Zur Geometrie der K3-Flächen

Jörg Jahnel

Mathematisches Institut der Universität Göttingen

10.06.2009

Definition (K3-Fläche)

Eine K3-Fläche ist eine kompakte komplexe Mannigfaltigkeit der Dimension 2, die

- eine nirgends verschwindende, holomorphe 2-Form besitzt,
- einfach zusammenhängend ist.

Definition (K3-Fläche)

Eine K3-Fläche ist eine kompakte komplexe Mannigfaltigkeit der Dimension 2, die

- eine nirgends verschwindende, holomorphe 2-Form besitzt,
- einfach zusammenhängend ist.

Beispiele

• Glatte Quartiken in P³

Definition (K3-Fläche)

Eine K3-Fläche ist eine kompakte komplexe Mannigfaltigkeit der Dimension 2, die

- eine nirgends verschwindende, holomorphe 2-Form besitzt,
- einfach zusammenhängend ist.

- Glatte Quartiken in P³
- Glatte vollständige Durchschnitte einer Quadrik und einer Kubik in P⁴

Definition (K3-Fläche)

Eine K3-Fläche ist eine kompakte komplexe Mannigfaltigkeit der Dimension 2, die

- eine nirgends verschwindende, holomorphe 2-Form besitzt,
- einfach zusammenhängend ist.

- Glatte Quartiken in P³
- Glatte vollständige Durchschnitte einer Quadrik und einer Kubik in P⁴
- Glatte vollständige Durchschnitte dreier Quadriken in P⁵

Definition (K3-Fläche)

Eine K3-Fläche ist eine kompakte komplexe Mannigfaltigkeit der Dimension 2, die

- eine nirgends verschwindende, holomorphe 2-Form besitzt,
- einfach zusammenhängend ist.

- Glatte Quartiken in P³
- Glatte vollständige Durchschnitte einer Quadrik und einer Kubik in P⁴
- Glatte vollständige Durchschnitte dreier Quadriken in **P**⁵
- Zweiblättrige Überlagerungen des **P**², verzweigt in einer Sextik

Definition (K3-Fläche)

Eine K3-Fläche ist eine kompakte komplexe Mannigfaltigkeit der Dimension 2, die

- eine nirgends verschwindende, holomorphe 2-Form besitzt,
- einfach zusammenhängend ist.

- Glatte Quartiken in **P**³
- Glatte vollständige Durchschnitte einer Quadrik und einer Kubik in P⁴
- Glatte vollständige Durchschnitte dreier Quadriken in **P**⁵
- ullet Zweiblättrige Überlagerungen des ${f P}^2$, verzweigt in einer Sextik
- Kummer-Flächen: Desingularisierung von A/\sim , wobei A abelsche Fläche und $x\sim -x$.

Klassifikation der algebraischen Flächen (Enriques)

Kodaira-Dimension

 \bullet $-\infty$

Rationale und Regelflächen

Klassifikation der algebraischen Flächen (Enriques)

Kodaira-Dimension

- $-\infty$ Rationale und Regelflächen
- 0
 Abelsche Flächen, Bielliptische Flächen, K3-Flächen, Enriques-Flächen

Klassifikation der algebraischen Flächen (Enriques)

Kodaira-Dimension

- $-\infty$ Rationale und Regelflächen
- 0
 Abelsche Flächen, Bielliptische Flächen, K3-Flächen, Enriques-Flächen
- 1 Elliptische Flächen

Klassifikation der algebraischen Flächen (Enriques)

Kodaira-Dimension

- $-\infty$ Rationale und Regelflächen
- 0
 Abelsche Flächen, Bielliptische Flächen, K3-Flächen, Enriques-Flächen
- 1 Elliptische Flächen
- 2
 Flächen vom allgemeinen Typ

Bemerkungen

① Die Existenz einer nirgends verschwindenden holomorphen 2-Form (K = 0) impliziert Kodaira-Dimension 0.

Bemerkungen

- ① Die Existenz einer nirgends verschwindenden holomorphen 2-Form (K=0) impliziert Kodaira-Dimension 0.
- ② Wirklich K = 0 haben nur die abelschen Flächen und die K3-Flächen.

Bemerkungen

- ① Die Existenz einer nirgends verschwindenden holomorphen 2-Form (K = 0) impliziert Kodaira-Dimension 0.
- ② Wirklich K = 0 haben nur die abelschen Flächen und die K3-Flächen.
- 3 Der einfache Zusammenhang unterscheidet diese beiden Klassen.

19 Moduli

• Quartiken im \mathbf{P}^3 haben $\binom{7}{3} = 35$ Koeffizienten, bilden also einen \mathbf{P}^{34} . $\mathbf{Aut}(\mathbf{P}^3) = \mathbf{PGL}_4(\mathbb{C})$ von Dimension 15.

$$34 - 15 = 19$$

19 Moduli

• Quartiken im \mathbf{P}^3 haben $\binom{7}{3} = 35$ Koeffizienten, bilden also einen \mathbf{P}^{34} . $\mathbf{Aut}(\mathbf{P}^3) = \mathbf{PGL}_4(\mathbb{C})$ von Dimension 15.

$$34 - 15 = 19$$

• Ebene Sextiken haben $\binom{8}{2} = 28$ Koeffizienten, bilden also einen \mathbf{P}^{27} . $\mathbf{Aut}(\mathbf{P}^2) = \mathbf{PGL}_3(\mathbb{C})$ von Dimension 8.

$$27 - 8 = 19$$

19 Moduli

• Quartiken im \mathbf{P}^3 haben $\binom{7}{3}=35$ Koeffizienten, bilden also einen \mathbf{P}^{34} . $\mathbf{Aut}(\mathbf{P}^3)=\mathbf{PGL}_4(\mathbb{C})$ von Dimension 15.

$$34 - 15 = 19$$

• Ebene Sextiken haben $\binom{8}{2} = 28$ Koeffizienten, bilden also einen \mathbf{P}^{27} . $\mathbf{Aut}(\mathbf{P}^2) = \mathbf{PGL}_3(\mathbb{C})$ von Dimension 8.

$$27 - 8 = 19$$

• Wir können ebenso die Grad-6 und Grad-8-Fälle rechnen. Es wird wieder Dimension 19 herauskommen.

19 Moduli II

Die regulären Flächen mit kanonischer Kurve von der Ordnung Null hängen von 19 Moduln und der ganzen Zahl π (dem Mindestgeschlecht der auf ihr liegenden Kurven) ab. . . .

Francesco Severi: Die Geometrie auf einer algebraischen Fläche (1922)

Kohomologie der K3-Flächen

Kann man Severis Behauptung mit moderneren Mitteln bestätigen?

Kohomologie:

$$\dim H^0(S,\mathbb{R}) = 1,$$

$$\dim H^1(S,\mathbb{R}) = 0,$$

$$\dim H^2(S,\mathbb{R}) = 22,$$

$$\dim H^3(S,\mathbb{R}) = 0,$$

$$\dim H^4(S,\mathbb{R}) = 1.$$

Das Cup-Produkt auf $H^2(S,\mathbb{R})$ hat Signatur (3,19).

Das Gitter $H^2(S,\mathbb{Z})$ ist für alle K3-Flächen gleich:

$$H^2(S,\mathbb{Z})\cong (-E_8)\oplus (-E_8)\oplus \mathbb{H}\oplus \mathbb{H}\oplus \mathbb{H}=:\Lambda.$$

Kohomologie der K3-Flächen II

Hodge-Diamant:

Insbesondere ist also
$$H^2(S,\mathbb{C})=H^{02}(S)\oplus H^{11}(S)\oplus H^{20}(S)$$
 mit
$$\dim H^{02}(S)=H^{20}(S)=1 \text{ und } \dim H^{11}(S)=20.$$

Bemerkung

Es kann also lediglich die Lage dieser Unterräume zum Gitter $H^2(S,\mathbb{Z})$ variieren.

Deformationstheorie

Theorem (Kodaira/Spencer, 1958)

Sei S eine kompakte komplexe Mannigfaltigkeit.

- **1** Deformationen 1. Ordnung von S werden beschrieben durch $H^1(S, \mathbf{T}_S)$.
- ② Die Hindernisse gegen die Fortsetzung der Deformationen liegen in $H^2(S, \mathbf{T}_S)$.

Deformationstheorie

Theorem (Kodaira/Spencer, 1958)

Sei S eine kompakte komplexe Mannigfaltigkeit.

- **1** Deformationen 1. Ordnung von S werden beschrieben durch $H^1(S, \mathbf{T}_S)$.
- ② Die Hindernisse gegen die Fortsetzung der Deformationen liegen in $H^2(S, \mathbf{T}_S)$.

Ist S eine K3-Fläche, dann hat man die nichtausgeartete Paarung

$$\wedge: \Omega_S \times \Omega_S \longrightarrow \Omega_S^{\wedge 2} \cong \mathbb{C}$$

und damit $\Omega_S \cong \mathbf{T}_S$.

Deformationstheorie II

Folglich

$$\dim H^1(S, \mathbf{T}_S) = \dim H^1(S, \Omega_S) = 20,$$

 $\dim H^2(S, \mathbf{T}_S) = \dim H^2(S, \Omega_S) = 0.$

S hat somit eine universelle Deformation über **Spec** $\mathbb{C}[[T_1, \dots, T_{20}]]$, einem 20-dimensionalen Raumkeim.

Diese lässt sich auf einen Polyzylinder \mathbf{D}^{20} fortsetzen. Eine solche Familie heißt *Kuranishi-Familie*.

Deformationstheorie II

Folglich

$$\dim H^1(S, \mathbf{T}_S) = \dim H^1(S, \Omega_S) = 20,$$

 $\dim H^2(S, \mathbf{T}_S) = \dim H^2(S, \Omega_S) = 0.$

S hat somit eine universelle Deformation über **Spec** $\mathbb{C}[[T_1, \dots, T_{20}]]$, einem 20-dimensionalen Raumkeim.

Diese lässt sich auf einen Polyzylinder \mathbf{D}^{20} fortsetzen. Eine solche Familie heißt *Kuranishi-Familie*.

Problem

Wie ist der Widerspruch zu Severis Aussage zu erklären?

Rigidifizierung

Eine K3-Fläche S zusammen mit einem Isomorphismus $\iota \colon H^2(S,\mathbb{Z}) \stackrel{\cong}{\longrightarrow} \Lambda$ nennt man *markierte* K3-Fläche.

Rigidifizierung

Eine K3-Fläche S zusammen mit einem Isomorphismus $\iota \colon H^2(S,\mathbb{Z}) \stackrel{\cong}{\longrightarrow} \Lambda$ nennt man *markierte* K3-Fläche.

S hat ausgezeichnete holomorphe 2-Form ω , eindeutig bis auf Skalierung. Die komplexe Struktur definiert also:

Gerade $[\omega] \subset \Lambda_{\mathbb{C}}$ und damit Punkt $\tau_{(S,\iota)} \in \mathbf{P}(\Lambda_{\mathbb{C}}) \cong \mathbf{P}^{21}$.

Definition

 $au_{(S,\iota)}$ heißt der *Periodenpunkt* zur markierten K3-Fläche (S,ι) .

Rigidifizierung

Eine K3-Fläche S zusammen mit einem Isomorphismus $\iota \colon H^2(S,\mathbb{Z}) \stackrel{\cong}{\longrightarrow} \Lambda$ nennt man *markierte* K3-Fläche.

S hat ausgezeichnete holomorphe 2-Form ω , eindeutig bis auf Skalierung. Die komplexe Struktur definiert also:

Gerade $[\omega] \subset \Lambda_{\mathbb{C}}$ und damit Punkt $\tau_{(S,\iota)} \in \mathbf{P}(\Lambda_{\mathbb{C}}) \cong \mathbf{P}^{21}$.

Definition

 $au_{(S,\iota)}$ heißt der *Periodenpunkt* zur markierten K3-Fläche (S,ι) .

Beobachtung

Es gibt keine holomorphen 4-Formen auf einer Fläche, also $\omega \wedge \omega = 0$. Folglich liegen alle Periodenpunkte auf einer glatten Quadrik $Q \subset \mathbf{P}^{21}$.

• Ist $\pi \colon \mathscr{S} \to B$ eine Familie von K3-Flächen, dann induzieren die Periodenabbildungen eine holomorphe Abbildung

$$\tau\colon B\longrightarrow Q.$$

1 Ist $\pi \colon \mathscr{S} \to B$ eine Familie von K3-Flächen, dann induzieren die Periodenabbildungen eine *holomorphe* Abbildung

$$\tau\colon B\longrightarrow Q.$$

② Ist $\pi \colon \mathscr{S} \to \mathbf{D}^{20}$ eine Kuranishi-Familie, dann ist $\tau \colon \mathbf{D}^{20} \longrightarrow Q$ biholomorph nahe $(0, \dots, 0)$. (Lokales Torelli-Theorem)

• Ist $\pi \colon \mathscr{S} \to B$ eine Familie von K3-Flächen, dann induzieren die Periodenabbildungen eine *holomorphe* Abbildung

$$\tau\colon B\longrightarrow Q.$$

- ② Ist $\pi \colon \mathscr{S} \to \mathbf{D}^{20}$ eine Kuranishi-Familie, dann ist $\tau \colon \mathbf{D}^{20} \longrightarrow Q$ biholomorph nahe $(0, \dots, 0)$. (Lokales Torelli-Theorem)
- 3 Durch Verkleben der Kuranishi-Familien erhält man eine universelle Familie markierter K3-Flächen.

• Ist $\pi \colon \mathscr{S} \to B$ eine Familie von K3-Flächen, dann induzieren die Periodenabbildungen eine *holomorphe* Abbildung

$$\tau \colon B \longrightarrow Q$$
.

- ② Ist $\pi: \mathscr{S} \to \mathbf{D}^{20}$ eine Kuranishi-Familie, dann ist $\tau: \mathbf{D}^{20} \longrightarrow Q$ biholomorph nahe $(0, \dots, 0)$. (Lokales Torelli-Theorem)
- Ourch Verkleben der Kuranishi-Familien erhält man eine universelle Familie markierter K3-Flächen.

Fakten

- Der Modulraum M aller markierten K3-Flächen überlagert Q also lokal biholomorph. M ist aber nicht hausdorffsch. (Atiyah 1958)
- K3-Flächen mit demselben Periodenpunkt sind abstrakt isomorph.
 (Globales Torelli-Theorem, Schafarewitsch/Piatetskij-Shapiro 1971)
- **3** Das Bild in Q wird gegeben durch die Bedingung $\omega \wedge \overline{\omega} > 0$.

Geradenbündel

Die Exponentialsequenz

$$0 \longrightarrow \mathbb{Z} \xrightarrow{2\pi i} \mathscr{O}_{S} \xrightarrow{\exp} \mathscr{O}_{S}^{*} \longrightarrow 0$$

induziert eine exakte Sequenz

$$0 = H^1(S, \mathscr{O}_S) \longrightarrow \mathbf{Pic}(S) \stackrel{c_1}{\longrightarrow} H^2(S, \mathbb{Z}).$$

Fakt

Ist S eine K3-Fläche, so erlaubt jedes topologische Geradenbündel auf S höchstens eine holomorphe Struktur.

Geradenbündel

Die Exponentialsequenz

$$0 \longrightarrow \mathbb{Z} \xrightarrow{2\pi i} \mathscr{O}_{S} \xrightarrow{\exp} \mathscr{O}_{S}^{*} \longrightarrow 0$$

induziert eine exakte Sequenz

$$0=H^1(S,\mathscr{O}_S)\longrightarrow \textbf{Pic}(S)\stackrel{c_1}{\longrightarrow} H^2(S,\mathbb{Z}).$$

Fakt

Ist S eine K3-Fläche, so erlaubt jedes topologische Geradenbündel auf S höchstens eine holomorphe Struktur.

Fakt (Lefschetz' Theorem über (1,1)-Klassen)

Es gilt

$$\mathbf{Pic}(S) = H^2(S, \mathbb{Z}) \cap H^{11}(X).$$

Geradenbündel II

Folgerung-Definition

Für eine K3-Fläche S ist damit

$$Pic(S) = \mathbb{Z}^k$$

für k = 0, ..., 20.

k heißt der Picard-Rang von S.

Geradenbündel II

Folgerung-Definition

Für eine K3-Fläche S ist damit

$$Pic(S) = \mathbb{Z}^k$$

für k = 0, ..., 20.

k heißt der Picard-Rang von S.

Bemerkung

Die algebraische Geometrie untersucht vorzugsweise projektive Mannigfaltigkeiten, $S \subset \mathbf{P}^N$. In dieser Situation ist

$$\mathsf{rk}\,\mathsf{Pic}(S) \geq 1.$$

Es gibt die Einschränkung des tautologischen Geradenbündels auf \mathbf{P}^N .

Geradenbündel und Periodenabbildung

• Seien $\omega_0 \in \Omega^{\wedge 2}(S)$ eine holomorphe 2-Form und $\omega \in H^2(S, \mathbb{C})$ ihre Kohomologieklasse. Diese definiert

$$H^{20}(S) = \langle \omega \rangle, \qquad H^{02}(S) = \langle \overline{\omega} \rangle, \qquad H^{11}(S) = \left(H^{20}(S) \oplus H^{02}(S)\right)^{\perp}.$$

Geradenbündel und Periodenabbildung

• Seien $\omega_0 \in \Omega^{\wedge 2}(S)$ eine holomorphe 2-Form und $\omega \in H^2(S,\mathbb{C})$ ihre Kohomologieklasse. Diese definiert

$$H^{20}(S) = \langle \omega \rangle, \qquad H^{02}(S) = \langle \overline{\omega} \rangle, \qquad H^{11}(S) = \left(H^{20}(S) \oplus H^{02}(S)\right)^{\perp}.$$

• Sei weiterhin $\alpha \in H^2(S,\mathbb{Z})$ Chernklasse eines holomorphen Geradenbündels. Dann ist $\alpha \in H^{11}(S)$, also

$$\alpha \cup \omega = 0.$$

Geradenbündel und Periodenabbildung

• Seien $\omega_0 \in \Omega^{\wedge 2}(S)$ eine holomorphe 2-Form und $\omega \in H^2(S, \mathbb{C})$ ihre Kohomologieklasse. Diese definiert

$$H^{20}(S) = \langle \omega \rangle, \qquad H^{02}(S) = \langle \overline{\omega} \rangle, \qquad H^{11}(S) = \left(H^{20}(S) \oplus H^{02}(S)\right)^{\perp}.$$

• Sei weiterhin $\alpha \in H^2(S,\mathbb{Z})$ Chernklasse eines holomorphen Geradenbündels. Dann ist $\alpha \in H^{11}(S)$, also

$$\alpha \cup \omega = 0.$$

Dies ist eine *lineare Gleichung* für ω . Die Periodenquadrik Q wird mit einer Hyperebene geschnitten.

Geradenbündel und Periodenabbildung II

Folgerung

• Die Bedingung, dass $\alpha \in H^2(S,\mathbb{Z})$ Chernklasse eines holomorphen Geradenbündels ist, liefert eine 19-dimensionale Untervarietät

$$Q_{\alpha}\subset Q$$
.

Geradenbündel und Periodenabbildung II

Folgerung

• Die Bedingung, dass $\alpha \in H^2(S,\mathbb{Z})$ Chernklasse eines holomorphen Geradenbündels ist, liefert eine 19-dimensionale Untervarietät

$$Q_{\alpha} \subset Q$$
.

Insgesamt besteht

$$\bigcup_{\alpha\in H^2(S,\mathbb{Z})}Q_\alpha$$

also aus abzählbar vielen 19-dimensionalen Komponenten.

Geradenbündel und Periodenabbildung II

Folgerung

1 Die Bedingung, dass $\alpha \in H^2(S, \mathbb{Z})$ Chernklasse eines holomorphen Geradenbündels ist, liefert eine 19-dimensionale Untervarietät

$$Q_{\alpha} \subset Q$$
.

Insgesamt besteht

$$\bigcup_{\alpha\in H^2(S,\mathbb{Z})}Q_\alpha$$

also aus abzählbar vielen 19-dimensionalen Komponenten.

Bemerkung

Für K3-Flächen vom Picard-Rang $\geq k$ haben wir also eine Modulvarietät, die aus abzählbar vielen Komponenten der Dimension 20 - k besteht.

10.06.2009

Explizite Beispiele

Theoretisch gilt also:

- Die generische (projektive) K3-Fläche hat Picard-Rang 1.
- Beispiele mit hohen Picard-Rängen sind selten.

Explizite Beispiele

Theoretisch gilt also:

- Die generische (projektive) K3-Fläche hat Picard-Rang 1.
- Beispiele mit hohen Picard-Rängen sind selten.

Praktisch scheint es nahezu umgekehrt zu sein.

Bemerkung

U. Persson (1983) hat viele Beispiele von K3-Flächen vom Picard-Rang 20 konstruiert.

Explizite Beispiele II

Beispiel

Die Diagonalquartik, gegeben durch

$$x^4 + y^4 + z^4 + w^4 = 0$$

in P³, hat Picard-Rang 20.

Explizite Beispiele II

Beispiel

Die Diagonalquartik, gegeben durch

$$x^4 + y^4 + z^4 + w^4 = 0$$

in P³, hat Picard-Rang 20.

Es gibt auf dieser Fläche die 16 Geraden

$$\begin{vmatrix} x = \zeta_8 i^a y \\ z = \zeta_8 i^b w \end{vmatrix}$$

für a, b = 0, 1, 2, 3 und analoge für die übrigen Partitionierungen von $\{x, y, z, w\}$. Insgesamt also 48 Geraden.

Die 48 \times 48-Schnittmatrix hat Rang 20.

Explizite Beispiele III

Bemerkung

Explizite Beispiele von K3-Flächen von Picard-Rang 1 wurden erst 2005 durch R. van Luijk konstruiert.

Beispiel (van Luijk 2005)

Die Quartik in P^3 , gegeben durch

$$x^{3}w - 3x^{2}y^{2} + 4x^{2}yz - x^{2}z^{2} + x^{2}zw - xy^{2}z - xyz^{2} + xw^{3} + y^{2}z^{2} + y^{3}w + z^{3}w = 0$$

hat Picard-Rang 1.

Explizite Beispiele IV

Beispiel (Elsenhans+J. 2007)

lacktrige Die zweiblättrige Überlagerung des ${f P}^2$, gegeben durch

$$\begin{split} w^2 &= 11x^5y + 7x^5z + x^4y^2 + 5x^4yz + 7x^4z^2 + 7x^3y^3 + 10x^3y^2z + 5x^3yz^2 \\ &\quad + 4x^3z^3 + 6x^2y^4 + 5x^2y^3z + 10x^2y^2z^2 + 5x^2yz^3 + 5x^2z^4 + 11xy^5 \\ &\quad + 5xy^3z^2 + 12xz^5 + 9y^6 + 5y^4z^2 + 10y^2z^4 + 4z^6, \end{split}$$

hat Picard-Rang 1.

Explizite Beispiele IV

Beispiel (Elsenhans+J. 2007)

1 Die zweiblättrige Überlagerung des P², gegeben durch

$$w^{2} = 11x^{5}y + 7x^{5}z + x^{4}y^{2} + 5x^{4}yz + 7x^{4}z^{2} + 7x^{3}y^{3} + 10x^{3}y^{2}z + 5x^{3}yz^{2}$$

$$+ 4x^{3}z^{3} + 6x^{2}y^{4} + 5x^{2}y^{3}z + 10x^{2}y^{2}z^{2} + 5x^{2}yz^{3} + 5x^{2}z^{4} + 11xy^{5}$$

$$+ 5xy^{3}z^{2} + 12xz^{5} + 9y^{6} + 5y^{4}z^{2} + 10y^{2}z^{4} + 4z^{6},$$

hat Picard-Rang 1.

② Dagegen hat

$$w^{2} = [xy(2x + y)]^{2}$$

$$+ (y+2z)(x^{5}+2x^{4}y+x^{4}z+3x^{3}y^{2}+4x^{3}yz+2x^{3}z^{2}+xy^{4}+3xy^{3}z$$

$$+ 4xy^{2}z^{2}+2xyz^{3}+xz^{4}+4y^{5}+2y^{4}z+y^{3}z^{2}+3y^{2}z^{3}+4yz^{4}+2z^{5})$$

Picard-Rang 2.

Explizite Beispiele V

Untere Schranke im Beispiel 2:

• Gerade $\ell := ", y + 2z = 0"$ ist *Tritangente* an die Verzweigungssextik.

Explizite Beispiele V

Untere Schranke im Beispiel 2:

- Gerade $\ell := "y + 2z = 0"$ ist *Tritangente* an die Verzweigungssextik.

Explizite Beispiele V

Untere Schranke im Beispiel 2:

- Gerade $\ell := ", y + 2z = 0"$ ist *Tritangente* an die Verzweigungssextik.
- ② $\pi^{-1}(\ell)$ besteht aus zwei Komponenten $w = \pm xy(2x + y)$.
- Schnittmatrix

$$\left(\begin{array}{cc}
-2 & 3 \\
3 & -2
\end{array}\right)$$

hat Rang 2.

Explizite Beispiele VI

Obere Schranke: Charakteristik-p-Methoden

• Für jede Primzahl p gilt $\operatorname{rk}\operatorname{Pic}(S) \leq \operatorname{rk}\operatorname{Pic}(S_{\overline{\mathbb{F}}_p})$.

Explizite Beispiele VI

Obere Schranke: Charakteristik-p-Methoden

- Für jede Primzahl p gilt $\operatorname{rk}\operatorname{Pic}(S) \leq \operatorname{rk}\operatorname{Pic}(S_{\overline{\mathbb{F}}_p})$.
- Auch in Charakteristik p gibt es die Chernklasse

$$c_1 \colon \operatorname{\textbf{Pic}}(S_{\overline{\mathbb{F}}_p}) \stackrel{\subseteq}{\longrightarrow} H^2_{\operatorname{\acute{e}t}}(S_{\overline{\mathbb{F}}_p}, \mathbb{Q}_l(1)).$$

 $\textbf{Frob} \colon H^2_{\acute{e}t}(S_{\overline{\mathbb{F}}_p}, \mathbb{Q}_I(1)) \to H^2_{\acute{e}t}(S_{\overline{\mathbb{F}}_p}, \mathbb{Q}_I(1)) \text{ hat 22 Eigenwerte.}$

Auf dem invarianten Unterraum $c_1(\mathbf{Pic}(S_{\overline{\mathbb{F}}_p}))$ kommen nur Einheitswurzeln als Frobenius-Eigenwerte vor.

Explizite Beispiele VI

Obere Schranke: Charakteristik-p-Methoden

- Für jede Primzahl p gilt $\operatorname{rk}\operatorname{Pic}(S) \leq \operatorname{rk}\operatorname{Pic}(S_{\overline{\mathbb{F}}_p})$.
- 2 Auch in Charakteristik p gibt es die Chernklasse

$$c_1 \colon \operatorname{\textbf{Pic}}(S_{\overline{\mathbb{F}}_p}) \stackrel{\subseteq}{\longrightarrow} H^2_{\acute{e}t}(S_{\overline{\mathbb{F}}_p}, \mathbb{Q}_l(1)).$$

Frob: $H^2_{\acute{e}t}(S_{\overline{\mathbb{F}}_p}, \mathbb{Q}_I(1)) \to H^2_{\acute{e}t}(S_{\overline{\mathbb{F}}_p}, \mathbb{Q}_I(1))$ hat 22 Eigenwerte.

Auf dem invarianten Unterraum $c_1(\mathbf{Pic}(S_{\overline{\mathbb{F}}_p}))$ kommen nur Einheitswurzeln als Frobenius-Eigenwerte vor.

Bestimmung der Frobenius-Eigenwerte nach der Lefschetzschen Spurformel:

$$\#S(\mathbb{F}_{p^k}) = 1 + p^{2k} + p^k(\lambda_1^k + \ldots + \lambda_{22}^k) = 1 + p^{2k} + p^k\sigma_k(\lambda_1, \ldots, \lambda_{22}).$$

Also müssen wir Punkte zählen.

Explizite Beispiele VII

Fakt (Newtons Identität)

$$s_k(\lambda_1,\ldots,\lambda_{22}) = \frac{1}{k} \sum_{r=0}^{k-1} (-1)^{k+r+1} \sigma_{k-r}(\lambda_1,\ldots,\lambda_{22}) s_r(\lambda_1,\ldots,\lambda_{22})$$

liefert die elementarsymmetrischen Funktionen in $\lambda_1, \ldots, \lambda_{22}$.

Explizite Beispiele VII

Fakt (Newtons Identität)

$$s_k(\lambda_1,\ldots,\lambda_{22}) = \frac{1}{k} \sum_{r=0}^{k-1} (-1)^{k+r+1} \sigma_{k-r}(\lambda_1,\ldots,\lambda_{22}) s_r(\lambda_1,\ldots,\lambda_{22})$$

liefert die elementarsymmetrischen Funktionen in $\lambda_1, \ldots, \lambda_{22}$.

Bemerkung

Die Poincaré-Dualität sorgt dafür, dass es ausreicht, über den Körpern $\mathbb{F}_p, \mathbb{F}_{p^2}, \dots, \mathbb{F}_{p^{11}}$ Punkte zu zählen.

Explizite Beispiele VII

Fakt (Newtons Identität)

$$s_k(\lambda_1,\ldots,\lambda_{22}) = \frac{1}{k} \sum_{r=0}^{k-1} (-1)^{k+r+1} \sigma_{k-r}(\lambda_1,\ldots,\lambda_{22}) s_r(\lambda_1,\ldots,\lambda_{22})$$

liefert die elementarsymmetrischen Funktionen in $\lambda_1, \ldots, \lambda_{22}$.

Bemerkung

Die Poincaré-Dualität sorgt dafür, dass es ausreicht, über den Körpern $\mathbb{F}_p, \mathbb{F}_{p^2}, \dots, \mathbb{F}_{p^{11}}$ Punkte zu zählen.

Bemerkung

Die Frobenius-Eigenwerte erscheinen als Paare konjugiert komplexer Zahlen. Deshalb liefert diese Methode nur gerade Zahlen als obere Schranken.

Für $\operatorname{rk}\operatorname{Pic}(S_{\overline{\mathbb{F}}_p})$ sind diese Schranken nach der Tate-Vermutung scharf.

Explizite Beispiele VIII

Strategie (um Picard-Rang 1 zu beweisen)

- Arbeite mit zwei Primzahlen (3 und 5).
- Zeige Oberschranken $\operatorname{rk}\operatorname{Pic}(S_{\overline{\mathbb{F}}_3}) \leq 2$ und $\operatorname{rk}\operatorname{Pic}(S_{\overline{\mathbb{F}}_5}) \leq 2$.

Explizite Beispiele VIII

Strategie (um Picard-Rang 1 zu beweisen)

- Arbeite mit zwei Primzahlen (3 und 5).
- Zeige Oberschranken $\operatorname{rk}\operatorname{Pic}(S_{\overline{\mathbb{F}}_3}) \leq 2$ und $\operatorname{rk}\operatorname{Pic}(S_{\overline{\mathbb{F}}_5}) \leq 2$.
- Sichere Gleichheit durch explizite Divisoren:

Bei $S_{\mathbb{F}_5}$ eine Tritangente an die Verzweigungssextik, bei $S_{\mathbb{F}_3}$ ein in 6 Punkten tangentialer Kegelschnitt.

Dies liefert die Schnittmatrizen

$$\left(\begin{array}{cc} -2 & 3 \\ 3 & -2 \end{array}\right) \text{ und } \left(\begin{array}{cc} -2 & 6 \\ 6 & -2 \end{array}\right),$$

also die Diskriminanten (-5) und (-32).

Explizite Beispiele VIII

Strategie (um Picard-Rang 1 zu beweisen)

- Arbeite mit zwei Primzahlen (3 und 5).
- Zeige Oberschranken $\operatorname{rk}\operatorname{Pic}(S_{\overline{\mathbb{F}}_3}) \leq 2$ und $\operatorname{rk}\operatorname{Pic}(S_{\overline{\mathbb{F}}_5}) \leq 2$.
- Sichere Gleichheit durch explizite Divisoren:

Bei $S_{\overline{\mathbb{F}}_5}$ eine Tritangente an die Verzweigungssextik, bei $S_{\overline{\mathbb{F}}_3}$ ein in 6 Punkten tangentialer Kegelschnitt.

Dies liefert die Schnittmatrizen

$$\left(\begin{array}{cc} -2 & 3 \\ 3 & -2 \end{array}\right) \text{ und } \left(\begin{array}{cc} -2 & 6 \\ 6 & -2 \end{array}\right),$$

also die Diskriminanten (-5) und (-32).

• Wäre nun $\operatorname{rk}\operatorname{Pic}(S)=2$, dann müsste $\operatorname{Pic}(S)$ Untergitter von endlichem Index in beiden, $\operatorname{Pic}(S_{\overline{\mathbb{F}}_3})$ und $\operatorname{Pic}(S_{\overline{\mathbb{F}}_3})$ sein. Damit wären $\frac{\operatorname{disc}\operatorname{Pic}(S)}{-5}$ und $\frac{\operatorname{disc}\operatorname{Pic}(S)}{-32}$ Quadratzahlen in \mathbb{Q} .