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Abstract

We describe a method to compute the Brauer-Manin obstruftiosmooth cubic
surfaces ovef) such that B{S)/Br(Q) is of order two or four. This covers the vast
majority of the cases when this group is non-zero. Our amtrég& to associate a
Brauer class with every Galois invariant double-six. Wevetiat all order two Brauer
classes may be obtained in this way. We also recover Sir Bstamerton-Dyer’s
result that B(S)/Br(Q)) may take only five values.

2000 Mathematics Subiject ClassificationPrimary 11D25; Secondary 11D85, 11G35.

1 Introduction

1.1. — For cubic surfaces, weak approximation and even the Ha&seige are not
always fulfilled. The first example of a cubic surface violgtithe Hasse principle was
constructed by Sir Peter Swinnerton-Dyer [SD1]. A serieex@mples generalizing that of
Swinnerton-Dyer is due to L. J. Mordell [Mo]. An example of iffetent sort was given by
J.W. S. Cassels and M. J. T. Guy [CG].

A way to explain these examples in a unified manner was prdvigeYu. . Manin in
his book [Ma]. This is what today is called the Brauer-Manbstouction. Manin’s idea
is that a non-trivial Brauer class may be responsible forfdilere of weak approximation.
We will recall the Brauer-Manin obstruction in some detaikection 2.

An important point is that only the factor group B)/Br(Q) of the Grothendieck-
Brauer group of the cubic surfacis relevant. That is isomorphic to the Galois coho-
mology groule(Gal@/Q),Pic(%)). A theorem of Sir Peter Swinnerton-Dyer [SD2]
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states that, for this group, there are only five possibditiemay be isomorphic to @ /27,
7./27. x 7.] 27, 7./3Z, or Z /37 x 7./ 37. \Ne observed that, today, Swinnerton-Dyer’s the-
orem from 1993 may easily be established by a scri@mh

The effect of the Brauer-Manin obstruction has been studjeskeveral authors. For ex-
ample, for diagonal cubic surfaces, the computations wargec out by J.-L. Colliot-
Thélene and his coworkers in [CKS]. In this case(3f Br(Q) = Z/3Z. The same applies
to the examples of Mordell or Cassels-Guy which were explaioy the Brauer-Manin ob-
struction in [Ma].

1.2. — It seems that, for the cases that'(Gal(Q/Q),Pic(Sg)) = Z/2Z or
7./27. x 7./27, no computations have been done up to now. The goal of themres-
per is to fill this gap.

Our starting point is a somewhat surprising observation. tulins out that
Hl(GaI(Q/(Q),Pic(S@)) is of order two or four only in cases when, &there is a Ga-
lois invariant double-six. This reduces the possibilifiesthe action of G4ll) /QQ) on the
27 lines. In general, the automorphism group of the configamreof the 27 lines is the
Weyl groupW (Eg) [Ma, Theorem 23.9]. Among the 350 conjugacy classes of sulpy
in W(Esg), exactly 158 stabilize a double-six.

In a previous paper [EJ2], we described a method to conssraobth cubic surfaces
with a Galois invariant double-six. Our method is based enhttixahedral form of L. Cre-
mona and Th. Reye and an explicit Galois descent. It is aljeaduce examples for each
of the 158 conjugacy classes.

Among them, however, there are 56 which even stabilize a.sikeose may be con-
structed by blowing up six points iR? and, thus, certainly fulfill weak approximation.
There are 26 further conjugacy classes which lead'@al(Q /Q), Pic(Sg)) = 0.

1.3. — Inthis article, we compute the Brauer-Manin obstructiongfach of the 76 cases
such thatH! (Gal(@Q /Q), Pic(Sy)) = Z /27 or Z /27 x 7./ 27Z.. \Ne start with two “model
cases” for the Brauer groups/27 and 7Z/27 x 7Z/27Z. These are the maximal sub-
groupU; C W(Eg) stabilizing a double-six and the maximal subgrddpc W(Es) sta-
bilizing a triple of azygetic double sixes [Ko].

In both cases, we compute the Brauer group explicitly. Theams, we produce
representatives which we describe as Azumaya algebras. h&deshow that every sub-
groupH C W(Eg) which leads to a Brauer group of order four is actually corgdiinUs.
Recall that every subgroup C W(Eg) leading to a Brauer group of order two is contained
in U;. Finally, we prove the main result that the restriction magbiiective in each of
the cases.

1.4. — The article is concluded by examples showing the effect@Birauer-Manin ob-
struction. It turns out that, unlike the situation desatlitie [CKS] where a Brauer class of
order three typically excludes two thirds of the adelic p&inarious fractions are possible.



2 The Brauer-Manin obstruction — Generalities

2.1. —— For cubic surfaces, all known counterexamples to the Hasgseigle or weak
approximation are explained by the following observation.

2.2. Definition. — Let X be a projective variety ove®) and Bi(X) its Grothendieck-
Brauer group. Then, we will call

ew: BriX) x X(Qv) — Q/Z, (a,&) — invy(alg)

thelocal evaluation mapHere, iny: Br(Q,) — Q/Z (and in%: Br(R) — 37/7Z) denote
the canonical isomorphisms.

2.3. Observation Manin). — Let . X — Sped@Q) be a projective variety ovef).
Choose an element € Br(X). Then, every-rational point xe X(Q) gives rise to an
adelic point(x, )y € X(Aq) satisfying the condition

ey (a,x ) =0.
veVal(Q)

2.4. Remarks. — i) It is obvious that alteringx € Br(X) by some Brauer class p for
p € Br(QQ) does not change the obstruction definedbyonsequently, it is only the factor
group Bi(X) /1t Br(Q) which is relevant for the Brauer-Manin obstruction.

ii) The local evaluation map gv Br(X) x X(Qy) — Q/Z is continuous in the second vari-
able.

i) Further, for every projective varietX over @ and everya € Br(X), there exists a finite
setSc Val(Q) such that efa, &) = 0 for everyv ¢ Sandg € X(Qy ).

These facts imply that the Brauer-Manin obstruction, ifsgr, is an obstruction to the
principle of weak approximation.

2.5. Lemma. — Let 1. S— Specdl) be a non-singular cubic surface. Then, there is a
canonical isomorphism

5: H(Gal(@/Q).Pic(Sy)) — Br(S)/TBr@)

making the diagram

H(Gal(@/Q), Pic(Sy ) —2— Br(S)/T Br(RQ)

|

H2(Gal@/Q). QS Q)

H2(Gal(@Q/RQ),Q(9)")/m'Br(Q) = Br(Q(S)) /T Br(RQ)
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commute. Here, d is induced by the short exact sequence
0—Q(9"/Q" — Div(Sy) — PicSg) — 0

and the other morphisms are the canonical ones.

Proof. The equality at the lower left corner comes from the fact @ection 11.4] that
H3(Gal(Q/Q), Q") = 0. The main assertion is [Ma, Lemma 43.1.1]. O

2.6. Remark. — The groupH*(Gal(Q/Q), Pic(Sy)) is always finite. Hence, by Re-
mark 2.4.iii), we know that only finitely many primes are relat for the Brauer-Manin ob-
struction.

3 One double-six

3.1. — Recall that, on a non-singular cubic surface, there are tigx&7 lines.
Their configuration was studied intensively by the geonsetef the 19th century.
They showed that the 27 lines containsiersof lines which are mutually skew. For each
sixer, there is a complementary one formed by the lines mgeatkactly five lines of
the sixer. A pair of complementary sixers is calledauble-six

The automorphism grouV/(Es) acts transitively on double-sixes. In the blown-up
model, one double-six may easily be written down explicitior this, we refer to [Ha,
Remark V.4.9.1] from which we also adopt the notation forlthes.

3.2. Lemma. — Let S be a non-singular cubic surface ovigr Suppose that, under the

operation ofGal(Q /@), the 27 lines on S decompose into orbits one of which is ofl&ize
Then, the complementary twelve lines form a double-six.

Proof. The Galois group G&l) /QQ) operates via a certain subgro@C W(Eg). Our as-
sumption implies that|8G. l.e.,G contains the 5-Sylow subgroup bf(Es ).

The operation of this is easily described in the blown-up ehod The cyclic
group ((12345) C S acts on the indices. The two lindSy and G are station-
ary while the others form five orbits of size five each. Thesekr= {Ei,... ,Es},
G = {Gl,...,G5}, R = {FQ]_,...,F05}, R = {Flz,Fzg,F34,F45,F15}, and, finaIIy,
F := {F13,F24,F35,F14,F25}.

The intersection matrix of the five latter orbits turns oub&

-5 20 5101
205 51010
5 5-51515

10 10 15 5 5
10 10 15 5 5

We assert that a size 15 orbit must be formedrhy , andF,.

Indeed, three orbits of size five may be put together to forrarhit only if, for the cor-
responding divisordD(D+D’' +D"”) =D'(D+D’ +D”) =D"(D+D’ +D"). This excludes
all combinations, except f&E UGUF, (EUGU R, andiy UF UF,). The seE UGUF;
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contains, however, only two fivers of skew lines, namglgnd G. As the lines inF are
missing, this is a contradiction. O

3.3. Remark. — Uy, the largest subgroup ®¥(Es) stabilizing a double-six is isomor-
phic toSs x Z /27 of order 1440.

3.4. Notation. — Let S be a non-singular cubic surface. Assume that twelve of the
27 lines onS form a double-six which is G&l) /QQ)-invariant. Choose such a double-six.
Then, there are two kinds of tritangent planes. We have fdngent planes which mest
only within the 15 complementary lines. The other 30 triemigplanes contain one of the
15 lines and two from the double-six.

We write F3g for a product over the linear forms defining the 30 tritangaahes and
Fi5 for a product over the linear forms defining the 15 others.el\lllrJ:IaLtho/Flz5 € Q(9).

3.5. Theorem. — Let . S— Spedl) be a non-singular cubic surface such that the
27 lines have orbit structur@ 2,15 under the operation oGal(@Q /Q).

i) Then,Br(S)/m"Br(Q) = Z/27.

i) For 0# c € Br(S)/m'Br(QQ), a representative of reqc) € Br(Q(S))/m"Br(Q) is given
as follows.

Consider the quadratic number fiel@(v/D) splitting the double-six into two sixers.
Then, apply to the class

(Fso/Ff) € H°(Gal(Q(vD)/Q), R(VD)(S)") = Q(S)" /NQ(VD)(S)*
the periodicity isomorphism to#Hand the inflation map.

Proof. First step.Inflation.
We have the isomorphisra: Hl(GaI(@/Q),Pic(S@)) — Br(S§)/m'Br(Q) and will work
with the group on the left.

An element of the group G@ED/Q) may either flip the two sixers forming the
twelve lines or not. Therefore, there is an index two subgrstabilizing the sixers.
This group corresponds to the quadratic number figld/D). By Fact 3.6 below, we
know H' (Gal(@/Q(v/'D)),Pic(Sy)) = 0. The inflation-restriction-sequence yields that

inf: H!(Gal(Q(v/D)/®Q),Pic(Sg)®a@/RP)) . H(Gal@/Q),Pic(Sy))
is an isomorphism.

Second stefDivisors.
The orbit structure of the 27 lines under the operation of Galy(1/D)) is [6,6,15. In-
deed, when going over to an index two subgroup an orbit of @ raust not split. De-
note byE, G, andF the divisors formed by summing over the first, second, andi thi
orbit, respectively.E, G, andF clearly define elements in R%)Ga'@/@(‘/m). Write P
for the subgroup generated by these three divisors.

P is of finite index in Pi¢Sg)®¥®/R(VP)  Indeed, every element of Ry) is an
integral linear combination of the divisors given by the Rie$. Therefore, every element
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in Pic(Sg)®¥®/R(vP) s a@-linear combination oE, G, andF and the denominators are
at most six or 15.

We claim that the index oP is a divisor of 15. In fact, we have the relation
BE +5G —4F ~ 0. Further, the discriminant of the lattice spannedgndF is

‘—6 30

_ — (—_R).152
20 75‘_ 1350= (—6)-157.

ConsequentlyP is of odd index in Pi¢S)®2@/(vP) _ This implies that the natural ho-
momorphism

H!(Gal(Q(v'D)/Q),P) — H'(Gal(Q(v'D)/®Q), Pic(Sy)**®/2VP))
is a bijection.
Third step.The fundamental class.
As GalQ(v/D)/®Q) is a cyclic group of order two, we have
H?(Gal(Q(vD)/Q),7Z) = 7./27..
Write u for the non-zero element. Then, the periodicity isomonphis given by
Uu: H(Gal(@(vD)/Q).P) — H'(Gal(Q(vD)/Q).P).

Observe that, for a cyclic group of order two, this isomosphiis canonical as there is no
ambiguity in the choice of.

Fourth step.ComputingH 2.

We haveP = S/S, for S:=ZE®ZGoZF andS, the group of the principal divisors con-
tained inS. The relationH™? (Gal(Q(v/D)/Q),S) = 0 follows immediately from the defi-
nition. Hence, the short exact sequence

0—-—-S—P—0
yields

H(Gal(Q(VD)/Q),P) =
— ker(H°(Gal(Q(vD)/Q),%) — H(GalQ(vD)/Q),9))
_ ker(s()Sal(Q(\/ﬁ)/Q)/NS) . SGaI(Q(\/B)/Q)/NS)
_ (§a|(Q(\/B)/Q) NNS) /NS .

Here, the norm map acts by the rule aE + bG+cF — (a+b)E + (a + b)G + 2cF.
Hence NS= (E + G, 2F). Principal divisors are characterized by the property #fiahter-
section numbers are zero. A direct calculation shows

SARVDIR) NS = (5E +5G — 4F ).
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The generator is the norm of any divisor of the foraE + (5 — a)G — 2F.
None of these is principal. Indeed, the intersection numléh E is equal to
—6a+30(5—a) — 60 = —36a+ 90 and this terms does not vanish &€ Z. Assertion i)
is proven.

Fifth step.The representative.

We actually constructed a non-zero elemgmt H! (Gal(Q /Q), Pic(Sg)). The calculations
given above show that

d(c') = (Fso/Fi5) Uu.

Indeed, it is easy to see that @fo/F2) = 5E +5G — 4F . The assertion now follows from
the commutative diagram given in Lemma 2.5. d

3.6. Fact. — Let S be a non-singular cubic surface over a field K obtainetlbwing
up PZ in sixK-rational points which form a Galois invariant set.

Then, H(Gal(K /K), Pic(S¢)) = 0.
Proof. This is, of course, a particular case of the very general [Meorem 29.1]. Let us
give an elementary proof here.

According to Shapiro’s lemma, we may replace @aK) by a finite quotientG.

We have Pi(S¢) =7ZH®ZE; @... ®ZEs for H the hyperplane section dP® and
E1,...,Eg the exceptional divisors. Therefore, a&amodule,

Pic(S) = ZOZ[G/Hi1]® ... DZ[G/H|]

for | the number of Galois orbits and certain subgrotfs. .. ,H,. Clearly, we have
HY(G,%Z) = Hom(G,Z) = 0.
On the other hand, for any subgrokip the G-moduleZ[G/H] is equipped with a non-
degenerate pairing. Hencg|G/H| = Hom(Z[G/H],Z) and
H* (G, Z[G/H]) 2 H'(G,Hom(Z[G/H], Z))

=~ H%(G,Hom(Z[G/H].Q/Z))

~ Hom(H (G, Z[G/H]),Q/Z)
by the duality theorem for cohomology of finite groups [CE,aphXIl, Corollary 6.5].
Finally, H~1(G, Z[G/H]) vanishes as is seen immediately from the definition. O

4  Triples of azygetic double-sixes

4.1. Definition. — Let Tt S— Spedl) be a smooth cubic surface ad be a Galois
invariant double-six. This induces a group homomorphisr(@aR) — Uz, given by the
operation on the 27 lines.

i) Then, the image of the non-zero element under the natoerabimorphism

7./27, = H (U1, Pic(Sg)) — H(Gal@/Q). Pic(Sg)) —> Br(S)/T Br(XQ)

is calledthe Brauer class associated witie double-sixZ. We denote it by ¢12).
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i) This defines a map

cl: R __, Br(S)/m'Br(Q)

from the set of all Galois invariant double-sixes which wd eall the class map

4.2. —— Two double-sixes may have either four or six lines in commbmthe former
case, the two are called syzygetic, in the latter azygetipaif of azygetic double-sixes is
built as follows.

(Eo E1 E> E3 E4 E5> (Eo E1 Ex Fs Fss F3,4>
Go G1 G2, G3 G4 G5 /)’ Fi2 Foo o1 Gz Ga Gs /)

The twelve lines which appear only once form a third doulbte-s

<F12 Foo o1 B3 E4 Es>
Go G1 Gy F45 B35 Fzs

azygetic to the other two.

4.3. — The largest groupJs; stabilizing a triple of azygetic double-sixes is isomor-
phic to (S3 x S3) x Z /27 of order 72. The induced orbit structure[&6,6,9]. The or-
bits themselves are, in the notation abo\&,E; ,E,,G3,G4,Gs}, {Go,G1,G2,E3,E4,Es},
{Fo1,Fo2,F12,F34,Fss,Fa5}, and{Fos,Fos,Fos,F13,F14,F15,F23,F24,F25 .

The quadratic extensiof(v/D) splitting one of the three double-sixes into two sixers
automatically splits the others, too. The operation of (@alRQ(1/D)) yields the orbits
{Eo,E1,E2}, {E3,Es,Es}, {Go,G1,G2}, {G3,G4,Gs}, {Fo1,Fo2,Fi2}, {Fs4,Fss,F45}, and
{Fos,Fo4,Fos,F13,F14,F15,Fo3,F24,Fos5 }.

4.4. Theorem. — Let Tt S— Spedl) be a non-singular cubic surface. Assume that

GalQ/Q) stabilizes a triple{21,%,,%5} of azygetic double-sixes and that the 27 lines
have orbit structurd6, 6, 6,9).

i) Then,Br(S)/T'Br(Q) = 7/27 x 7./ 27.
ii) The three non-zero elements &téZ; ), cl(Z2), andcl(Z3).

Proof. First step.Inflation.

We will follow the same strategy as in the proof of Theorem &5articular, we will work
with the groupH* (Gal(Q(v/D)/ @), Pic(Sgy ) ¥ ®/RVD) ),

Second stefivisors.

The orbit structure of the 27 lines under the operation of (Qal(\/D)) is
[3,3,3,3,3,3,9]. For the lines and double-sixes, we use the notation intediun 4.2.
Further, denote by

EVW E@ W c@ FO F@ FG

the divisors formed by summing over the orbits. These gleddfine elements in

Pic(S@)Ga'(Q/QWD». We writeP for the subgroup generated by these seven divisors.
Every element of PiSg) is an integral linear combination of the divisors given by

the 27 lines. Therefore, every element in (8g)®*®/R(VP) is a Q-linear combination
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of E®, E@, g, G@, FU, F@ andF® and the denominators are divisors of nine.
ConsequentlyP is of odd index in Pi(S@)Ga'(Q/QWD». This implies that the natural ho-
momorphism

H!(Gal(Q(v'D)/Q),P) — H'(Gal(Q(v'D)/®Q), Pic(Sy)**®/2VP))
is a bijection.
Third step.The fundamental class.
Again, we writeu for the non-zero element id?(Gal(Q(v/D)/Q),7Z) = 7.,/27. Then, the

periodicity isomorphism is given by
uu: H(GalQ(vD)/Q),P) — HH(GalQ(vVD)/Q),P).

Fourth step.ComputingH 2.
We haveP = S/S, for S:= ZEW ¢ ZE®@ 7zGY ¢ZG? ¢ ZF Y azZF @ ¢ZF©® andS
the group of the principal divisors contained $h To simplify formulas, we will use the
notationD® := EW +G@, D@ := E@ +GW, andD® := FV +F @,

The relationH1(Gal(Q(v/D)/Q),S) = 0 follows immediately from the definition.
Hence, the short exact sequence:@& — S— P — 0 yields, as above,

A1 (GalQ(vD)/Q),P) = (VP iNg /NS .
Here, the norm map acts by the rule
N: aEW +a;E@ +b;GY +0,G@ 4+ FY 4 F@ +cF @
— (a1 +2)DY + (ag +-b1)D@ 4 (c1 +62)D® +2c3F @ .

Hence,NS= (DM ,D® D® 2F©)). Principal divisors are characterized by the property
that all intersection numbers are zero. A direct calcutaibows

§aI(Q(\/6)/Q) ANS
= {dlD(l) —|—d2D(2> —|—d3D(3) +2€F(3) | d]_ +d2 —|—d3 +3e= 0}
- <D(1) -D®@ pW _p® p® 4+p@ 1 pB _2F (3)>'
It is easy to see th&® + GV +F® —F© s a principal divisor. Hence,
DY +D®? +DB —2F® eNg.
Further,NS contains all principal divisors which are divisible by 2. #Adurns out that
these two sorts of elements generate the whoNSf assertion i) follows.

Fifth step.The representatives.
We actually constructed non-zero elemeniscy,cs € H'(Gal(@Q/Q), Pic(Sg)), repre-

sented byD® —D®@ DO —_p® p@ _pB ¢ fal(QWD)/Q) NNS. The first representa-
tive is equivalent to

3(D% —D®@)+2(DW +D? +DB —2F ®)) 4 6(D? —D®)) = div(F0 /F3).

Henced(c1) = (Fso/F2)Uu. The corresponding Brauer class ié(@g::é@ )). For the two
other classes, the situation is analogous. O



4.5. Remark. — In the[6,6,6,9]-case, the 45 tritangent planes decompose into five or-

bits.

o [E,Gj,Fj]fori,j €{0,1,2} ori,j € {3,4,5}, i # j. (twelve planes)
[Ei,Gj,Fj] fori € {0,1,2} andj € {3,4,5}. (nine planes)
[
[

Ei,Gj,Fj] fori e {3,4,5} andj € {0,1,2}. (nine planes)

o [Fiiy, Fiis, Fiis) for {io,i1,i2,i3,i,i5} = {0,1,2,3,4,5},
io,i1 € {0,1,2}, andiy,iz € {3,4,5}. (nine planes)
o [Fyi,,F,iss Fijis) for {io,iz2,ia} ={0,1,2} and{i1,is,is} = {3,4,5}. (six planes)

The three forms of typ&zg are obtained by multiplying the linear forms defining theibrb
of size twelve together with those for two of the orbits oksiine. Actually, the size twelve
orbit is irrelevant. Up to a scalar factor, it is the squara gextic form.

4.6. Remark. — Triples of azygetic double-sixes have been studied by tesaial al-
gebraic geometers. See, for example, [Ko, 86]. A result ftoen19th century states that
there are exactly 120 triples of azygetic double-sixes omaath cubic surface. Actu-
ally, the automorphism growy(Es) acts transitively on them.

5 The general case of a Galois group stabilizing
a double-six

5.1. — To explicitly computeH* (G, Pic(Sg)) as an abstract abelian group, one may use
Manin’s formula [Ma, Proposition 31.3]. This means theduling.

Pic(S@) is generated by the 27 lines. The group of all permutationthef27 lines
respecting the intersection pairing is isomorphic to theyMjeoupW (Es ) of order 51 840.
The groupG operates on the 27 lines via a finite quoti&@tH which is isomorphic to a
subgroup ofV(Es). Then,

H' (G, Pic(Sg)) = Hom(ND N Do/NDo,Q/Z) .

Here,D is the free abelian group generated by the 27 linesgis the subgroup of all
principal divisors.N: D — D denotes the norm map assH-module.

5.2. —— Using Manin’s formula, we computed! (G, Pic(Sy)) for each of the 350 conju-
gacy classes of subgroupsWfEgs). The computations i@AP took approximately 28 sec-
onds of CPU time. Thereby, we recovered the following restilsir Peter Swinnerton-
Dyer [SD2]. (See also P. K. Corn [C0].)

5.3. Theorem Swinnerton-Dyer. — Let S be a non-singular cubic surface ové&y.
Then, H(Gal(@Q/Q), Pic(Sp)) may take only five valueS, Z /27, 7./27 x 7./ 27, 7 /3Z,
andZ /37 x 7./ 37. O

5.4. Remark. — One hadH!(G, Pic(S)) = 0 in 257 of the 350 cases.
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5.5. —— More importantly, we make the following observation.

Proposition. Let S be a non-singular cubic surface ovigr

i) If HY(GallQ/Q), Pic(Sg)) = Z/2Z then, on S, there is a Galois invariant double-six.
i) If H'(Gal(Q/Q),Pic(Sy)) = Z/2Z x 7./2Z then, on S, there is a triple of azygetic

double-sixes stabilized lfyal(Q /Q).
Proof. This is seen by a case-by-case study uskig) O

5.6. Remarks. — i) On the other hand, if there is a Galois invariant doubleesi Sthen
H'(Gal(Q/Q),Pic(Sg)) is either O, O1Z /27, or 7,/27 x 7,/ 2Z.

i) Proposition 5.5 immediately provokes the question wibethe cohomology classes are
always “the same” as in th&2,15]- and[6,6, 6, 9]-cases. |.e., of the type(&¥) for certain
Galois invariant double-sixes. Somewhat surprisinglig ihindeed the case.

5.7. Lemma. — Let . be a non-singular cubic surface over an algebraically ctbse
field, H a group of automorphisms of the configuration of thédiré¥s, and M C H any sub-
group. Each of the criteria below is sufficient for

res:H!(H,Pic(.)) — HY(H',Pic(.¥))

being an injection.

i) H and H generate the same orbit structure.

i) H' is of odd index in H and HH, Pic(.#)) is a2-group.

iiiy H' is a normal subgroup in H anck Pic(.% )/ = rk Pic(.7)"".

Proof. i) This follows immediately from the formula of Manin [Ma, &position 31.3].

i) Here, coresres:H(H,Pic(.)) — H(H,Pic()) is the multiplication by an odd
number, hence the identity.

iy The assumption ensures thai/H’ operates trivially on Pic”)". Hence,
H(H/H’,Pic(# ") = 0. The inflation-restriction sequence

0 — HY(H/H',Pic(# ") — HY(H,Pic(¥)) — H(H',Pic(#))
yields the assertion. O
5.8. Proposition. — Let.¥ be a non-singular cubic surface over an algebraically cthse

field, Uy the group of automorphisms of the configuration of the 27slis&bilizing a
double-six and bthe group stabilizing a triple of azygetic double-sixes.

a) Let H C U; be such that M(H,Pic(”)) = 7Z/27. Then, the restriction
res:H(Uy,Pic(#)) — HY(H,Pic(.”))
is a bijection.
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b) Let H C Us be a subgroup such that'H, Pic(.”)) = 7 /27 x 7,/ 27.. Then, the restric-
tion
res:H! (Us,Pic(”)) — H(H,Pic(.¥))

is a bijection.

Proof. The proof has a computer part. We use the machine to verifyhbariteria formu-
lated in Lemma 5.7 suffice to establish the result in all cases

b) Here, the subgrou@®s x Az) x Z /27 of order 18, as well as the two intermediate groups
of order 36 produce the same orbit struct{@e, 6,9]. It turns out that every subgrouh
which leads tdZ /27 x 7./ 27 is a subgroup of odd (1, 3, or 9) index in one of those.

a) By Lemma 5.7.ii), we may test this on the 2-Sylow subgrooifpsl andU;. Ul(z) is a
group of order 32 such that the Picard rank is equal to twairfist out that, for 2-groupd’
such thaH! (H’,Pic(.)) = 7Z /27, the Picard rank may be only two or three.

There is a maximal 2-group such that the Picard rank is tire#s.is a group of order 16
generating the orbit structufe, 1,1,4,.4,4,4,4, 4]. To prove the assertion for this group, one
first observes that it is of index three in a group of order 4&wrbit structurg3,12,12].
This group, in turn, is of index two in the maximal group wikttat orbit structure. That one,
being of order 96, is the maximal group stabilizing a douieand a tritangent plane
containing three complementary lines. It is of index 18in d

5.9. Corollary. — Let H C H C U; be arbitrary. Then, for the restriction map
res:H!(H,Pic(.)) — HY(H’ ,Pic(.”")), there are the following limitations.

i) If HY(H,Pic(.#)) = 0then H (H’,Pic(*)) = 0.

i) If HY(H,Pic()) = Z /27 and H' (H’,Pic(.#)) # 0 thenresis an injection.

i) If H1(H,Pic(”)) = 7% /27 x 7./ 27, then H (H' |Pic(.”)) = 7./27 x 7./ 27, or 0. In the
former caseresis a bijection. The latter is possible only wheh $fabilizes a sixer.

Proof. We know from Remark 5.6.i)) that both groups may be only A)2Z, or
7.)27. X 7.] 27.

i) If HY(H',Pic(’)) were isomorphic t& /27 or 7./27. x 7./ 27, then the restriction from
U, respectivelytJs, to H would be the zero map.

ii) is immediate from the computations above.

i) If H(H',Pic()) = 7Z/27 then, by composition, we could produce the zero map
onZ/27. The final assertion is an experimental observation. O

5.10. Remark airs of syzygetic double-siXes— U,, the largest group stabilizing two
syzygetic double-sixes is of order 96. In view of Proposit®.5.ii), this ensures that
H(U,,Pic(.7)) = 7 /27 or 0. Actually, it is isomorphic t&Z/27. Corollary 5.9.ii) im-
plies that the Brauer classes associated with the two deitds coincide. Both are equal
to the non-zero element.

Actually, the groupU, leads to an orbit structur@,4,6,8,8]. It is easy to compute
H(U,,Pic(.#)) directly using the same methods as in the proof of Theorem 4.4
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5.11. Theorem. — LetT. S— Spedl) be an arbitrary smooth cubic surface. Then, con-
sider the class map

cl: SRR _, Br(s)/mBr(@Q),
introduced in Definition 4.1.ii), from the set of all Galoisvariant double-sixes.

a) clhas the properties below.

i) If 21,9, are syzygetic double-sixes theliz; ) = cl(Z).

i) If 91,2, are azygetic thewl(%1)+ cl(Z2)+ cl(Z3) = 0 for 25 the third double-six of
the corresponding triple.

b) If Br(S)/m*Br(Q) # 0then

i) cl(2) # 0for every Galois invariant double-six. Furth@i,(d)Sa'(Q/Q))

the elements of order two.

ii) Two double-sixe/1, 7, are syzygetic if and only i€l(21) = cl(22) and azygetic if and
only if cl(21) # cl(2»). O

contains exactly

6 Explicit Brauer-Manin obstruction

6.1. —— Let S be a non-singular cubic surface with a Galois invariant d®gix 2.
This determines a clags:i= cl(2) € Br(S)/m*Br(Q)). Choose a representatige= Br(S)
and the corresponding rational functidsy/F% € Q(S). Finally, let Q(v/D) be the
quadratic extension splitting the double-six into two séxe

6.2. Fact. — The quaternion algebra ove(S) corresponding to @s
Q:=Q(9{X, Y}/ (XY +YX, X2 —D,Y% —Fgo /F).

6.3. Remark. — It is well known that a class in B®) is uniquely determined by its
restriction to BfQ(S)). The corresponding quaternion algebra over the who®réy be
described as follows.

Letx € S We know that diyFso/F2) is the norm of a divisor 0%y ,/p)- That one is
necessarily locally principal. l.e., we have a rationaldiion f, = a,+bx+/D such that
div(Nfy) = div(Fso/F2) on a Zariski neighbourhood of Over the maximal such neigh-
bourhoodUy, we define a quaternion algebra by

Qui= 6, X, Yl (X% + %X X2 ~D, %2 — ).

In particular, in a neighbourhodd, of the generic point, we have the quaternion algebra
Qn i= Oy, X, Y}/ (XY +YX, X2 —=D,Y2 —F3o [F3).
OverU, NUy, there is the isomorphism x : Qqlu, ru, — Qxlu, ., given by

X=X, Y= (ax+byX)Yy.

For two pointsx,y € S the isomorphismwolg}(: Qx\unmxmy — Qy!unruxmuy extends
to Uy NUy.

Hence, the quaternion algebr@s may be glued together along these isomorphisms.
This yields a quaternion algebi@d overS.
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6.4. Corollary. — Let 1t S— Spedl) be a non-singular cubic surface with a Galois
invariant double-six7. Further, let p be a prime number and=cBr(S) a representative of
the classcl(2) € Br(S)/mt'Br(Q).

Then, the local evaluation magwp(c, . ): S(Qp) — Q/Z is given as follows.

i) Let xe S(@p). Choose a rational functiony such thatdiv(Nf,) = div(Fso/F2). Then,

0 if 2 (x) € Q}is in the image of N Qp(v'D) — Qp,

2
evp(C.X) =1 FigNfi
5 Otherwise

Here,_l—'g,o/Flz5 € Q(9) is the rational function corresponding to the represematic
Q(v/D) is the quadratic field splitting the double-six into two s&xe

ii) If x is not contained in any of the 27 lines thgn=f 1 is allowed.

Proof. Assertion i) immediately follows from the above. For ii)cedl that div(Fso/F%) is
a linear combination of the 27 lines. O

6.5. —— As already noticed in Remark 2.6, the local evaluation mapesainformation
only at finitely many primes. To exclude a particular printe following elementary crite-
ria are highly practical.

6.6. Lemma (The localH!-criterior). — Let S be a non-singular cubic surface ovigr

Suppose that, for the decomposition groupa&Gal(Q ,/Qp) at a prime number p,

H*(Gp,Pic(Sg)) =0.
Then, for everyr € Br(S), the value ofevp(a, x) is independent of & S(Qp).

Proof. The local evaluation map gvfactors via B(S xspecy Specl)p). By [Ma,
Lemma 43.1.1], we have that

Br(S xspecy SPEARp)/ Br (Qp) = H (Gal(Q,,/Qp), Pic(Sy, ) -

Together with the assumption, this yieldS8x specpy Speal)p) = Br(Qp) = Q/Z. The as-
sertion follows. O

6.7. Remark. — Recall from Remark 5.4 that we havé(G,Pic(%)) = 0 for 257 of
the 350 possible conjugacy classes of subgroups.

6.8. Corollary. — Let 1. S — Spedl) be a non-singular cubic surface with a Ga-
lois invariant double-six%.  Further, let c€ Br(S) be a representative of the
classcl(2) € Br(S)/m*Br(Q).

If a prime number p splits in the quadratic number figliy/D) splitting the two sixers
then the value okv,(c,x) is independent of & S(Qp).

Proof. This criterion is, of course, an immediate consequence obl@oy 6.4. In view of
Fact 3.6, it is also a particular case of the lodakcriterion. O

6.9. Proposition. — Let Tt S— Spedl) be a non-singular cubic surface with a Ga-
lois invariant double-sixZ. Further, let ce Br(S) be a representative of the class
cl(2) € Br(S)/1*Br(Q).
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Then, for a prime number p such that

o the field extensiofi)(v/D)/Q splitting the double-six is unramified at p,

e the reduction §is geometrically irreducible and n@)p-rational point on S reduces to a
singularity of $,

the value ofevy(c,x) is independent of & S(Qp).

Proof. If p splits in the quadratic extensioR}(v/D) then the assertion is true, trivially.
Thus, we may assume thatremains prime irQ(v/D). The requirement thate Q}, is a
norm fromQp(+/D) then simply means that, () is even.

Further, we may restrict our considerations to pok#sS(QQ, ) which are not contained
in any of the 27 lines of. Indeed, the local evaluation mapgsadically continuous and the
complement of the 27 lines is denseSfi) ) according to Hensel's lemma. In particular,
we may work withFso /F itself.

By assumption, we have a mode¥ of S over Z, such that the special fiber
of & Xspez, SpeoﬁQp(\/ﬁ) is irreducible. We delete its singularities to obtain a maoge
smooth overﬁQpNB). According to the last assumption, everys S(QQ,) determines a
unique extensiolx € Z(@QPWB)).

It will suffice to construct a Zariski neighbourhood $uch that ey(c, . ) is constant.
We have, on the geometric generic fiber,

div(Fso/F%) = 5E +5G — 4F .

Here, the divisor€ :=E;1+... +Es, G:=G1+... + Gg, andF := Fo+ ... + R are
Gal(@Q/Q(v/D))-invariant, and, therefore, defined oV@Kspeon, Spedp(vD). 7 is a
regular model of that variety. Hence, every divisor ghis locally principal. This yields,
in a Zariski neighbourhood,

Fs0/F2 = Cple’g®/f4

for e, g, and f rational functions corresponding to the divis@sG, andF, respectively,
k€ Z, and a certail€ € I'(%,07, ). Note that we get by with one power gfsince the
special fiber is irreducible. B

The scheme” is acted upon by the conjugatiance Gal(@Q(v/D)/Q). Restricting to an
open subscheme, if necessary, we may assume&shiatinvariant undeo. The two sixers
are interchanged by. Consequently,

a(e) =cdg, of) =cp'f
for 1,I’ € Z and regular functions,c’, invertible on%4. This yields
Fao/F% = CC2C g2 SIN(E® /2).
Forxo € S(Qp) specializing toz, we therefore see
Vp ((Fo/Fi%)(%0)) =k-+1  (mod 2.

In particular, the local evaluation mapge, . ): S(Qp) — Q/Z is constant on the set of all
points specializing t&. As the pointx € S(QQp) defining the open subsé is arbitrary
and the special fibe# is irreducible, this implies the assertion. a
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6.10. Remarks. —a) Assuming resolution of singularities in unequal chamastic,
there is a proper mode¥ of Sbeing a regular scheme. Then, fora prime unramified
in Q(v/D), the evaluation 8)(c,x) depends only on the component &f xspecz Spedrz,
the pointx specializes to. I is ramified andp # 2 then we have at least that£®,x) is
determined by the reduction gfmodulop.

b) As one might expect from the proof given, Proposition &.%riie in more generality.
The reader might consult [B, Theorem 1].

7 Explicit Galois descent

7.1. — Recall that in [EJ2], we described a method to constructsingular cubic sur-
faces overl) with a Galois invariant double-six. The idea was to starhwitibic surfaces
in hexahedral form. For these, we developed an expliciimersf Galois descent.

7.2. —— More concretely, given a starting polynomile Q[T | of degree six without
multiple zeroes, we construct a cubic surf&g . ,,) overQ such that

S, 25) XSpec Spedd

is isomorphic to the surfac®®--3) in P° given by

X+ XK+ X+ X+ X+ X =0,
X+ X+ X+ X+ X+ X =0,
X +ar Xy +axX +agXs +auXs +asX = 0.
Here,a,... ,as € Q are the zeroes of.
The operation of an elemeatc Gal(@ /Q) on Seo...25) XSpech Speal) goes over into
the automorphismmg oty : S%--8) —, S@--3) Here 1; permutes the coordinates accord-

ing to the ruleay, ;) = o(a) while t is the naive operation af on Sy, ... 5;) as a morphism
of schemes twisted bgy.

7.3. Remarks. — i) More details on the theory are given in [EJ2, Theorem 6.6].
i) On Sy ... &), there are the 15 obvious lines given by

Xo +% =X, +Xig = X, +Xg =0

for {io,i1,i2,i3,i4,i5} = {0,1,2,3,4,5}. They clearly form a Galois invariant set. The com-
plement is a double-six. Correspondingly, there are thell4oas tritangent planes given
by X +X; =0fori # |.

There are formulas for the 30 non-obvious tritangent platees[EJ2, Proposition 7.1.i1)].
What is important is that they are defined o®@fay,. . . ,as,/ds) for

da(ao,. .. ,a5) := 03 —404 +01 (203 — 30105 + =03)

the Coble quartic. Herey; is thei-th elementary symmetric function ap,. .. ,as.
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Further, an elemert € Gal(@Q /@) flips the double-six if and only if it defines the conjuga-
tion of Q(v/D) for D := ds-A, the second factor denoting the discriminanagf . . ,as [EJ2,
Proposition 7.4].

iii) The smooth manifoldS(R) has two connected components if and only if exactly four
of theay,... ,as are real andls(ap,...,as) > 0. Otherwise (R is connected [EJ2, Corol-
lary 8.4].

iv) The descent varietf,, .. o) Mmay easily be computed completely explicitly. In fact,
[EJ2, Algorithm 6.7] yields a quaternary cubic form with 2Qional coefficients.

7.4. —— Using the criteria provided in section 6, we have the follogvitrategy to com-
pute the Brauer-Manin obstruction &y, . a;)-

Strategy (to explicitly compute the Brauer-Manin obstruction 8g, .. a;))-

i) ComputeD := ds(ao,. .. ,a5)-A(ag,. .. ,as). Determine the list; of all primes at which
Q(v/D) is ramified.

if) By a Grobner basis calculation, determine all the primatsidel; at whichSg, . )
has bad reduction. Write them into a list

iii) From L,, delete all primes which split i) (/D). Further, erase all those primes fram
for which the singular points on the reduction modplare not defined oveF, or do not

lift t0 Sy, a) Xspecz SPECZ/PFZ for k large.

iv) PutL :=L; ULp. If D <0 andSg,, .. 5)(R) is not connected then the infinite place has
to be added to this list of critical primes.

v) Delete all the primes frorh for which the locaH?!-criterion works successfully.

vi) Scale the fornmF3g by a constant factor such that the local evaluation mapsearefar

all the primes outsideé.

vii) For the primesp that remained irL, the formFsg has to be evaluated. For that, cover
S(@Qp) by finitely many open subsets which are sufficiently smallisuge that the first
p-adic digit of F3p does not change. Ip = 2 then the first three digits have to be taken
into account.

In the case that we have a Galois invariant triple of azygtigble-sixes, the last step has
to be executed three times, once for each of the corresppifalims of typeFsg.

8 Application: Manin’s conjecture

8.1. —— Recall that a conjecture, due to Yu. I. Manin, asserts thantimber ofQ-ra-
tional points of anticanonical height B on a Fano varietys is asymptotically equal to
Blog™PS-1B, for B — . Further, the coefficient € R is conjectured to be the
Tamagawa-type numbe(S) introduced by E. Peyre in [Pe]. In the particular case of a
cubic surface, the anticanonical height is the same as ilie haight.

8.2. —— E. Peyre’s Tamagawa-type number is defined in [PT, DefinRidh as
(S :==a(S)-B(S)- L'Dﬂl (s—1) L(S, Xpicisg)) - TH (S(Ag)®)
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for t = rk Pic(S).

Here, the factof(S) is simply defined a(S) := #H' (Gal(@Q/Q),Pic(Sg)). a(S) is
given as follows [Pe, Définition 2.4]. Lefex(S) C Pic(S) ®z R be the cone gen-
erated by the effective divisors. Identify P8 ®7 R with R' via a mapping in-
duced by an isomorphism R® — 7. Consider the dual cond;(S) C (R')".
Then,a(S) :=t-vol {x € Ag | (X, —K) <1}.

L( - Xpic(sy)) denotes the ArtinL-function of the Gall) /Q)-representation
Pic(Sg) ®7 € which contains the trivial representatibtimes as a direct summand. There-

fore, L(S,Xpic(sﬁ)) ={(s)' -L(s,xp) and

lim (s— 1)'L(S XPicisg)) = L(L. Xp)
wherel denotes the Riemann zeta function &hid a representation which does not contain
trivial components. [Mu, Corollary 11.5 and Corollary 1Jisthow thatl (s,Xxp) has neither
a pole nor a zero at= 1.

Finally, 4 is the Tamagawa measuren the setSAg) of adelic points onS and
S(Aq )B" C S(Aq) denotes the part which is not affected by the Brauer-Mangtrabtion.

8.3. — As Sis projective, we havS(Aq ) = [Mvevai@) S(Qv). Then, the Tamagawa
measuray is defined to be the product measure:= [yevai(q) -

Here, for a prime numbep, the local measure, on S(Q,) is given as follows.
Letac SZ/pk7Z) and putl¥) := {x € Q) |x=a (mod ) }. Then,

() 1= dett - Froty | Pitsyy ) g 1Y S/ Ly 2 (oA )

Pic(SQ)'P denotes the fixed module under the inertia group.
T, is described in [Pe, Lemme 5.4.7]. In the case of a cubic sarfdefined by the

equationf = 0, this yields 7

wlU) = W eray

NI

¥
X0l Pxal<1

forU Cc SR). Here,w eray is theLeray measuren the coneCSR). It is related to the
usual hypersurface measure by the formulgay = m Whyp-

8.4. — Using [EJ2, Algorithm 6.7], we constructed many examplesraboth cubic
surfaces ovef) with a Galois invariant double-six. For each of them, one @=aply Strat-
egy 7.4 to compute the effect of the Brauer-Manin obstructithen, the method described
in [EJ1] applies for the computation of Peyre’s constant.

From the ample supply, the examples below were chosen inape that they indicate
the main phenomena. The Brauer-Manin obstruction may wionkagay primes simultane-
ously but examples where few primes are involved are the mtsesting. We show that
the fraction of the Tamagawa measure excluded by the olistnuzan vary greatly. We also
show that there may be an obstruction at the infinite prime.
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8.5. Example. — The polynomial
f:=T®-390T*-10180r+10800r % +2164294 +13361180< Q[T]
yields the cubic surfacB given by the equation

—X2Z—XPW —3Xy? +XZ + 14xzw+ 8xwP —2y° —11y°z
+Y?WH4yZ +4yzw+ 10ywWP +47° — 112w+ 92w —6w* = 0.

Shas bad reduction at 2, 3, 5, 11, and 9265613761. The Galoigogiperating on the
27 lines isS acting in such a way that the orbit structurgllig 15. Therefore, we have
H!(Gal(Q/Q), Pic(Sy)) = 7/27. The quadratic field splitting the double-six@¥(v/10).

The primes 3 and 9265613761 split@(y/10). The localH?!-criterion excludes the
prime 5. Further, it turns out that the local evaluation maflais constant. Hence, the
Brauer-Manin obstruction works only at the prime 2. Fromwhle of SQ2) which is of
measure 4 only a subset of meas%rie allowed.

Using this, for Peyre’s constant, we fin¢lS) ~ 1.7005. There are actually 664Q-
rational points of height at most 4000 in comparison withedpstion of 6802.

8.6. Example. — The polynomial
f:=T®4+60T*—-40T3-900T?+15072 —27860¢€ Q[T]
yields the cubic surfacBgiven by the equation

5X3 — XY + X2 Z+ 6X° W+ 3XY? + XyZ-+ BXywW— 2XZ
—4xzw— Y —3y? 7+ 2yZ +2yzW+ 42 +222W+2zwf = 0.

S has bad reduction at 2, 3, 5, and 73. The Galois group opgrainthe 27 lines
is Ag x Z /27 and the orbit structure {82, 15]. The quadratic field)(1/2) splits the double-
SiX.

The prime 73 splits inQ(v/2). Further, the locaH!-criterion excludes the prime 5.
Hence, the Brauer-Manin obstruction works only at the psin2eand 3. At 2, the
local evaluation map decompos&8l),) into two sets of measures 1 a@ respec-
tively. At 3, the corresponding measures dfeand 2. An easy calculation shows
T (S(AQ)®") = 41 (S(Aq)).

Using this, for Peyre’s constant, we fin(b) ~ 5.0879. Up to a search bound of 4000,
there are actually 19 30R-rational points in comparison with a prediction of 20352.

8.7. Example. — The polynomialf :=T(T°>—5T —2) € Q[T] yields the cubic surfacg
given by the equation

2C + X2y — AX2 2 — X2 W+ 2XYP + 2XyZ+ 2XyW— 2XZ — 4XZW
— 2XWP + 222 —YPW+YZ + 2yzw— Syw? — 32w+ 62w +9w® = 0.
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Shas bad reduction at 2, 3, and 5. Furtf®R) consists of two connected components.
The Galois group operating on the 27 lines is isomorphigste 7Z /27 and the orbit struc-
ture is[12, 15). Q(v/—15) is the field splitting the double-six.

The prime 2 splits inQ(v/—15). Further, the locaH!-criterion excludes the prime 5.
Hence, the Brauer-Manin obstruction works only at 3 andtffiaite prime. At 3, the local
evaluation map decomposg8l),) into two sets of measuréand 4 respectively. At the
infinite prime, the corresponding measures are approxiyjnat@179 and 1673. An easy
calculation showsy (S(Aqg)®") ~ 0524314 (S(Aq)).

Using this, for Peyre’s constant, we fin5) ~ 3.7217. Up to a search bound of 4000,
there are actually 14 24Q-rational points in comparison with a prediction of 14887.

8.8. Example. — The polynomial
f:=T(T®—-60T3—-90T2+675T +810) € Q[T]
yields the cubic surfacBgiven by the equation
3C +2CZ+XYP — 2XyZ— 2XYyW— XZWH 2XW —yZW— YW —Z +ZwW = 0.

Shas bad reduction at 2, 3, and 5. The Galois group operatitigeo?? lines is isomorphic
to S; and the orbit structure i82,15. The quadratic field)(v/—3) splits the double-six.

The localH!-criterion excludes the prime 5. Further, the local evadueinaps turn out
to be constant 08(QQ2) andS(R). At the real prime, the reason is simply tI&R ) is con-
nected. Consequently, the Brauer-Manin obstruction worktg at the prime 3. From the
whole of S(Q3) measuringg a subset of measutkis allowed.

Using this, for Peyre’s constant, we fin(b) ~ 2.2647. Up to a search bound of 4000,
there are actually 888@-rational points in comparison with a prediction of 9059.

8.9. Example. — The polynomialf := T (T >+ 20T 4 16) € Q[T] yields the cubic sur-
faceSgiven by the equation

=3 = TXCY — AX? 7+ BX°W+4xy? + 10xyz— dxyw— 2XZ°
+2XZW+ XW? — 4y 7+ yZ — dyzw— 16ywWP +ZZW—5zwf = 0.

Shas bad reduction at 2 and 5. The Galois group operating oB7%thimes is isomorphic
to As x 7 /27.. The orbit structure if12 15). The quadratic field)(/—5) splits the double-
SiX.

The localH!-criterion excludes the prime 5. At the infinite prime, thedbevaluation
map is constant sincR) is connected. Hence, the Brauer-Manin obstruction workg on
at the prime 2. It allows a subset of measgfeut of S(QQ2) measuring.

Using this, for Peyre’s constant, we fin(5) ~ 2.4545. Up to a search bound of 4000,
there are actually 973Q-rational points in comparison with a prediction of 9818.

8.10. Example. — The polynomial

f:=T®—456T*—-904T3+102609 241041060 +2935300c Q[T]
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yields the cubic surfacB given by the equation

—2x 4 3% 2+ WXPW — Axy? — 8Xyz— 10xzW+ 4xw? — 4y — 3y 7
—4PW—2yZ —2yzw+ 8yW — 7 + 22w —6zw —2w° = 0.

S has bad reduction at 2, 3, 5, 31, and 11071. The Galois grogpatipg on
the 27 lines is isomorphic tdSs x S3) x Z/27Z of order 72. The orbit structure
is [6,6,6,9]. There is a triple of Galois invariant double-sixes. Theref we have
that Hl(Gal(@/Q),Pic(S@)) ~7/27 x 7./27.. The quadratic field splitting the double-
sixes isQ(v/2).

The primes 31 and 11071 split iR(v/2). Further, the local evaluation maps turn out
to be constant o®(Q3). Consequently, the Brauer-Manin obstruction works onlyhat
primes 2 and 5.

The local evaluation maps decompdS@);) into four sets of measureg, &, 1,
and ‘—11, respectively. At the prime 5, the corresponding measure%—g, 0, (?765 and 0.
Observe, for one of the three non-zero Brauer classes, takdgaluation map is constant
onSQs).

A simple calculation shows that (S(Aq )B") = %TH (S(Aq)). Using this, for Peyre’s
constant, we find(S) ~ 1.8532. Up to a search bound of 4000, there are actually 6994
rational points in comparison with a prediction of 7413.
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