernel vector e2 + e3.
Then aa′, bb′, (a− b)(a′ − b′) ∈ k∗2.
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A criterion for trivial evaluation

Theorem (Elsenhans+J. 2012)

Let p > 2 be a prime number and 0 6= a, b, a′, b′ ∈ Zp such that
a 6= b and a′ 6= b′. Let S be the Kummer surface, given by
z2 = x(x − a)(x − b)u(u − a′)(u − b′).

Assume that e1 is a kernel vector of the matrix Maba′b′ and let α ∈ Br(S)2

be the corresponding Brauer class.

1 Suppose a ≡ b 6≡ 0 (mod p) or a′ ≡ b′ 6≡ 0 (mod p). Then the
evaluation map evα : S(Qp)→ Q/Z is constant.

2 If a 6≡ b (mod p), a′ 6≡ b′ (mod p), and not all four numbers are
p-adic units then the evaluation map evα : S(Qp) → Q/Z is non-
constant.

Remark

Consider a = 1, b = 25, a′ = −25, b′ = −36.
By 1, we have constancy at 2, 3, 11. By 2, there is non-constancy at 5.
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A sample

Determined all Kummer surfaces of the form

z2 = x(x − a)(x − b)u(u − a′)(u − b′)

allowing coefficients of absolute value ≤ 200 and having a transcendental
2-torsion Brauer class.

More precisely,

we determined all (a, b, a′, b′) ∈ Z4 such that gcd(a, b) = 1,
gcd(a′, b′) = 1, a > b > 0, a − b, b ≤ 200, as well as a′ < b′ < 0,
a′ − b′, b′ ≥ −200 and the matrix Maba′b′ has a non-zero kernel.

We made sure that (a, b, a′, b′) was not listed when (−a′,−b′,−a,−b),
(a, a− b, a′, a′− b′), or (−a′, b′− a′,−a, b− a) was already in the list.
We ignored the quadruples where (a, b) and (a′, b′) define geometrically
isomorphic elliptic curves.
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A sample II

This led to

3075 surfaces with a kernel vector of type 1,
among them 26 have Br(S)2/Br(Q)2 = 0, due to a Q-isogeny.

367 surfaces with a kernel vector of type 2

two surfaces with dim Br(S)2/Br(Q)2 = 2,
(25, 9,−169,−25) and (25, 16,−169,−25).

The generic case is that dim Br(S)2/Br(Q)2 = 0.

Definition
1 We say that a Brauer class α ∈ Br(S) works at a prime p if the local

evaluation map evα,p is non-constant.

2 A prime number p is BM-relevant for S if there is a Brauer class working
at p.
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BM-relevant primes

(25, 9,−169,−25):
One Brauer class works at 2 and 13, another at 5 and 13, and the third at
all three.

(25, 16,−169,−25):
One Brauer class works at 3 and 13, another at 5 and 13, and the last at
all three.

Remaining surfaces:
# relevant primes # surfaces

- 6
1 428
2 1577
3 1119
4 276
5 9
6 1

For (196, 75,−361,−169), the Brauer class works at 2, 5, 7, 11, 13, and 19.
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Q-rational points

Assume α ∈ Br(S) works at l primes p1, . . . , pl . There are 2l vectors
consisting only of zeroes and 1

2 ’s. By the Brauer-Manin obstruction, half of
them are forbidden as values of

(evα,p1(x), . . . , evα,pl
(x))

for Q-rational points x ∈ S(Q).

Table: Search bounds to get all vectors by rational points
bound N insufficient for

#primes #surfaces N = 50 100 200 400 800 1600 3200 6400 12800

2 1577 190 56 22 -
3 1119 555 187 48 1 -
4 262 262 200 127 67 36 24 13 4 -
5 9 9 9 8 8 8 5 3 1 -

Table: Numbers of vectors in the case (196, 75,−361,−169)
bound 50 100 200 400 800 1600 3200 6400 12 800 25 600 50 000

vectors 5 10 14 20 24 26 28 30 31 31 32
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Summary

Summary

We investigated the transcendental Brauer-Manin obstruction for a
sample of particular Kummer surfaces.
Actually, most of the surfaces had Br(S)/Br(Q) = 0, but there was a
2-torsion Brauer class on more than 3000 of the surfaces.

In our situation, the local evaluation map could be expressed in terms
of the Hilbert symbol. This is in close analogy with computations of
the algebraic Brauer-Manin obstruction.

In our sample, the Brauer classes never works at the infinite place. As is
known, they do not work at good places, either.

We tested at which (bad) primes the Brauer classes actually work.
There were form zero (in six cases) to six BM-relevant primes.

We carried out a relatively extensive point search, but no other ex-
ceptional phenomena showed up. Our results are perfectly compatible
with the idea that there are no further obstructions.
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Thank you

Thank you!!
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