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Abstract

For diagonal cubic surfaces, we give an upper bound for Erd®eyamagawa type number in
terms of the cofficients of the defining equation. This bound shows that thipmecal TlS)

admits a fundamental finiteness property on the set of ajatial cubic surfaces. As an appli-
cation, we show that the infinite series of Tamagawa numiséated to the Fano cubic bundles

considered by Batyrev and Tschinkel [BT] are indeed corefet.g
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1. Introduction

1.1. — A conjecture, due to Yu. I. Manin, asserts that the numbeReftional points of
anticanonical height B on a del Pezzo surfac®is asymptotically equal teBlog™*"®)-1 B,
for B — 0. Further, the caoficientr € R is conjectured to be the Tamagawa-type numifs)
introduced by E. Peyre in [Pe]. In the particular case of dcsirface, the anticanonical height
is the same as the naive height.

1.2.E. Peyre’s constant. —E. Peyre’s Tamagawa-type number is defined in [PT, Defini-
tion 2.4] as

7(S) = o(S)-B(S) - im (5= L (S xpices ) - TH(S(AQ)®)

for t = rk Pic(S).
Here, the factoB(S) is simply defined as

B(S) := #H(Gal(Q/Q), Pic(Sg)).
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a(S) is given as follows [Pe, Définition 2.4]. Lét(S) c Pic(S) ®z R be the cone generated
by the dfective divisors. Consider the dual cong,(S) c (Pic(S) ®z R)", defined by

A& (S) = {u € (Pic(S) ®z R)" | (u, Ay > O for everyd € Ae(S)} .

Then,

a(S) :=t-vol{u e AG(S) | (u,—-K) < 1}.
Here, vol denotes the Lebesgue measure on $Pieg R)Y, normalized such that a primitive
cell of the lattice Pic)" c (Pic(S) ®z R)” is of measure one.

Further (-, xpicsg)) is the ArtinL -function of the GalQ/Q)-representation Pigz)®7C
which contains the trivial representatibtimes as a direct summand. Therefore,

L (S xPicsg) = £(9" - L(Sxp)

and
lim (s~ 1L (s xpictsg) = L (L,xp)

where¢ denotes the Riemann zeta function dhds a representation which does not contain
trivial components. [Mu, Corollary 11.5 and Corollary 1Jlshow thatL (s, yp) has neither a
pole nora zeroas=1. Then,L (1, yp) > O.

Finally, 7y is the Tamagawa measuren the setS(Ag) of adelic points onS and
S(Aq)® ¢ S(Ag) consists of those adelic points which are orthogonal toBteier group
Br(S) with respect to the Brauer-Manin pairing

S(AQ) X Br(S) » Q/Z,  ((%},0) = Y inv,alx,.

1.3. — As Siis projective, we have

S(AQ) = [ [s@)).

veVal(@Q)

Ty is defined to be a product measuye:= nveVaI(Q) Ty
For a prime numbep, the local measure, is given as follows. Let € S(Z/p*7) and
putt® := {x e S(Q,) | x=a (mod p¥) }. Then,

#ye S(Z/p"Z)|y=a (mod pk)
pmdlmS

p(UYY) := det(1- p* Froby, | Pic(Sg)") - lim-

Here, Picsﬁ)'p denotes the fixed module under the inertia group.
The measure., is described in [Pe, Lemme 5.4.7]. In the case of a hypersedadegred
in P", defined by the equatioh = 0, this yields

n+1-d
Too(U) = T waeray

CuU
[Xol, ... .|l <1

for every Borel seU c S(R). Here »Weray is theLeray measuren the cone&CS(R) ¢ R™?!
associated with the equatidn= 0. It is given by the dterential form—— dx A ... A dX,.
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1.4. Remark. — There is a “(hyper)surface areahy, typically introduced for hypersurfaces
in R™? in multivariable calculus. That measure is actually theoréeal volume associated with

the Riemannian metri€S(RR) inherits fromR"™?! [Di, 20.8.6.2]. The Leray measure is related
to the hypersurface area by the formulaay = Hngdf” Whyp-

1.5. The main result. — At least for diagonal cubic surfaces, the recipro%l admits a fun-
damental finiteness property. More precisely, we will prithafollowing result.

Theorem. For a = (ay, ... ,as) € (Z\{0})* any vector, we denote by $he cubic surface irﬁ’%
given by @xg + ..+ agxg = 0. Then, for eaclz > 0, there exists a constant(€) > 0 such that

T(S“) 2 C(s) . Hnaive(% Lo 1 %_8.

1.6. Corollary (Fundamental finiteness— For each T> 0, there are only finitely many di-
agonal cubic surfaces"S agx3 + ... +aa) = 0in P, such thatr(S") > T.

1.7. Remark. — For diagonal quartic threefolds, these results were shajfad]. The case
of the classical cubic surfaces is, however, more comglétat

The reason for this is that quartic threefolds are of gedm®lcard rank one. Hence, the
Gal(Q/Q)-representation considered was always trivial and_tfector was automatically equal
to 1. In the situation of a diagonal cubic surface, the fas:!inil(s— 1L (S xPics5)) add new dif-
ficulty. ~

There is also a dlierence concerning the factazsandg. This point is, however, of mi-
nor significance. For quartic threefolds, we always hé&f) = 8(S) = 1. For cubic surfaces,
these factors may vary but it is not at all hard to estimatethe

1.8. An application. — For Fano varieties of dimension3, the obvious generalization of
Manin’s conjecture is known to be wrong. Due to Batyrev andhirkel [BT], there are coun-
terexamples of Picard rank 2. These are smooth hyperssrfaceP" x P* of bidegree (13).
Such a hypersurface is equipped with a fibration into cubitasas given by the projection to
the first factor. It is assumed that those are diagonal.

Seemingly, many people believe that the actual growth ohtimaber ofQ-rational points
on X is dominated by the fibres of Picard rank 4. This means, thmpstics is expected to be

7Blog®B for
1
Ti= i T(S¥). (1)
xePN(Q) Hnaive(x)
suUX) non-singular
rk Pic(st(¥)=4

Here,.: P"—— (P?)V is the linear map defined by the fibration.

As an application of Theorem 1.5, we will show that the sefigsare indeed convergent.
For this, as will turn out, it is already ficient that the Tamagawa numbers of diagonal cubic
surfaces are uniformly bounded. Details will be given intieec3.



2. Estimates for Peyre’s constant

2.1. Estimates fow andg

2.1.1. — Recall that on a smooth cubic surfaggover an algebraically closed field, there are
exactly 27 lines. For the Picard group, which is isomorpbit, the classes of these lines form
a system of generators.

2.1.2. Notation. — i) The set.Z of the 27 lines is equipped with the intersection product
(,): XxZ — {-1,0,1}. The pair (Z,( , )) is the same for all smooth cubic surfaces. Itis well
known [Ma, Theorem 23.9.ii] that the group of permutatiohs#brespecting , ) is isomorphic

to W(Eg). We fix such an isomorphism.

Denote byF c Div(.¥) the group generated by the 27 lines andFayc F the subgroup of
principal divisors. ThenF is equipped with an operation o¥(Eg) such that~, is a W(Eg)-
submodule. We have Pig() = F/Fo.

ii) If Sis asmooth cubic surface ov@then Gal/®Q) operates canonically on the s& of the
27 lines onSg- Fix a bijectionis : s — .2 respecting the intersection pairing. This induces
a group homomorphism: Gal(@Q/Q) — W(Es). We denote its image b c W(Esg).

2.1.3. Lemma. — There is a constant ¢ such that, for all smooth cubic surf&everQ,
1<pB(S)<c.

Proof. By definition,3(S) = #H{Gal(@Q/Q), Pic(S@)). Using the notation just introduced, we
may writtH{(Gal(@Q/Q), Pic(Sg)) = HY(G, F/Fo).

Note that this cohomology group is always finite. Indeed;a®is a finite group ané/Fg is
a finite Z[G]-module, the description via the standard complex shovis finitely generated.
Further, it is annihilated by&.

HYG, F/Fo) depends only on the subgroGpc W(Esg) occurring. For that, there are finitely

many possibilities. This implies the claim. O
2.1.4. Remarks. —i) A more precise consideration [Ma, Proposition 31.3]g#h canonical
isomorphism

H{Gal@Q/ Q). Pic(Sg)) = Hom((NF N Fo)/NFo, Q/7Z).
Here,N is the norm map under the operationtf

As an application of this, one may inspect the 350 conjugéasses of subgroups 6¥(Es)
usingGAP. The calculations show that the lemma is actually truecfer9.
i) Diagonal cubic surfaces actually provide only 16 of tf®®onjugacy classes. Eight of them
may be realized oveR), the others ove)(¢3) [CTKS].
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2.1.5. Lemma. — There are positive constants and & such that, for all smooth cubic sur-
faces S ovef)) satisfying Aq) # 0,

c1 <a(S) <c,.

Proof. Again, we claim thaty(S) is completely determined by the groGpc W(Eg). Thus, sup-
pose that we do not have the full information available alychat surfaces is but are given the
groupG only.

The assumptior5(Ag) # 0 makes sure that Pig] = Pic(S@)G [KT, Remark 3.2.ii)].
We may therefore write Pi§) = (F/Fo)®. The dfective cone

Aeit(S) € Pic(S)®z C = (F/Fg)®®zC

is generated by the symmetrizations of the clagges. , £»7 of the 27 lines irF. In particular, it
is determined bys, completely. Further, we hawe = —%(€1+. ..+{27). These data are flicient
to computex(S) according to its very definition. O

2.1.6. Remark. — Here, we do not know the optimal values@fandc; in explicit form.
a(S) has not yet been computed in all cases.
2.2. An estimate for the-factor

2.21. —In the case of the diagonal cubic surfa@®-% c P2, given by
apX3 + ... + a5 = 0 forap,...,a3 € Z\{0}, the 27 lines or5@--&) may easily be writ-
ten down explicitly. Indeed, for each pair |) € (Z/37Z)?, the system

Jaoxo + {¥arx = 0
\3/3_2X2+§§\3/3_3X3 =0

subsets of two elements each yields all the lines. In paaticwe see that the 27 lines may be
defined oveK = Q(¢3, Va1 /a0, Vaz/a0, Vas/ao ).

2.2.2. — This is an abelian extension &§(¢3). Therefore, the irreducible representations
of Gal(K/Q) are at most two-dimensional. Besides the trivial repregem, there is the
non-trivial Dirichlet charactenr of Q(3)/Q. The two-dimensional irreducible representations

are actually representations of a factor group of the forr(Q3s, \3/aoEG Ceat ageé)/Q) = S3
forey,...,e3€{0,1,2}.

2.2.3. Lemma. — Let a and b be integers gierent from zero. Then,
| Disc(Q(zs,Vab?)/ Q)| < Fab”.
Proof. We have, at first,
| Disc(Q (g Val?) Q)| < | Disc(Q(&)/ Q)| - Disc(Q(Vat?)/ Q)
= 27- Disc(Q(Vab?)/ Q)%
Further, by [De§4], we know
| Disc(Q(Va?)/Q)| < 3%ah?.

This showg Disc(Q(¢z, Vab?)/Q)| < 3%a*b*. O
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2.2.4. Proposition. — For eache > 0, there exist positive constantsand & such that

Ci-lag-...-ag ™ < lim(s— 1)tL(aXPiC(S@,...,a3))) <Cy-lag-...-ag°
s-1 5

for all (ag, ..., as) € (Z\{0}))*. Here, t= rk Pic(S).

Proof. The Galois representation Pﬁg """ a3)) ®z C contains the trivial representatiotimes
as a direct summand. Therefore,

L(S’XPiC(S%O““‘a:;))) = g(s)t' L (S,XP)

where¢ denotes the Riemann zeta function d@ds a representation which does not contain
trivial components. All we need to show is

Ci-lag-...-ag “<L(Lxp)<C2-lao-... asl"

L (-, xp) is the product [Ne, Chapter VII, Theorem (10.4).ii)] of mobre than six factors of the
formL (-, ) for A the non-trivial Dirichlet character d@f({3)/Q and at most three factors which
are ArtinL-functionsL (-, v¥) for two-dimensional irreducible representations.

Here,K = Q(&3, €/a§5 e aseg) for certainey, ..., e3 € {0,1,2}. AsL (1, 1) does not depend
onag,...,as, at all, it will suffice to show

ci(e)-lag-...-asl® < LA V) <co(e) - lag- ... agl’

for eache > 0.
vK is the only irreducible two-dimensional character of GalQ) = Ss. For that reason, by
virtue of [Ne, Chapter VII, Corollary (10.5)], we have

k() = Lo(9) - L(s ) - L(sV)?
= Loe)(9) - L(s V)

for a complex variables. It, therefore, sffices in our particular situation to estimate the residue
res— x(s) of the Dedekind zeta function ¢f.

An estimate from above has been given by C. L. Siegel. In viethe@analytic class number
formula, his [Si, Satz 1] gives

resii(s) < C[log Disc(K/Q)]°
< Clog(3%gata3as)]®
= C[4loglag - ... - ag| + 9log 3F

for a certain constar@. The final term is less thawy(e) - |ag - . . . - ag|® for everye > 0.
On the other hand, H. M. Stark [St, formula (1)] shows

gls_gK(s) > C(&)-Disc(K/Q) /4

for everye > 0 which implies r?ng(s) > ci(e)-lag- ... asl™. O
S=



2.3. An estimate for the factors at the finite places

2.3.1. Lemma. —There are two positive constants; and ¢ such that, for all
o, . .., ag € Z\{0},

Further, for the number of points on a non-singular cubitasigrover a finite field, the Lefschetz
trace formula can be made completely explicit [Ma, Theor&@m R It shows

Denoting the eigenvalues of the Frobenius onﬂ?ﬁ:)(by A1,...,47, we find

. (S(ao ..... %)(Qp)) =A-pHA-2pY ... (- 27p7H
L+t )p e+ p Y

a- 0’1p_1 + 0'2p_2 - 0'3p_3 +...— 0'7p_7)(1+ 0'1p_l + p_z)

1+(1—0’i+0’2)p_2—(0’1—0’10’2+0’3)p_3+
. —(0'5—0'10'6+0'7)p_7+(0'6—0'10'7)p_8—0'7p_9

whereo; denote the elementary symmetric functionginp. .., A7 _
We know/|4;| = 1 for alli. Estimating very roughly, we have;| < (?) < 7' and see

1- 99p‘2 _ 7-99p‘3 _7. 99p <7 (S(ao ..... ag)(Q b)) <
<1+99p2+7.99p3+...+77.99p7°.
lLe., 1- 99p —p < 7p(Sto a3)((Q )) < 1+99p23- 7/ The infinite product over all
1-99p7? (respectlvely 1 99p2 7 ) is convergent.
The Ieft hand side is positive fqr > 13 For the small primes remaining, we need a better

lower bound. For this, note that a cubic surface over a finitlel i, always has at least one
[Fp-rational point. This yieldsy(S@3)(Qp)) > (1 - 1/p)’/p? > 0. O

2.3.2. Remark. — It will require by far more labour to estimate the productiotres finitely
many bad primes, uniformly over all diagonal cubic surfaces

2.3.3. Notation. — i) For a prime numbep and an integex # 0, we putx(® := p»®,
Notex(P = 1/||x||, for the normalizecp-adic valuation.

i) For integersxy, ..., Xn, not all equal to zero, we write

gech(X4, . .., Xn) 1= [ged(aa, .. ., )] P
Observe, ifxy, ..., X, # 0 then we have gedxs, ..., %) = gcd(x(p) Y
7



i) By putting v(x) :=£nin v(£), we carry thep-adic valuatiorfrom Z, over toZ/p'Z.
€Zp
x=(¢ mod p")
Note that any Gt x € Z/p'Z has the formx = &-p"™ wheres € (Z/p'Z)* is a unit. Clearlyg is
unigue only in the casg(x) = 0.

2.3.4. Definition. — For (o, ...,as) € Z* r € N, andvy, ...,v3 <, put

NG ez = (X, Xa) € (Z/ D T)* |
V(X0) = Vo, .. V(Xa) = va; @pXa + ...+ agxs = 0€ Z/p'Z}.

(r)
,,,,, 0,...,0;ap,...,a3’

20 = {(%0,.... %) €(Z/P'Z)]* |aoxg +... + a3 = 0€ Z/p' 7}

,,,,,

i.e.,

We will use the notatiod) . :=#20 ..

.....

2.3.5. Sublemma. —If pXay,...,az and r> k then we have

.....

Proof. SinceagX3 + ... + agxs = pK(ao/p* - X3 + ... + as/p* - X3), there is a surjection

(r=K)
QB Za:)/pk ..... a/pk’
given by (o, ..., X3) — ((xo modp'X),...,(xs modp'X)). The kernel of the homomorphism
of modules underlyingis (p"*7Z/p' Z)*. O

2.3.6. Lemma. — Assumecd,(ao, - .., a4) = pX. Then, there is an estimate

Proof. Suppose first thdt = 0. This means, one of the déeients is prime tgp. Without re-
striction, assum@+1 ap.

For any (i, X0, X3) € (Z/p'Z)%, there appears an equation of the foaﬂxg = c. It can-
not have more than three solutions if/@'7Z)*. Indeed, forp odd, this follows directly from
the fact that %/p'Z)* is a cyclic group. On the other hand, in the cgse= 2, we have
(Z)2'Z)* = 7./]2' 27 x 7./ 27.. Again, there are only up to three solutions possible.

The general case may now easily be deduced from Sublemn®a lh8eed, ifk < r then

Zgg w = pk. Z(a:)—/lg)k /e p¥ . 3p3C-K = gpdrk

.......

On the other hand, K > r then the assertion is completely trivial since

). =HZE) < P < P < 3p7K O
2.3.7. Remark. — The proof shows that in the cage= 2 (mod 3) one could reduce the

codficient to 1. Unfortunately, this observation does not lead gubstantial improvement of
our final result.
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2.3.8. Lemma. —Letre N andvg,...,v3<r. Then,

r . r—voY . i r—vs
#NO _ TpPoa,....p¥3as (P ... o(p'?)

V0,.-.,V3;80,.,83 ‘,0(pr)4

Proof. As p¥oag) + ... + p¥2ag)X3 = ag(p’™0)® + . . . + ag(p"x3)?, we have a surjection

. de.)VOaO """ p3ag — NS:)),...,V3;80,...,63
given by (o, ..., X3) = (P"Xo, . . ., P"3X3).

Fori = 0,...,3, consider the mapping Z/p'7Z — 7Z/p'Z, x — p'x. If vi = r then¢is
the zero map. Allp(p") = (p— 1)p"* units are mapped to zero. Otherwise, observe dtligt
p” : 1 onto its image. Furthewy(«(X)) = v if and only if x is a unit. By consequence, is
(K0 .. K3)) : 1 whenwe puk® := p*forv < r andK® := (p—1)p"~t. Summarizing, we

could have writterK® := (p")/¢(p"™). The assertion follows. O
2.3.9. Corollary. — Let(ay, ..., as) € (Z\{0})*. Then, for the local factot p(SE--3)(Q)),
one has

i Zr: Z‘,Is)voao gy P(PT) e p(PTT)
- lim
ré)oovo ..... v3=0 p3r ‘p(pr)4

()
#NVO,...,Vg;ao,,.,,ag

3
Vo ,,,,, V3*0 p '
Lemma 2.3.8 yields the assertion. O
2.3.10. Proposition. —Let(ay, ..., a3) € (Z\{0})*. Then, for eacls such thaD < ¢ < %, one
has
17 1
(20...--33) . (P) (p) (p) (P&
7o(S 3(@))<(1+p) 3(1_p113£)(1 p}) - (ay )7 (@)

Proof. We use the formula from Corollary 2.3.9. The eigenvaluesefirobenius on PiS@)'p
are all roots of unity. Therefore, the first factor is at mdst (1/p)’. Further, by Lemma 2.3.6,

2D .. g P < 30CTh(PP 0, ..., pP)
3 gcd pSV()aop)’ e p3V3a:(;p))

Writing ki := vy(a) = vp(&P), we see

3 ng(D3vo+ko’ o p3V3+k3)

— Spmin(3v0+l<0,...,BV3+k3]

IA

Z(r) 3v3a3 / p3r

p¥oag, .

9



We estimate the minimum by a weighted arithmetic mean witlyiate 152, £, L-¢, ande,

min(3vo + Ko, ... ,3v3 + ka} < 1;38-(3vo+k0)+$-(3v1+k1)

1-
+ Tg - (3vz + ko) + &(3v3 + ka)

= (1-¢&)(vo+v1+v2)+3evz

+ %(kwkﬁkz)mks.

This shows

;2‘/080 - /p3r < 3p(l a)(v0+v1+vz)+3a\/3+ £ (ko+ki+kp)+eks
— 3p(l &)(vo+v1+va)+3evs ( (p) (p) (P)) ( (P)) )

We may therefore write

im Zr: p(l—s)(vo+vl+vz)+3£V3 . QD(pr_Vo) e ‘p(pf—v:;)
r—eo e(p)*

Here, the term under the limit is precisely the product oé¢hcopies of the finite sum

P - o(p") 1
ZO @(p") Z(W p- 1(|oé)r

and one copy of the finite sum

zr:p P N1 p 1
() i (pt3%)  p-1(pt3)
Forr — oo, geometric series do appear while the additional summamdkto zero. O
2.3.11. Remark. — The constants
. 7 1 1 3
e = (14 0) 3 1)
p T 1-

are clearly not optimal in any sense. Note, in particulat the did not put muchfort into the
bound for detl — p~* Froby | Pic(Sg)")-

However, and this is what |s important for our applicatiore wlearly have thaC(‘ﬁ) is
bounded forp —> 0, sayC(é) < C®. We do not know of an improvement which would make the
product[], C converge.

2.3.12. Proposition. —For eache such tha0 < ¢ < 1 , there exists a constant c such that

1_¢ . ie
[ [ro(s®*(@p) <c-lao- ... aals% - [ | minjiaills

pprime lO pprime 7



for all (ag, ..., as) € (Z\{0})*.

Proof. The product over all primes of good reduction is bounded hygiof Lemma 2.3.1 above.
It, therefore, remains to show that

.....

pgggm; pprime

For this, by Proposition 2.3.10, we have at first

R 1_e 3.
Tp(s(ao ..... %)(Qp)) < Cg;) . (aép)a(lp)agp))3 . (a(sp))w
1_¢ _1
_ Cg;) . (aép)a(lp)agp)agp))3 5. (aép)) it
Here, the indices,Q .. , 3 are interchangeable. Hence, it is even allowed to write
1 & PN
Tp(S(aO ,,,,, a3)(Qp)) < Cgf) . (agp)agp)agp)a(gp))g . (miaxai(P)) 3te
. 1_¢ . 1 ¢
— Cg) . (agp)agp)agp)aép)ﬁ i, r’nim”ai ||é 6'

Now, we multiply over all prime divisors ody - ... - az. Thereby, on the right hand side, we
may twice write the product over all primes since the two tigbst factors are equal to one for
pt3ag- ... as, anyway.

nTp(S<ao ..... B)(Qp)) < ncg) : ]‘[<agp>agp>agp>agp>>v% . 1_[ min_|ja, 3~

p%g(f)iT% plpsggm; pprime pprime
3 1_¢ . i1-¢
= []c8 -tao-...-als™s - [ | min flaill3
plpsggm; pprime "

when we observe thgi,a® = |al. Further, we hav€$’ < C© and, by [Na, Theorem 7.2]
together with [Na, Section 7.1, Exercise 7],

1_[ C® <c-|3a-...-asls.
pprime
pl3ag...ag

We finally estimate 8 by a constant. The assertion follows. O

2.4. An estimate for the factor at the infinite place

2.4.1. Proposition. — For real number® < by < b; < b, < bs, we have
(L....1) 64 1 by
w(l_:;ay ® < (64+ 3 log3+ :—%\3/§w2)b0 + 64bg Iogb—0
CSL-DR)
IXol<bo, ... | Xal<bs

wherew;, is the two-dimensional hypersurface measure of $henit sphere

S? = { (X1, %2, Xa3) € R | [xa® + [xal® + [xa* = 1}.
11



Proof. First step.We cover the domain of integration by 25 sets as follows. We pu

Further, for eaclr € S4, we set

={ (X0, -, X3) € R* | Xp(o)] < -+ < X3l IXil < b, @ndbg < [Xy(z)l }

Second steOne hanR WS- IR) fRd WS

Leray Leray

Consider the map,: R* — R*given by o, . .., X3) = (Xs(0)s - - - » Xo(3)- SinceCSE-D(R) is
defined by a symmetric cubic form, it is invariant ungerWe claim that

Io’(R(r) c Rid .

Indeed, let Xo,...,%3) € R,. Then,iz(Xo,...,X3) = (X0).---. X+3)) has the properties
[Xe)] < ... < [Xx3) @andbg < [Xx)l. In order to show,(Xo, ..., X3) € Rg, all we need to verify
iS Xl < bjfori=0,...,3

For this, we use that thig are sorted. We havg, )| < bsz) < bs. Further,|X,2)| < by(2)
and|X-2)| < X3 < bsg) one of which is at most equal to,. Similarly, [X-q)l < b,
[Xe@)] £ Xe@)] £ br@), and|X-q)l < [X-3)| < by(z), the smallest of which is not larger than.
Finally, [X-o)| < bs(0), [%-0)| < Xy < Bo(), [Xr0)] < Xo@)] < o), @and|Xs)] < [Xs(3)| < by (3).
This shows}x(,(o)| < by.

Since X3 + ... + X5 is a symmetric form, the Leray measure @8*-Y(R) is in-
varlant under the canonlcal operation 8§ on CS&-Y(R) c R* Therefore, we have

t-D(R) _  CSE Y(R)
(iv)sw" Lera wLeray for eacho € S4.
Altogether
csit-(R) CcSt-D(R) _ Ccst-D(R) _ Csit-D(R)
waeray = f Leray f(l‘f) Leray - waeray .
Rr i7(Ra) R

. (1.....1)
Third step.We havefRO w(L:eSray B < V3 wabp.

By definition,

(1...1) 1
fwfesray ®) - :—%f—dxo/\dxl/\dxz

Ro
- 3fff (X0+X3+X2)2/3 Podade

three coordmates.
We enlarge the domain of integration to

R = { (X1, X2, X3) € R | [xo® + [xa[* + [%2l* < 3b3}.
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Then, by homogeneity, we see

1 %bol
fff—dxoXmdXz=wz-f—-rzdrzwz-\3/§bo.
xS + x3)2/3 r2
5 0§+ + %) J
Fourth stepWe havef, wfﬁ;;‘l)(R) < ( + §log3)o + Sholog .

Observe|xs| = |,3/x8 +33 + xgl < IXoP + [x13 + |23, For (Xo,...,%s) € Ry, this implies
[X3] < %|X2| and|xg| > bo/&lg We find

Cs(l,....l) R 1 1
waeray ( )= §fgdx0/\dxl/\dx2
R R
s}f%dxo/\dxl/\dxz
3J%
R

bo
1 1
<§ f f—zdxgdxldxo

=bo [xa|€[Ix0l,b1] 1xy12b0/¥3

bo [Xp[2I%q |
1 2
<= — dxdx
3) max(bo/V3, xl}
~bo [x4l€[Ixol,b1]
b by
<2f0 f Y3 1 d +f f ! gxd
=3 bo ] O
Do |xyleflxol,bo/ V3] o xq/e[bo/¥3.1]
bo
42
sg~—0~§+g 2log\7§bldx0
3 ¥3 by 3 bo
—bg
8, 8 V3o,
== =hol
3b0 + 3b0 0og bo
8 8 8 by
= (:—% s log Qbo + §b0 Iogb—o. O
2.4.2. Corollary. — For everye > 0, there exists a constant ¢ such that

1
To(S®S(R)) < ¢ fao- .. agl ¥ - min Jiai 15

i=0,...,

for each(ap, . . ., ag) € (Z\{0})*.
Proof. Our first claim is

1 cst-D(R)
3 wLeray .
2Vlag:-...-ag
Cs(l ..... D(]R)

I%ol< ¥aol, ... |xal< Vias]
13



1 f 1 1 1
— SdyAadeAndg= —— f —dXp AdXo AdXg.
6|aol 2 7 ° " 6Vl ... ag X3 ! °
cs(ao....,ag)(]R) Cs(l ..... 1)(]R
IXol<d, ... Ixgl<1 Xol< ¥fgl, ... [ Xal< VMaal

(X0, - . ., X3) — §aoXo, . . ., JagXs) .

Then,

6 aapaz 1

1
|*(ﬁ dXs A dXe A dXg) = o dx, A dxe A dxs.

0
When we take into consideration that orientations are ahossuch a way that both integrals
are positive, this immediately yields the claim.
To obtain the asserted inequality, we assume without otistni thatjag] < ... < lag|.
Then, Proposition 2.4.1 shows that, for certain explicgifiee constants; andcy,

7(S®*(R)) < fao-...- gl 3 -(cllaolé + Colaol logy, %)
=lag-... g} '|aO|%(Cl+ }C2|09@)
3 |aol
-1 . 1 1 |
< lao-... 2" min llalls - (c1 + S cologla- ... ag).
There is a constant such thatc; + %cz loglag - ... - a3l < clag - ... - ag° for every
(a0, ..., as) € (Z\{O})*. 0

2.5. The Tamagawa number

2.5.1. Proposition. — For everye > 0, there exists a constant € 0 such that
1
1 Hnaive(% e %)3
T(@0,a8) =7 lag- ... agl®

for each(ap, . . ., as) € (Z\{0})*.
Proof. We may assume thatis small, says < % Then, immediately from the definition

T(ao ..... ag)

= o(S®)).p(S a”)-ggnl(s—1)‘L(axpiqs%*---:a@))-TH (S-2)(Ag)™)
.......... H t

< (S p(s a9)-Islgnl(s—1)L(S)(F,ic(sg.wa@))-TH (S (Ag))
,,,,,,,,,, H t

= a(S®®).p(s® a3>)-ggnl(s—1)L(sxpic(sgwas)))-]_[rv(s@‘) 2(@Qy)).

14



Let us collect estimates for the factors. First, by Propmsi2.2.4, we have

pprime

.....

Finally, Corollary 2.4.2 shows

,,,,,

.....

.....

.....

,,,,,

mata 2.1.5 and 2.1.3 show that the facteendg are bounded from above by constants. By con-
sequence,

-1 ) 1
11 el i

..... i=0,...,
%) T ey gy aglt - [T [ min_lla llp] 2
pprime i=0.....3
3 3
1 1
max ||=||” - max ||z
_ 1 ppl;lmeizo ,,,,, ”a*Hp i=0,..., 3”&’ &
G | ]2
ag-...-agl2- ‘max a;
pplr_ilme[lzo ..... 3a' ]
1
1 Hnaive(% e %)3
Cc | OItE
a:-...-agl2- ‘max a;
8 pplr_ilme[lzo ..... 3a' ]
It is obvious that (r)nagai(p) <. ...-a,gp)| and [] [a -...-a(sp)| =|ag-...-ag. This shows
i=0,..., pprime
Hpa 1. .1 %
1 1 na|ve(£.....a—3)
7(@0--3) T C3 lag-...-asl%-|ag-...-agl?
1
_ 1 Hnai\,e(%Z...Za—l:’;)3 0
Cs lag-...-agl®
2.5.2. Lemma. —Let(a : ... : ag) € P}(@Q) be any point such thatea# 0, ... ,az # 0.
Then,
) . . 2 . 1,3
HnaNe(aO PP a3) S HnaNe(ao .. .

T
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Proof. First, observe thatag : D ag) & (l : : l) is a well-defined map. Hence, we
may assume without restriction tha@ .. ,a3 € Z and gcdéy, ... ,a3) = 1. This yields
Hnaive(8o : ... : @g) = Max=g,__3la.

On the other hand% : als) = (aqapaz : ... : apaap). Consequently,
Hoae(z; -+ © ) < [Maxjal]® = Hoawe(o © ... : 8)°.
From this, the asserted inequality emerges when the rolasamfdé are interchanged. O
2.5.3. Corollary. — Let @&, ... ,a3 € Z such thatgcd@y, ... ,as) = 1. Then,
8- ...~ sl < Hnave(% © ... 1 = 12
Proof. Observe thalag - ... - ag| < max|a.| = Hpavel@o : ... : a3)* and apply Lemma 2.5.2.
..... O
2.5.4. Theorem. —For eache > 0, there exists a constant(€) > O such that, for all
(a0, ..., as) € (Z\{0})*,
1 ¢
o 2 CE) a1 2)P
Proof. We may assume that g&( ... ,ag) = 1. Then, by Proposition 2.5.1,
114
71 > C(s) . nalve( 55)3 .
7(0....83) lag - ... ag|t
Corollary 2.5.3 yieldgag - ... - ag|f2 < Hnaive(% L a—13 °. O
2 5.5. Corollary (Fundamental finitene}‘.s— For each T > 0, there are only finitely many

Proof. This is an immediate consequence of the comparlson to tlve haight established in
Theorem 2.5.4. O

3. The varieties of Batyrev-Tschinkel

3.1. Lemma. — Let m n be positive integers such thatsm + 1 and:: P™—— P a surjec-
tive linear map. Then, there exists a constant C such thaevery(ap : . .. : as) € P3(Q),
1 < 1
xePM(Q) Hgaive(x) B Hﬂa:\?;rg(ao e a3) .
X)=(ag:--ag)

Proof. An automorphism oP™ changes the naive height by a factor which is bounded. We may
therefore suppose thatis given by & : ... : Xn) = (X : ... : Xg). Further, assume
ap,...,as € Z such that gcdy, . . ., a3) = 1. Finally, we write H = Hpae(ao: . .. :a3).
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Let N > H be an arbitrary integer. There are two ways a p&igt (Xo : ... : Xm) € P™(Q)
such thai(x) = (ag : ... : ag) may have height exactly equal & Either, one of the coordinates
X4, ..., Xm IS equal toN. There are at most

2[%](”“ 3)(2N + 1)m—4 < %Nm—s

such points. Or, one of the coordinates. .., x3 is equal toN. This is possible only when
N = kH is an exact multiple. Then, there are at most

(2N +1)™3 < C,N™3

such points. All in all, we find the estimate

Z 1 Cl 1 1 < C
S nalve(x) Nn m+3 Hn m+3 kn m3 = Hn- m+3 °
«(X)=(ag:...:a3)
The assumptiom < n + 1 assures that all the series occurring are convergent. O
3.2. Proposition. — Let:: P"— — (P%)" be a linear map. Suppose that eitrdimim¢ > 2

or n= 1. Then, the series
1
an (v
xePN(@) Hnalve( )
5t non-singular
rk Pic(s!(¥)=4

is convergent.
Proof Note that Picard rank 4 is the maximal value which is posé'cbﬁa non-singular diagonal

We will dlstlngwsh three cases.
First case.dimim¢ = 3.
There are at most 4(2+ 1)3 quadruplesdy : ... : ag) of naive heighN3 such that all the quo-
tientsa;/ag are perfect cubes. According to Lemma 3.1, the series to&idered is dominated
by Z 4(2N + 1)3(N3)3 < 10&% < Which converges.
Second casaimim: = 2.
Then,. is the restriction of a surjective linear m&3*! — P° to a hyperplane. Estimating very
roughly, we find the convergent serigs4(2N + 1)3ﬁ <108C Y .

N N
Third casedimim: = 1.
Here, by assumptiom = 1. An automorphism oP! changes the naive height by a factor which
is bounded. Thus, without restriction, we may supposetisagiven by

(Xo : X1) = (Xo : X1 = 11(Xo, X1) : 12(Xo, X1))

for two linear formsly, lo. AS Hpaive(Xo : 2 11(Xo, xl) l2(X0, X1)) = Hnaive(Xo : X1), the
contribution of & : x1) € PY(Q) is estlmated bye(— Further, we only consider pairs
such thatx; /Xy a perfect cube. There are2(2N + 13 such pairsXo : X;) of naive heightN3.
The serles%] 2(2N + 1)— < 6% z converges. O
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3.3. Corollary (The Batyrev-Tschinkel varietigs— Let X c P" x P® be a smooth hypersur-
face given by a bihomogeneous form of the shape

0(X05 -+ Xn) Yo + -+ t3(Xo, - -, Xn) V3 -

Suppose thab, ..., 3 are linear forms, not all proportional to each other. Thelme tseries

_1 7(S*™)
naive(X)
xePN(@) = haive
$t() non-singular
rk Pic(st(¥)=4

converges. Hera,; P"—— (P3)V is the linear map defined hy, .. ., (3.

Proof. Theorem 2.5.4 immediately implies that the facto(S‘®) are bounded. Further, as
X is smooth [BT, Proposition 1.1], we have dimira min(n, 3). Thus, the assertion is a direct
consequence of Lemma 3.2. O
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