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Summary. For general cubic surfaces, we test numerically the conjecture of Manin
(in the refined form due to E. Peyre) about the asymptotics of points of bounded
height on Fano varieties. We also study the behaviour of the height of the smallest
rational point versus the Tamagawa type number introduced by Peyre.

1 Introduction

The arithmetic of cubic surfaces is a fascinating subject. To a large extent,
it was initiated by the work of Yu. I. Manin, particularly by his fundamental
and influential book on Cubic Forms [Ma].

In this article, we study the distribution of rational points on general cubic
surfaces over Q. The main problems are

• Existence of Q-rational points,
• Asymptotics of Q-rational points,
• The height of the smallest point.

Existence of rational points. Let V be an algebraic variety defined
over Q. Recall that the Hasse principle is said to hold for V if

V (Q) = ∅ ⇐⇒ ∃ ν ∈ Val(Q) : V (Qν) = ∅ .

For quadrics in PnQ, the Hasse principle holds by the famous Theorem of
Hasse-Minkowski. It is, however, well-known that for smooth cubic surfaces
over Q the Hasse principle does not hold, in general. In all known examples,
this is explained by the Brauer-Manin obstruction. (See section 2 for details.)

⋆ The computer part of this work was executed on the Sun Fire V20z Servers of the
Gauß Laboratory for Scientific Computing at the Göttingen Mathematical Insti-
tute. Both authors are grateful to Prof. Y. Tschinkel for the permission to use
these machines as well as to the system administrators for their support.
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Asymptotics of rational points. On the asymptotics of rational points
of bounded height, there is the following famous conjecture due to
Yu. I. Manin [FMT].

Conjecture 1 (Manin). Let V be an arbitrary Fano variety over Q and H
be an anticanonical height on V . Then, there exist a dense, Zariski open sub-
set V ◦ ⊆ V and a constant C such that

(∗) #{x ∈ V ◦(Q) | H(x) < B} ∼ CB logrkPic(V )−1 B

for B → ∞.

Peyre’s constant. Motivated by results obtained by the classical circle
method, E. Peyre refined Manin’s conjecture by a conjectural value for the
leading coefficient C.

Let us explain this more precisely in the particular case that V is a smooth
hypersurface in Pd+1Q defined by a polynomial f ∈ Z[X0, . . . , Xd+1]. As-
sume that rkPic(V ) = 1 and suppose there is no Brauer-Manin obstruction
on V . Then, Peyre’s constant is equal to the Tamagawa type number τ given
by τ :=

∏

p∈P∪{∞}

τp where

τp =
(

1 − 1

p

)

· lim
n→∞

#V (Z/pnZ)

pdn

for p finite and

τ∞ =
1

2

∫

x∈[−1,1]d+2

f(x)=0

1

‖(gradf)(x)‖2
dS .

Here, V ⊂ Pd+1Z is the integral model of V defined by the polynomial f .
dS denotes the usual hypersurface measure on the cone CV (R), considered as
a hypersurface in Rd+2.

Note that the constant τ is invariant under scaling. When we multiply
f by a prime number p then τp gets multiplied by a factor of p. On the
other hand, τ∞ gets multiplied by a factor of 1/p and all the other factors
remain unchanged.

Known cases. Conjecture 1 is established for smooth complete intersec-
tions of multidegree d1, . . . , dn in the case that the dimension of V is very
large compared to d1, . . . , dn [Bi]. Further, it is proven for projective spaces
and quadrics. Finally, there are a number of further special cases in which
Manin’s conjecture is known to be true. See, e.g., [Pe, sec. 4].

Recently, numerical evidence for Conjecture 1 has been presented in the
case of the threefolds V e

a,b given by axe = bye + ze + ve + we in P4Q for e = 3
and 4 [EJ1].
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The smallest point. It would be desirable to have an a-priori upper bound
for the height of the smallest Q-rational point on V as this would allow to
effectively decide whether V (Q) 6= ∅ or not.

When V is a conic, Legendre’s theorem on zeroes of ternary quadratic
forms yields an effective bound for the smallest point. For quadrics of arbitrary
dimension, the same is true by an observation due to J. W. S. Cassels [Ca].
Further, there is a theorem of C. L. Siegel [Sg, Satz 1] which provides a gener-
alization to hypersurfaces defined by norm equations. This certainly includes
some special cubic surfaces but, in general, no theoretical upper bound is
known for the height of the smallest Q-rational point on a cubic surface.

Remark 2. If one had an error term [S-D] for (∗) uniform over all cubic sur-
faces V of Picard rank 1 then this would imply that the height m(V ) of the
smallestQ-rational point is always less than C

τ(V )α for certain constants α > 1
and C > 0.

The investigations on quartic threefolds made in [EJ2] indicate that one
might have even m(V ) < C(ε)

τ(V )1+ε for any ε > 0. Assuming equidistribution,
one would expect that the height of the smallestQ-rational point on V should
be even ∼ 1

τ(V ) . An inequality of the form m(V ) < C
τ(V ) is, however, known

to be wrong in a similar situation (cf. [EJ2, Theorem 2.2]).

The results. We consider two families of cubic surfaces which are produced
by a random number generator. For each of these surfaces, we do the following.

i) We verify that the Galois group acting on the 27 lines is equal to W (E6).

ii) We compute E. Peyre’s constant τ(V ).

iii) Up to a certain bound for the anticanonical height, we count allQ-rational
points on the surface V .

Thereby, we establish the Hasse principle for each of the surfaces considered.
Further, we test numerically the conjecture of Manin, in the refined form
due to E. Peyre, on the asymptotics of points of bounded height. Finally, we
study the behaviour of the height of the smallest Q-rational point versus
E. Peyre’s constant. This means, we test the estimates formulated in Re-
mark 2.

2 Background

27 lines. Recall that a non-singular cubic surface defined over Q contains
exactly 27 lines. The symmetries of the configuration of the 27 lines respect-
ing the intersection pairing are given by the Weyl group W (E6) [Ma, Theo-
rem 23.9.ii].

Fact 3. Let V be a smooth cubic surface defined over Q and let K be the
field of definition of the 27 lines on V . Then K is a Galois extension of Q.
The Galois group Gal(K/Q) is a subgroup of W (E6).
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Remark 4. W (E6) contains a subgroup U of index two which is isomor-
phic to the simple group of order 25 920. It is of Lie type B2(F3),
i.e. U ∼= Ω5(F3) ⊂ SO5(F3).

Remark 5. The operation of W (E6) on the 27 lines gives rise to a transitive
permutation representation ι : W (E6) → S27. It turns out that the image of ι
is contained in the alternating group A27. We will call an element σ ∈ W (E6)
even if σ ∈ U and odd, otherwise. This should not be confused with the sign
of ι(σ) ∈ S27 which is always even.

The Brauer-Manin obstruction. For Fano varieties, all known obstruc-
tions against the Hasse principle are explained by the following observation.

Observation 6 (Manin). Let V be a non-singular variety over Q. Choose
an element α ∈ Br(V ) [Ma, Definition 41.3]. Then, any Q-rational point
x ∈ V (Q) gives rise to an adelic point (xν)ν ∈ V (AQ) satisfying the condition

∑

ν∈Val(Q)

inv(α|xν
) = 0 .

Here, inv: Br(Qν) → Q/Z (respectively inv: Br(R) → 1
2Z/Z) denotes the

canonical isomorphism.

inv(α|xν
) depends continuously on xν ∈ V (Qν). Further, Yu. I. Manin

proved [Ma, Corollary 44.2.5] that, for each non-singular variety V over Q,
there exists a finite set S ⊂ Val(Q) such that inv(α|xν

) = 0 for every
α ∈ Br(V ), ν 6∈ S, and xν ∈ V (Qν). This implies that the Brauer-Manin
obstruction, if present, is an obstruction against the principle of weak approx-
imation.

Denote by π : V → Spec(Q) the structural map. It is obvious that
altering α ∈ Br(V ) by some Brauer class π∗ρ for ρ ∈ Br(Q) does not change
the obstruction defined by α. By consequence, it is only the factor group
Br(V )/π∗Br(Q) which is relevant for the Brauer-Manin obstruction. The lat-
ter is canonically isomorphic to H1(Gal(Q/Q), Pic(VQ)) [Ma, Lemma 43.1.1].
In particular, if H1(Gal(Q/Q), Pic(VQ)) = 0 then there is no Brauer-Manin
obstruction on V .

For a smooth cubic surface V , the geometric Picard group Pic(VQ) is
generated by the classes of the 27 lines on VQ. Its first cohomology group can
be described in terms of the Galois action on these lines. Indeed, there is a
canonical isomorphism [Ma, Proposition 31.3]

(+) H1(Gal(Q/Q), Pic(VQ)) ∼= Hom((NF ∩ F0)/NF0,Q/Z).

Here, F ⊂ Div(VQ) is the group generated by the 27 lines, F0 ⊂ F denotes the
subgroup of principal divisors, and N is the norm map under the operation
of Gal(Q/Q)/H , H being the stabilizer of F .
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Remark 7. Consider the particular case when the Galois group acts transi-
tively on the 27 lines. Then, (+) shows that H1(Gal(Q/Q), Pic(VQ)) = 0.
In particular, there is no Brauer-Manin obstruction in this case.

It is expected that the Hasse principle holds for all cubic surfaces such
that H1(Gal(Q/Q), Pic(VQ)) = 0. (See [CS, Conjecture C].)

3 Computation of the Galois group

Let V be a smooth cubic surface defined over Q and let K be the field of
definition of the 27 lines on V . By Fact 3, K/Q is a Galois extension and
the Galois group G := Gal(K/Q) is a subgroup of W (E6). For general cubic
surfaces, G is actually equal to W (E6). To verify this for particular examples,
the following lemma is useful.

Lemma 8. Let H ⊆ W (E6) be a subgroup which acts transitively on the
27 lines and contains an element of order five. Then, either H is the subgroup
U ⊂ W (E6) of index two or H = W (E6).

Proof. H∩U still acts transitively on the 27 lines and still contains an element
of order five. Thus, we may suppose H ⊆ U .

Assume that H ( U . Denote by k the index of H in U . The natural action
of U on the set of cosets U/H yields a permutation representation i : U → Sk.
As U is simple, i is necessarily injective. In particular, since #U ∤ 8!, we see
that k > 8. Let us consider the stabilizer H ′ ⊂ H of one of the lines. As H acts
transitively, it follows that #H ′ = #H

27 = #U
27·k = 960

k
. We distinguish two cases.

First case: k > 16. Then, k ≥ 20 and #H ′ ≤ 48. This implies that the
5-Sylow subgroup is normal in H ′. Its conjugate by some σ ∈ H therefore de-
pends only on σ ∈ H/H ′. By consequence, the number n of 5-Sylow subgroups
in H is a divisor of #H/#H ′ = 27. Sylow’s congruence n ≡ 1 (mod 5) yields
that n = 1.

Let H5 ⊂ H be the 5-Sylow subgroup. Then, ι(H5) ⊂ S27 is generated by
a product of disjoint 5-cycles leaving at least two lines fixed. It is, therefore,
not normal in the transitive group ι(H). This is a contradiction.

Second case: 9 ≤ k ≤ 16. We have k | 960. On the other hand, the assump-
tion 5 |#H implies 5 ∤ k. This shows, there are only two possibilities, k = 12
and k = 16. As, in U , there is no subgroup of index eight or less, H ⊂ U
must be a maximal subgroup. In particular, the permutation representation
i : U → Sk is primitive.

Primitive permutation representations of degree up to 20 have been clas-
sified already in the late 19th century. It is well known that no group of
order 25 920 allows a faithful primitive permutation representation of degree
12 or 16 [Sm, Table 1]. �

Remark 9. The subgroups of the simple group U have been completely classi-
fied by L. E. Dickson [Di] in 1904. It would not be complicated to deduce the
lemma from Dickson’s list.
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Let the smooth cubic surface V be given by a homogeneous equation f = 0
with integral coefficients. We want to compute the Galois group G.

An affine part of a general line ℓ can be described by four coefficients
a, b, c, d via the parametrization

ℓ : t 7→ (1 : t : (a + bt) : (c + dt)).

ℓ is contained in S if and only if it intersects S in at least four points. This im-
plies that

f(ℓ(0)) = f(ℓ(∞)) = f(ℓ(1)) = f(ℓ(−1)) = 0

is a system of equations for a, b, c, d which encodes that ℓ is contained in S.
By a Gröbner base calculation in SINGULAR, we compute a univariate poly-

nomial g of minimal degree belonging to the ideal generated by the equations.
If g is of degree 27 then the splitting field of g is equal to the field K of
definition of the 27 lines on V . We then use van der Waerden’s criterion [PZ,
Proposition 2.9.35]. More precisely, our algorithm works as follows.

Algorithm 10 (Verifying G = W (E6)). Given the equation f = 0 of a
smooth cubic surface, this algorithm verifies G = W (E6).

i) Compute a univariate polynomial 0 6= g ∈ Z[d] of minimal degree such that

g ∈ (f(ℓ(0)), f(ℓ(∞)), f(ℓ(1)), f(ℓ(−1))) ⊂ Q[a, b, c, d]

where ℓ : t 7→ (1 : t : (a + bt) : (c + dt)).

If g is not of degree 27 then terminate with an error message. In this case, the
coordinate system for the lines is not sufficiently general. If we are erroneously
given a singular cubic surface then the algorithm will fail at this point.

ii) Factor g modulo all primes below a given limit. Ignore the primes dividing
the leading coefficient of g.

iii) If one of the factors is multiple then go to the next prime immediately.
Otherwise, check whether the decomposition type corresponds to one of the
cases listed below,

A := {(9, 9, 9)}, B := {(1, 1, 5, 5, 5, 5, 5), (2, 5, 5, 5, 10)},
C := {(1, 4, 4, 6, 12), (2, 5, 5, 5, 10), (1, 2, 8, 8, 8)}.

iv) If each of the cases occurred for at least one of the primes then output the
message “The Galois group is equal to W (E6).” and terminate.

Otherwise, output “Can not prove that the Galois group is equal to W (E6).”

Remark 11. The cases above are functioning as follows.

a) Case B shows that the order of the Galois group is divisible by five.

b) Cases A and B together guarantee that g is irreducible. Therefore, by
Lemma 8, A and B prove that G contains the index two subgroup U ⊂ W (E6).
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c) Case C is a selection of the most frequent odd conjugacy classes in W (E6).

Remark 12. One could replace cases B and C by their common ele-
ment (2, 5, 5, 5, 10). This would lead to a simpler but less efficient algorithm.

Remark 13. Actually, a decomposition type as considered in step iii) does
not always represent a single conjugacy class in W (E6). Two elements ι(σ),
ι(σ′) ∈ S27 might be conjugate in S27 via a permutation τ 6∈ ι(W (E6)).

For example, as is easily seen using GAP, the decomposition type
(3, 6, 6, 6, 6) falls into three conjugacy classes two of which are even and one
is odd (cf. Remark 4). However, all the decomposition types searched for in
Algorithm 10 do represent single conjugacy classes.

Remark 14. Since we expect G = W (E6), we can estimate the probability of
each case by the Čebotarev density theorem. Case A has a probability of 1

9 .
This is the lowest value among the three cases.

Remark 15. As we do not use the factors of g explicitly, it is enough
to compute their degrees and to check that each of them occurs with
multiplicity one. This means, we only have to compute gcd(g(X), g′(X))
and gcd(g(X), Xpd − X) in Fp[X ] for d = 1, 2, . . . , 13 [Co, Algorithms 3.4.2
and 3.4.3].

4 Computation of Peyre’s constant

The Euler product. We want to compute the product over all τp. For a
finite place p, we have

τp =

(

1 − 1

p

)

· lim
n→∞

V (Z/pnZ)

p2n
.

If the reduction VFp
is smooth then the sequence under the limit is constant

by virtue of Hensel’s Lemma. Otherwise, it becomes stationary after finitely
many steps.

We approximate the infinite product over all τp by the finite product taken
over the primes less than 300. Numerical experiments show that the contri-
butions of larger primes do not lead to a significant change. (Compare the
values calculated for the concrete example in Section 6.)

The factor at the infinite place. We want to compute

τ∞ =
1

2

∫

R

1

‖ gradf‖2
dS

where the domain of integration is given by

R = {(x, y, z, w) ∈ [−1, 1]4 | f(x, y, z, w) = 0} .
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Here, dS denotes the usual hypersurface measure on R, considered as a hy-
persurface in R4. Thus, τ∞ is given by a three-dimensional integral.

Since f is a homogeneous polynomial, we may reduce to an integral over
the boundary of R which is a two-dimensional domain. In our particular case,
we have deg f = 3. Then, a direct computation leads to

τ∞ =

∫

R0

1

‖(∂f
∂y

, ∂f
∂z

, ∂f
∂w

)‖2

dA +

∫

R1

1

‖(∂f
∂x

, ∂f
∂z

, ∂f
∂w

)‖2

dA

+

∫

R2

1

‖(∂f
∂x

, ∂f
∂y

, ∂f
∂w

)‖2

dA +

∫

R3

1

‖(∂f
∂x

, ∂f
∂y

, ∂f
∂z

)‖2

dA

where the domains of integration are

Ri = {(x0, x1, x2, x3) ∈ [−1, 1]4 | xi = 1 and f(x0, x1, x2, x3) = 0} .

dA denotes the two-dimensional hypersurface measure on Ri, considered as a
hypersurface in R3.

We therefore have to integrate a smooth function over a compact part of a
smooth two-dimensional submanifold in R3. To do this, we approximate the
domain of integration by a triangular mesh.

Algorithm 16 (Generating a triangular mesh). Given the equation f = 0 of
a smooth surface in R3, this algorithm constructs a triangular mesh approxi-
mating the part of the surface which is contained in a given cube.

i) We split the cube into eight smaller cubes and iterate this procedure a
predefined number of times, recursively. During recursion, we exclude those
cubes which obviously do not intersect the manifold. To do this, we estimate
‖gradf‖2 on each cube.

ii) Then, each resulting cube is split into six simplices.

iii) For each edge of each simplex which intersects the manifold, we compute
an approximation of the point of intersection. We use them as the vertices of
the triangles to be constructed. This leads to a mesh consisting of one or two
triangles per simplex.

The next step is to compute the contribution of each triangle ∆i to the inte-
gral. For this, we use some adaption of the midpoint rule. We approximate the
integrand g by its value g(Ci) at the barycenter Ci of the triangle. Note that
this point usually lies outside the surface given by f = 0. Algorithm 16 guar-
antees only that the three vertices of each facet are contained in that surface.

The product g(Ci)A(∆i) seems to be a reasonable approximation of the
contribution of ∆i to the integral. We correct by an additional factor, the
cosine of the angle between the normal vector of the triangle and the gradient
vector grad f at the barycenter C.
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Remark 17. In our application, these correctional factors are close to 1 and
seem to converge versus 1 when the number of recursions is growing. This is,
however, not a priori clear. H. A. Schwarz’s cylindrical surface [Sch] consti-
tutes a famous example of a sequence of triangulations where the triangles
become arbitrarily small and the factors are nevertheless necessary for cor-
rect integration.

We use the method described above to approximate the value of τ∞. In Al-
gorithm 16, we work with six recursions.

Remark 18. Our method of numerical integration is a combination of stan-
dard algorithms for 2.5-dimensional mesh generation and two dimensional
integration which are described in the literature [Hb].

On a triangle, we integrate linear functions correctly. This indicates that
the method should converge of second order. The facts that we work with
the area of a linearized triangle and that the barycenters Ci are located in a
certain distance from the manifold generate errors of the same order.

5 Numerical Data

The computations carried out. A general cubic surface is described by
twenty coefficients. With current technology, it is impossible to study all cubic
surfaces with coefficients below a given bound. For that reason, we decided
to work with coefficient vectors provided by a random number generator.
Our first sample consists of 20 000 surfaces with coefficients randomly chosen
in the interval [0 . . . 50]. The second sample consists of 20 000 surfaces with
randomly chosen coefficients from the interval [−100 . . .100].

These limits were, of course, chosen somewhat arbitrarily. There is, at
least, some reason not to work with too large limits as this would lead to
low values of τ . (The reader might want to compare [EJ2, Theorem 3.3.4]
where this is rigorously proven in a different situation.) Low values of τ are
undesirable as they require high search bounds in order to satisfactorily test
Manin’s conjecture.

We verified explicitly that each of the surfaces studied is smooth. For this,
we inspected a Gröbner base of the ideal corresponding to the singular locus.
The computations were done in SINGULAR.

Then, using Algorithm 10, we proved that, for each surface, the full Galois
group W (E6) acts on the 27 lines. The largest prime used was 457. This means
that all our examples are general from the Galois point of view. By conse-
quence, their Picard ranks are equal to 1. Further, according to Remark 7,
the Brauer-Manin obstruction is not present on any of the surfaces considered.

Almost as a byproduct, we verified that no two of the 40 000 surfaces
are isomorphic. Actually, when running part ii) of Algorithm 10, we wrote the
decomposition types found into a file. Primes at which the algorithm failed
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were labeled by a special marker. A program, written in C, ran in an iterated
loop over all pairs of surfaces and looked for a prime at which the decom-
position types differ. The largest prime needed to distinguish two surfaces
was 73.

We counted all Q-rational points of height less than 250 on the surfaces
of the first sample. It turns out that, on two of these surfaces, there are
no Q-rational points occurring as the equation is unsolvable in Qp for some
small p. In this situation, Manin’s conjecture is true, trivially. On each of
the remaining surfaces, we found at least one Q-rational point. 228 examples
contained less than ten points. On the other hand, 1213 examples contained
at least one hundred Q-rational points. The largest number of points found
was 335.

For the second sample, the search bound was 500. Again, on two of these
surfaces, there are no Q-rational points occurring as the equation is unsolv-
able in a certain Qp. There were 202 examples containing between one and
nine points. 1857 examples contained at least one hundred Q-rational points.
The largest number of points found was 349.

To find the Q-rational points, we used a 2-adic search method which works
as follows. Let a cubic surface V be given. Then, in a first step, we determined
on V all points defined over Z/512Z (respectively Z/1024Z). Then, for each
of the points found we checked which of its lifts to P3(Z) actually lie on V .
This leads to an O(B3)-algorithm which may be efficiently implemented in C.

There are algorithms which are asymptotically faster, for example Elkies’
method which is O(B2) and implemented in Magma. A practical comparison
shows, however, that Elkies’ method is not yet faster for our relatively low
search bounds.

Furthermore, using the method described in Section 4, we computed an
approximation of Peyre’s constant for each surface.

The density results. For each of the surfaces considered we calculated the
quotient

#{ points of height < B found } / #{ points of height < B expected }.
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Let us visualize the distribution of the quotients by some histograms.
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Fig. 1. Distribution of the quotients for the first sample

0

0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5 0

0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5

Second sample, B=250 Second sample, B=500

Fig. 2. Distribution of the quotients for the second sample
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Some statistical parameters are as follows.

Table 1. Parameters of the distribution for the first sample

search bound 125 250

mean 0.999 93 0.998 87
standard deviation 0.235 58 0.169 25

Table 2. Parameters of the distribution for the second sample

search bound 250 500

mean 1.000 93 0.999 43
standard deviation 0.225 27 0.161 58

The results for the smallest point. For each of the surfaces in our sam-
ples, we determined the height m(V ) of its smallest point. We visualize the
behaviour of m(V ) in the diagrams below.

At the first glance, it looks very natural to consider the distribution of the
values of m(V ) versus the Tamagawa type number τ(V ). In view of the in-
equalities asked for in the introduction, it seems, however, to be better to make
a slight modification and plot the product m(V )τ(V ) instead of m(V ) itself.

mτ

τ
0.01

0.1

1

10

100

0.001 0.01 0.1 1 10

mτ

τ
0.01

0.1

1

10

100

0.001 0.01 0.1 1 10
First sample Second sample

Fig. 3. The smallest height of a rational point versus the Tamagawa number

Conclusion. Our experiments suggest that, for general cubic surfaces V
over Q, the following assertions hold.

i) There are no obstructions against the Hasse principle.

ii) Manin’s conjecture is true in the form refined by E. Peyre.
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Further, it is apparent from the diagrams in Figure 3 that the experiment
agrees with the expectation for the heights of the smallest points formulated
in Remark 2, above. Indeed, for both samples, a line tangent to the top of the
scatter plot, is nearly horizontal. This indicates that even the strong form of
the estimate should be true, i.e. m(V ) < C(ε)

τ(V )1+ε for any ε > 0.

Running Times. The largest portion of the running time was spent on the
calculation of the Euler products. It took 20 days of CPU time to calculate
all 40 000 Euler products for p < 300. For comparison, we estimated all the
integrals, using six recursions, within 36 hours. Further, it took eight days to
systematically search for all points of height less than 500 on the surfaces of
the second sample. Search for points of height less than 250 on the surfaces
of the first sample took only one day.

When running Algorithm 10, the lion’s share of the time was used for the
computation of the univariate degree 27 polynomials. This took approximately
seven days of CPU time. In comparison with that, all other parts were negligi-
ble. It took only twelve minutes to ensure that all 40 000 surfaces are smooth.
The C program verifying that no two of the surfaces are isomorphic to each
other ran approximately 80 seconds.

6 A concrete example

The Example. Let us conclude the article by some results on the particular
cubic surface V given by

(−) x3 + 2xy2 + 11y3 + 3xz2 + 5y2w + 7zw2 = 0.

Example (−) was not among the surfaces produced by the random num-
ber generator. Our intention is just to present the output of our algorithms
in a specific (and not too artificial) example and, most notably, to show the
intermediate results of Algorithm 10.

A Gröbner base calculation in Magma shows that V has bad reduction at
p = 2, 3, 7, 23, and 22 359 013 270 232 677. The idea behind that calculation
is the same as described above for the verification of smoothness. The only
difference is that we consider Gröbner bases over Z instead of Q.

The Galois group. The first step of Algorithm 10 works well on V , i.e. the
polynomial g is indeed of degree 27. Its coefficients become rather large.
The absolutely largest one is that of d13. It is equal to 38 300 982 629 255 010.
The leading coefficient of g is 53 ·712. We find case A at p = 373. The common
decomposition type (2, 5, 5, 5, 10) of the cases B and C occurs at p = 19, 31,
59, 61, 191, 199, and 223.

Consequently, V is an explicit example of a smooth cubic surface over Q
admitting the property that the Galois group which acts on the 27 lines is
equal to W (E6).
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Remark 19. The first such examples have been constructed by T. Ekedahl [Ek,
Theorem 2.1].

Remark 20. Our example (−) is different from Ekedahl’s. Indeed, in Ekedahl’s
examples, the Frobenius Frob11 acts on the 27 lines as an element of the conju-
gacy class C15 ⊂ W (E6) (in Sir P. Swinnerton-Dyer’s numbering). In our case,
however, the first two steps of Algorithm 10 show that Frob11 yields the de-
composition type (1, 1, 1, 1, 1, 2, 4, 4, 4, 4, 4). This corresponds to the class C18

[Ma, §31, Table 1]. Note that Ekedahl’s examples, as well as ours, have good
reduction at p = 11.

Computation of Peyre’s constant. As an approximation of the Euler
product, we get

∏

p<300

τp ≈ 0.729 750.

Using the Lefschetz trace formula, we calculated all partial products of this
particular Euler product up to p < 40 000. The oscillations, we observed,
remain in a distance of less than two percent. For example, we find

∏

p<40 000

τp ≈ 0.731 732.

For the factor at the infinite place, we get, using six recursions,

τ∞ ≈ 1.786 726.

We list several approximate values in the table below.

Table 3. Approximate values of τ∞

recursions 3 4 5 6 7 8

approx. of τ∞ 1.780 729 1.785 147 1.786 453 1.786 726 1.786 800 1.786 820

∆ 0.004 418 0.001 306 0.000 273 0.000 074 0.000 020

The successive differences decline by a factor close to four from one step to
the next. This conforms to the second order convergence expected for our
method of numerical integration.

Altogether, E. Peyre’s constant is approximately τ ≈ 1.3074.

Rational points. There are 345 Q-rational points on V of height less
than 250 and 693 Q-rational points of height less than 500. The smallest
points are (0 : 0 : 1 : 0) and (0 : 0 : 0 : 1). The smallest non-obvious point
is (1 : 2 : (−3) : (−2)). A complete list of all Q-rational points on V of height
up to 20 looks as follows.
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Table 4. Points on V of height ≤ 20

Point Height Point Height
( 0 : 0 : 0 : 1) 1 ( 4 : -6 : -13 : 2) 13
( 0 : 0 : 1 : 0) 1 ( 5 : 5 : 0 : -14) 14
( 1 : 2 : -3 : -2) 3 (10 : -14 : 12 : 11) 14
( 3 : -2 : -3 : 2) 3 ( 0 : 7 : -16 : 7) 16
( 0 : 7 : -6 : -7) 7 (16 : -8 : 3 : -4) 16
( 0 : 4 : -3 : 8) 8 ( 6 : -9 : 16 : 3) 16
( 5 : -5 : 0 : 8) 8 (12 : 7 : -6 : 17) 17
( 2 : -8 : 8 : 7) 8 (14 : -9 : -2 : 17) 17
(10 : -5 : 0 : -1) 10 ( 6 : -3 : -18 : 7) 18
( 0 : 5 : 0 : -11) 11 ( 9 : -6 : -1 : 18) 18
( 8 : 6 : -11 : -8) 12 ( 3 : 6 : -19 : -6) 19
(12 : -6 : -4 : -3) 12 ( 8 : 7 : -4 : 19) 19
( 9 : -12 : 9 : 10) 12

The field of definition of the 27 lines. Having done the Gröbner base
calculation in Algorithm 10.i), the 27 lines may be computed at high pre-
cision. This allows to find the 45 triangles on V , explicitly. We calculated a
degree 45 resolvent G of the degree 27 polynomial g the zeroes of which are
all the sums ai1 + ai2 + ai3 for ℓi1 , ℓi2 , ℓi3 representing three lines which form
a triangle. Here, ℓi : t 7→ (1 : t : (ai + bit) : (ci + dit)) denote parametrizations
of the 27 lines. As G ∈ Z[X ], our floating point calculation is in fact exact.

Proposition 21. The unique quadratic subfield in the field K of definition of
the 27 lines on V is Q(

√
−23 · 22 359 013 270 232 677).

Proof. K is unramified at all places of good reduction of V . This leaves us
with only 26−1 = 63 possibilities for the quadratic subfieldQ(

√
d). To exclude

62 of them is algorithmically easy.
Indeed, for a good prime p, there is a way to compute

(

d
p

)

without knowl-
edge of d. We factor the degree 45 resolvent G modulo p. If p divides the
leading coefficient or there are multiple factors then we get no answer. Other-
wise,

(

d
p

)

= ±1 depending on whether the decomposition type found is even
or odd in S45.

It turns out that it is sufficient to do this for p = 13, 17, 19, 29, 31, and 53.
�

Proposition 22. The field extension K/Q is ramified exactly at p = 2, 3, 7,
23, and 22 359 013 270 232 677.

Proof. It remains to verify ramification at p = 2, 3, and 7. For that, we
computed in Magma the p-adic factorization of g. The decomposition types are
(3, 24) for p = 2 and 3 and (1, 1, 1, 4, 4, 4, 4, 8) for p = 7.

Let Zp be the decomposition field of p. If p were unramified then
Gal(K/Zp) would be a cyclic group, i.e. Gal(K/Zp) = 〈σ〉 for some
σ ∈ W (E6). On the other hand, on the 27 lines, the orbit structure under the
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operation of Gal(K/Zp) is the same as under the operation of Gal(Qp/Qp).
There is, however, no element in W (E6) which yields the decomposition type
(3, 24) or (1, 1, 1, 4, 4, 4, 4, 8) [Ma, §31, Table 1]. �

Remark 23. This shows that there is no integral model of V which is smooth
over p = 2, 3, 7, 23, or 22 359 013 270 232 677.
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Boston 2005, 303–309


