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Abstract

Let X be an arithmetic variety and L be an element of the Néron-
Severi group of its generic fiber XK . Then there are only finitely many
line bundles L on X, generically belonging to L, such that the degrees of
L on the irreducible components of the special fibers of X and the height
of L are bounded. The concept of a height used here is recalled. Several
elementary properties of this height are proven.

1 Introduction

Let K be a number field, OK its ring of integers and π : X → SpecOK an arith-
metic variety, i.e. a regular scheme, projective and flat over OK , whose generic
fiber XK we assume to be geometrically connected of dimension d. In [J96] there
was suggested a definition for a concept of a height for line bundles on X, fol-
lowing the philosophy of [BoGS] that heights should be objects in arithmetic
geometry, analogous to degrees in algebraic geometry. These heights depend on

i) a Kähler metric ω on X(C) being invariant under complex conjugation F∞
and

ii) a hermitian line bundle T = (T , ‖.‖T ) ∈ P̂ic (X) or, equivalently, its first
Chern class

ĉ1(T , ‖.‖T ) = (T, gT ) ∈ ĈH1(X).

1.1 Definition. A hermitian metric ‖.‖dis on a line bundle L ∈ Pic(X) being
invariant under F∞ is called distinguished, if

i) its Chern form c1(LC, ‖.‖dis) is harmonic and

ii) d̂eg (det Rπ∗L, ‖.‖Q) = 0.
Here ‖.‖Q is Quillen’s metric [Qu], [BGS] induced by ‖.‖dis on the determinant
of cohomology det Rπ∗L ∈ Pic (SpecOK).

1.2 Lemma. Assume the Euler characteristic χ(LK) is different from zero.
Then

a) there exists a distinguished metric ‖.‖dis on L.
b) ĉ1(L, ‖.‖dis) ∈ ĈH1(X) is uniquely determined up to a summand (0, C),

where C is a locally constant function on X(C) being invariant under F∞ and
satisfying ∫

X(C)

Cω∧d = 0.
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c) Such (0, C) ∈ ĈH1(X) are numerically equivalent to zero.
The Proof is an application of the ∂∂-lemma of Hodge theory and elementary
calculations. See [J96, section 1]. �

1.3 Definition. The height hT ,ω(L) of a line bundle L ∈ Pic (X) is given by

hT ,ω(L) := d̂eg π∗

[
ĉ1(L, ‖.‖dis) · ĉ1(T , ‖.‖T )d

]
,

where ‖.‖dis is a distinguished metric on L.

1.4 In [J96] we have analyzed the case of an arithmetic surface.
Theorem (Equivalence). Let C/OK be a regular projective variety of dimension
2, flat over OK and generically connected of genus g, x ∈ CK(K) be a K-valued
point and Θ be the Theta divisor on J = Picg(CK) (defined using x). On C(C)
let ω be a Kähler form invariant under F∞. Fix, finally, a real number H.

Then, for line bundles L ∈ Pic (C), fiber-by-fiber of degree g and of degree of
absolute value less than H on every irreducible component of the special fibers of
C,

hO(x),ω(L) = hΘ(LK) + O(1),

where hΘ is the height on J defined using the ample divisor Θ and O(x) ∈ P̂ic (C)
is any hermitian line bundle extending O(x) ∈ Pic (CK).

1.5 In the higher dimensional case there is no analogue of that theorem to be
expected, since there is no canonical polarization on the Picard scheme. That
is why we are going directly to investigate the fundamental finiteness property
with respect to hT ,ω. For arithmetic surfaces C and line bundles fiber-by-fiber
of degree g = g(CK) this is a direct consequence of the theorem above.
Theorem (Finiteness). Let X/OK be a regular, projective and flat scheme with
X(K) 6= ∅, whose generic fiber XK we assume to be connected. Equip X(C) with
a Kähler form ω being invariant under F∞. Let L ∈ NS(XK) be an equivalence
class of line bundles satisfying the following condition.

(1)
Fix x ∈ XK(K) and let P ∈ Pic (XK×PicL(XK)) be tautological with
P|{x}×PicL(XK)

∼= OPicL(XK). Then (det Rπ2∗P)−1 is ample.

Further assume χ(LK) > 0 for L ∈ L. Let, finally, T ∈ Pic (X), underlying
the hermitian line bundle T ∈ P̂ic (X), defining the heights, be ample. Then for
every H ∈ R there are only finitely many L ∈ Pic (X) with

i) LK ∈ L,
ii) |degT L|Xp,i

| < H for every irreducible component Xp,i of the special fibers,
iii) hT ,ω(L) < H.

1.6 Remarks. i) We note that Pic0(XK) is an abelian variety by [FGA, Exposé
236, Theorem 2.1]. It represents the functor

Pic0(XK) : (Sch/K) → (Sets)

T 7→ {F ∈ Pic (XK × T ), fiber-by-fiber algebraically
equivalent to zero} / π∗2 Pic (T ).

PicL(XK) is a torsor over Pic0(XK).
ii) Condition (1) seems to be a little bit dubious. Nevertheless it turns out

to be fulfilled as the class L is sufficiently large.
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1.7 Theorem. Let K be a field and R/K be a smooth, proper and connected
scheme with R(K) 6= ∅ and fix an x ∈ R(K). Further, let L ∈ NS(R). Consider
the tautological P ∈ Pic (R × PicL(R)) with P|{x}×PicL(R)

∼= OPicL(R). Then

(det Rπ2∗P)−1

is ample on PicL(R), if
a) R is a curve,
b) R is an abelian variety and L is an ample class,
c) (R ∈ NS(R) is arbitrary), L′ is any equivalence class and A an ample

equivalence class, for L = L′ + nA when n � 0.

1.8 Remark. By the Nakai-Moishezon criterion [Kl, Chapter III, §1] the prop-
erty of a line bundle to be ample depends only on its class modulo numerical
equivalence. In particular we would be allowed to weaken our assumptions to
P|{x}×PicL(R) having to be numerically equivalent to zero.

1.9 Remarks. i) The remainder of this paper will mainly be devoted to the
proof of the two theorems above. We will organize it as follows. In the next
section we prove some elementary properties of the heights hT ,ω(L). Section
3 will be devoted to the proof of Theorem 1.7. Then, in section 4, the finite-
ness statement is shown ignoring one technical detail concerning the existence
of ”suitable” sections of sufficiently high powers of an ample line bundle on the
total space of a family. That point we put at the end of the paper to section 5.

ii) In this paper we do not deal with the questions related to extensions of the
ground field K. The behaviour of the equivalence given in Theorem 1.4 under
field extensions and a corresponding generalization of the Finiteness Theorem
will be discussed in a forthcoming paper [J97]. Note that these questions are
technically more difficult as the base changes X×SpecOK

SpecOL are not regular
in general.

2 Elementary Properties

2.1 Remark. In the finiteness statement we restrict ourselves to line bundles
(of given equivalence class modulo algebraic equivalence), whose degrees in the
components of the special fibers are limited. To the contrary, Proposition 2.2 will
investigate the behaviour of the height, when L is changed by a vertical divisor.

2.2 Proposition. Let D ∈ Div (X) be supported over the prime p. Then, for
L ∈ Pic (X) with χ(LK) 6= 0,

hT ,ω(L(D)) = hT ,ω(L) + log(]OK/p) ·
[
degT D − (T d

K) · χ (L(D)|D)

χ(LK)

]
.

In particular hT ,ω(L(D)) = hT ,ω(L) if D is a complete fiber.
Proof. The short exact sequence 0 −→ L −→ L(D) −→ L(D)|D −→ 0 induces
det Rπ∗L(D) = det Rπ∗L⊗ det Rπ∗L(D)|D, which implies by Lemma 2.3 below,
if we assume ‖.‖L(D) = C · ‖.‖L,

d̂eg (det Rπ∗L(D), ‖.‖Q) = d̂eg (det Rπ∗L, ‖.‖Q)

+ log(]OK/p) · χ(L(D)|D)− χ(LK) [K : Q] log C.
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For the distinguished metrics it follows that one has to put C = (]OK/p)
χ(L(D)|D)

χ(LK )·[K:Q].
Intersecting ĉ1(T )d with ĉ1(L(D), ‖.‖dis)− ĉ1(L, ‖.‖dis) gives the claim. If D is a
complete fiber the term in the brackets breaks down to the difference of the two
self-intersection numbers (T d

p )− (T d
K). �

2.3 Lemma. Let Y/OK be an arithmetic variety and L ∈ Pic (Y ). If h and
Ch with C > 0 are two hermitian metrics on L, then

d̂eg (det Rπ∗L, hQ,Ch) = d̂eg (det Rπ∗L, hQ,h) + [K : Q] χ(LK) log C.

Proof. This is [J96, Lemma 1.3] and the definition of arithmetic degree. �

2.4 Remark. We will study the behaviour of h..(L) under changes of the initial
data. The differences will turn out to be of algebro-geometric or complex-analytic
nature, i.e. they consist of degrees and Euler characteristics, data being bounded
in the considerations concerning finiteness.

2.5 Proposition (Change of hermitian line bundle by vertical divisors and
metric). Let L ∈ Pic (X) with χ(LK) 6= 0.

a) Let F ∈ Div (X) be an (effective) divisor supported over p. Then

hT (F ),ω(L) = hT ,ω(L)+d log(]OK/p) ·degT L|F +
d∑

k=2

(
d

k

)
log(]OK/p) ·degT L|F k ,

where F k denotes a representative of F k ∈ CHk
Xp

(X)Q. The right summand
disappears as F = [Xp] or d = 1.

b) On TC ∈ Pic (X(C)) let ‖.‖′ = eϕ · ‖.‖ be another hermitian metric. Then

hT ′
,ω(L) = hT ,ω(L) +

1

2

∑
i+j=d−1

∫
X(C)

ϕ c1(T )i c1(T
′
)j H(c1(L)),

where H denotes the harmonic representative of a cohomology class. In particu-
lar, when ϕ is constant,

hT ′
,ω(L) = hT ,ω(L) +

d

2
ϕ [K : Q] degT LK .

Proof. a) As the change considered is of no effect on the distinguished metrics,
we can calculate explicitly

hT (F ),ω(L)− hT ,ω(L) = d̂eg π∗

(
ĉ1 (L, ‖.‖dis) ·

[(
ĉ1(T ) + (F, 0)

)d

− ĉ1(T )d

])
=

d∑
k=1

(
d

k

)
d̂eg π∗

(
ĉ1 (L, ‖.‖dis) · ĉ1(T )d−k · (F, 0)

k
)
.

b) Here a direct calculation shows

hT ′
,ω(L)− hT ,ω(L)

= d̂eg π∗

(
ĉ1

(
L

)
·
[
ĉ1(T

′
)d − ĉ1

(
T

)d
])
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= d̂eg π∗

(
ĉ1

(
L

)
·

∑
i+j=d−1

ĉ1(T
′
)j ĉ1

(
T

)i
ĉ1(T

′ ⊗ T −1
)

)
= d̂eg π∗

(
ĉ1

(
L

)
·

∑
i+j=d−1

ĉ1(T
′
)j ĉ1

(
T

)i
(0, ϕ)

)
=

1

2

∑
i+j=d−1

∫
X(C)

H(c1(L)) c1(T
′
)j c1

(
T

)i
ϕ. �

2.6 Proposition (Change of Kähler metric). Let ω, ω′ be Kähler metrics on
X(C). Then for every l ∈ H2(X, Z)∩H1,1(X(C)) there exists a smooth function
gl on X(C), such that for every T ∈ P̂ic(X) and L ∈ Pic (X) with c1(LC) = l

hT ,ω′(L) = hT ,ω(L) +

∫
X(C)

gl c1(T )d.

Proof. Let L0 ∈ Pic (X) with c1(L0C) = l and ‖.‖ and ‖.‖′ be distinguished

metrics on L0 with respect to ω and ω′. We obtain gl = log ‖.‖′2

‖.‖2 and have to show

that every L ∈ Pic (X) with c1(LC) = l yields exactly the same function. Hence

it has to be shown that, if ‖.‖L is distinguished for ω, then ‖.‖′L := ‖.‖′
‖.‖ · ‖.‖L is

for ω′. First,

c1(LC, ‖.‖′L) = c1(L0C, ‖.‖′)− c1(L0C, ‖.‖) + c1(LC, ‖.‖L)

is harmonic with respect to ω′ since the last two summands are equal as they are
harmonic with respect to ω and in the same cohomology class. Furthermore, by
[BGS, Theorem 0.2 and Theorem 0.3]

0 = d̂eg (det Rπ∗L0, ‖.‖Q,ω)− d̂eg
(
det Rπ∗L0, ‖.‖′Q,ω′

)
=

1

2

∫
X(C)

c̃h(L0C, ‖.‖, ‖.‖′) Td(π, ω) +
1

2

∫
X(C)

ch(L0C, ‖.‖′) T̃d(π, ω, ω′).

But when we turn over to L in the formula above all the data remain unchanged,
since this is tensoring by (L, ‖.‖L)⊗ (L0, ‖.‖)−1, the Chern form of whose restric-
tion to X(C), and therefore also the Chern character form, vanish. Note formula
(1.3.5.2) in [GS90]. �

2.7 Proposition (Birational morphisms). Let p : X ′ → X be a morphism of
arithmetic varieties inducing an isomorphism between the generic fibers. Then,
for L ∈ Pic (X),

hp∗T ,ω(p∗L)

= hT ,ω(L)− (T d
K)

χ(LK)

∑
p

log(]OK/p)
∑
j≥1

(−1)jχ
(
Xp, (R

jp∗OX′)|Xp ⊗ L
)
.

If Rjp∗OX′ = 0 for all j ≥ 1, then the correction term vanishes. This is the case
if X ′ is the blow-up of a regular embedding.
Proof. Let ‖.‖L be distinguished and p∗L be equipped with the same metric.
We easily obtain

d̂eg (det R(πp)∗p
∗L, ‖.‖Q)− d̂eg (det Rπ∗L, ‖.‖Q)

=
∑
q≥0

(−1)q (log ]cokerhq − log ]kerhq) ,
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where hq : Hq(X,L) → Hq(X ′, p∗L) is the natural map. Indeed, the Quillen
metrics are the same on both sides and what remains is elementary linear algebra.

The Leray spectral sequence H i(X, Rjp∗p
∗L) =⇒ H i+j(X ′, p∗L) gives, when

we note that p∗p
∗L = L,∑

q≥0

(−1)q (log ]cokerhq − log ]kerhq)

=
∑

j≥1,i≥0

(−1)i+j log ]H i(X, Rjp∗p
∗L)

=
∑
j≥1

∑
p

(−1)j χ
(
X, (Rjp∗OX′)|Xp ⊗ L

)
log(]OK/p)

=: ϕ.

So the metric on p∗L has to be changed by the factor e
− ϕ

χ(LK ) [K:Q] . It follows that

ĉ1 (p∗L, ‖.‖dis) = p∗ ĉ1 (L, ‖.‖dis)−
2ϕ

χ (LK) [K : Q]
(0; 1)

and, thus

hp∗T ,ω (p∗L) = d̂eg π∗p∗

[(
p∗ĉ1(L, ‖.‖dis)−

2ϕ

χ (LK) [K : Q]
(0; 1)

)
· p∗ĉ1(T )d

]
= hT ,ω(L)− (T d

K)

χ(LK)
ϕ.

The last statement is [SGA6, Exposé VII, Lemma 3.5]. �

2.8 Remark (Change of model). Let X and X ′ be arithmetic varieties connec-
ted by an isomorphism ι : XK → X ′

K between their generic fibers. If T ∈ P̂ic (X)
and T ′ ∈ P̂ic (X ′) are such that there is an isomorphism ι∗T ′

K

∼=−→ TK , then the
results above control the difference hT ,ω(L) − hT ′,ω(L′) for L ∈ Pic (X) and
L′ ∈ Pic (X ′) with ι∗L′K ∼= LK . To make this precise one needs birational
morphisms, inducing isomorphisms between the generic fibers, as follows:

X̃
p↙ ↘p′

X X ′

For X̃ one could choose the Zariski closure of the diagonal in

XK ×K X ′
K ↪→ X ×OK

X ′,

but, unfortunately, there is no regular model available. Nevertheless the results
above work well, since on a singular scheme we can use the intersection product
from [GS92, Theorem 4]. Alternatively one can resolve singularities by an alter-
ation as proven in [Jo, Theorem 8.2], intersect the Chern classes of the pull-backs,
push-forward again and divide by the degree. See [J97, Appendix] for details.
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3 Negativity of the Determinant Line Bundle

3.1 Remark. In this section we will prove Theorem 1.7. First we recall the
case of curves where the statement is well known. Then we deal with the higher
dimensional case by some induction argument which is mainly based on the
weak Lefschetz Theorem. Afterwards the situation of an abelian variety will be
considered separately by a direct computation using the Grothendieck-Riemann-
Roch theorem.

For this section we fix the following notations. K is a field and R/K a
connected smooth projective scheme with R(K) 6= ∅. We choose one point
x ∈ R(K). Pic0(R) denotes the neutral connected component of the Picard
scheme of R. As R is regular, this is an abelian variety. Let P∈Pic

(
R×Pic0(R)

)
be the tautological line bundle, i.e. assume

i) P|{x}×Pic0(R)
∼= OPic0(R),

ii) If P/K is an arbitrary scheme and E ∈ Pic (R × P ), fiber-by-fiber
algebraically equivalent to zero, then there exist exactly one morphism
i : P → Pic0(R) and E0 ∈ Pic (P ) such that E ∼= (id× i)∗P ⊗ π∗1E0.

Further, let L0 ∈ Pic (R). Our question is whether (det Rπ2∗ (P ⊗ π∗1L0))
−1

is ample on Pic0(R).

3.2 Lemma (Curves). If R is a curve and L0 ∈ Pic (R) is arbitrary, then

(det Rπ2∗(P ⊗ π∗1L0))
−1

is ample on the Jacobian J := Pic0(R). It is, independently of L0, algebraically
equivalent to O(Θ).
Proof. The question depends only on the class of L0 modulo algebraic equiva-
lence. So assume L0

∼= O(dx) for some d ∈ Z. Consider two integers d1 < d2.
The exact sequence 0 → O(d1x) → O(d2x) → O(d2−d1)x → 0 induces

det Rπ2∗ (P ⊗ π∗1O(d1)) ∼= det Rπ2∗ (P ⊗ π∗1O(d2)) .

So we are reduced to the case d = g − 1. But then by [Fa84, p. 396] or [MB,
Proposition 2.4.2]

(det Rπ2∗(P ⊗ π∗1L0))
−1 ∼= O(Θ)

and this is ample on J . �

3.3 Proposition (Higher dimensional varieties). Let R/K be a connected
proper smooth variety, P ∈ Pic (R × Pic0(R)) the tautological line bundle and
A ∈ Pic (R) be ample. Then for every L0 ∈ Pic (R) there is an n0 ∈ N such that(

det Rπ2∗
(
P ⊗ π∗1

(
L0 ⊗A⊗n

)))−1

is ample for n ≥ n0.
Proof. The statement is trivial for dim R = 0 and we know it is true for
dim R = 1. So using induction we assume the theorem is clear for varieties of
dimension d− 1 and want to prove it for dimension d ≥ 2.

A can be replaced by an arbitrary tensor power. So assume it is very ample.
Then, by Bertini’s theorem, A = OR(D), where D can be assumed to be a
smooth connected prime divisor. The short exact sequence

0 −→ OR −→ A −→ A|D −→ 0



Jahnel

induces

0 −→ P⊗π∗1(L0⊗A⊗n) −→ P⊗π∗1(L0⊗A⊗n+1) −→ P⊗π∗1(L0⊗A⊗n+1|D) −→ 0

and therefore an isomorphism

det Rπ2∗
(
P ⊗ π∗1

(
L0 ⊗A⊗n+1

))
(2)

∼= det Rπ2∗
(
P ⊗ π∗1

(
L0 ⊗A⊗n

))
⊗ det Rπ2∗

(
P ⊗ π∗1

(
L0 ⊗A⊗n+1|D

))
.

This formula will lead us to the assertion.
First Case: dim X = 2.

The functor det Rπ2∗ commutes with arbitrary base changes and the restriction
morphism Pic0(R) → Pic0(D) is finite by the weak Lefschetz Theorem [SGA6,
Exposé XIII, Lemma 3.11]. Therefore (det Rπ2∗(P ⊗ π∗1(L0 ⊗ A⊗n+1|D)))−1 is
dual to ample and, up to algebraic equivalence, it is independent of n as D is
one dimensional. It follows that

det Rπ2∗
(
P ⊗ π∗1

(
L0 ⊗A⊗n

))
alg∼ det Rπ2∗(P ⊗ π∗1L0)⊗ (det Rπ2∗(P ⊗ π∗1(L0|D)))⊗n

being ample for n � 0.
Second Case: dim X > 2.

Here the same argumentation as in the first case gives, combined with the in-
duction assumption, still that det Rπ2∗ (P ⊗ π∗1 (L0 ⊗A⊗n+1|D)), the correction
term in (2), is dual to ample for n � 0. We shall study the dependence of this
determinant on n.

The line bundle O(D)|D is very ample on D and therefore it can be repre-
sented by a smooth connected prime divisor E on D. We get a formula analogous
to (2).

det Rπ2∗
(
P ⊗ π∗1

(
L0 ⊗A⊗n+1|D

))
∼= det Rπ2∗

(
P ⊗ π∗1

(
L0 ⊗A⊗n|D

))
⊗ det Rπ2∗

(
P ⊗ π∗1

(
L0 ⊗A⊗n+1|E

))
.

Here (det Rπ2∗(P ⊗ π∗1(L0 ⊗A⊗n+1|E)))
−1

is ample for n � 0 by weak Lefschetz
and the induction assumption, meaning that

det Rπ2∗
(
P ⊗ π∗1

(
L0 ⊗A⊗n+1|D

))
∼= det Rπ2∗

(
P ⊗ π∗1

(
L0 ⊗A⊗n|D

))
⊗ (ample)−1.

Formula (2) goes over into

det Rπ2∗
(
P ⊗ π∗1

(
L0 ⊗A⊗n+r

))
∼= det Rπ2∗

(
P ⊗ π∗1

(
L0 ⊗A⊗n

))
⊗

r⊗
i=1

det Rπ2∗
(
P ⊗ π∗1

(
L0 ⊗A⊗n+i|D

))
= det Rπ2∗

(
P ⊗ π∗1

(
L0 ⊗A⊗n

))
⊗

(
det Rπ2∗

(
P ⊗ π∗1

(
L0 ⊗A⊗n+1|D

)))⊗r

⊗ (ample)−1,

and this is dual to ample as r � 0. �
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3.4 Proposition (Abelian varieties). Let R/K be an abelian variety and
P ∈ Pic (R × R∨) be the tautological line bundle. If L0 ∈ Pic (R) is ample,
then

(det Rπ2∗(P ⊗ π∗1L0))
−1

is ample on R∨.
Proof. L0 defines a polarization of the abelian variety R. So we have a finite

morphism c : R → R∨ satisfying (id × c)∗P alg∼ m∗L0 ⊗ (π∗1L0)
−1 ⊗ (π∗2L0)

−1,
where m : R × R → R denotes the composition and π1 and π2 are the natural
projections as usual [Mu]. Obviously, we have to show that(

det Rπ2∗
(
m∗L0 ⊗ (π∗2L0)

−1))−1

is ample on R. For this we will use the Grothendieck-Riemann-Roch theorem

ch(π2∗α) Td(TR) = π2∗(ch(α) Td(TR×R)) , (3)

which simplifies in our case to the formula ch(π2∗α) = π2∗ (ch(α)) as for abelian
varieties the Todd character is trivial. Here α denotes an element of K0(R×R),
the Chern characters map K0(?) to the Chow ring CH·

Q(?) and π2∗ is the push-
forward in the sense of K-, respectively Chow-theory. But push-forward by π2

in K-theory is the Rπ2∗, we are interested in, such that we can specialize (3) to

c1

(
det Rπ2∗

(
m∗L0 ⊗ (π∗2L0)

−1)) =
(
π2∗

(
ch

(
m∗L0 ⊗ (π∗2L0)

−1)))(1)

=
1

(d + 1)!
π2∗

(
(m∗c1 (L0)− π∗2c1 (L0))

d+1
)
,

where d = dim R. Note that for line bundles ch(L) =
∑∞

i=0
1
i!
(c1(L))i but we are

interested in the direct summand CH1(R)Q only. Since computations in the Chow
groups involving the composition map m are somewhat difficult we introduce the
isomorphism

s : R×R → R×R

(r1, r2) 7→ (r1 − r2, r2).

We note π2s = π2 and ms = π1. It follows that

c1

(
det Rπ2∗

(
m∗L0 ⊗ (π∗2L0)

−1))
=

1

(d + 1)!
π2∗s∗

(
s∗(m∗c1 (L0)− π∗2c1 (L0))

d+1
)

=
1

(d + 1)!
π2∗

(
(π∗1c1 (L0)− π∗2c1 (L0))

d+1
)

=
1

(d + 1)!
π2∗

[
d+1∑
i=0

(−1)d+1−i

(
d + 1

i

)
(π∗1c1 (L0))

i (π∗2c1 (L0))
d+1−i

]
.

But the summand for i = d is the only one not vanishing under π2∗ and we get

c1

(
det Rπ2∗

(
m∗L0 ⊗ (π∗2L0)

−1)) = − 1

d!
π2∗

[
(π∗1c1(L0))

d (π∗2c1(L0))
]

= − 1

d!
π2∗π

∗
1c1(L0)

d · c1(L0)

= − 1

d!
(c1(L0)

d) · c1(L0),



Jahnel

where c1(L0) is an ample divisor and the self-intersection number
(
c1(L0)

d
)

is
positive. Note finally that ampleness can be tested in CH1(R)Q. �

3.5 Questions. Can one get a more precise result in the general case than
that shown in Proposition 3.3? Can, in particular, analytic methods lead to
better results than ours? One could use an analytic Riemann-Roch formula
[BGS, Theorem 0.1] and investigate whether the determinant of cohomology has
a hermitian metric with negative curvature. Proposition 3.4 above can be proven
this way by a rather straightforward computation.

4 Finiteness

4.1 Scheme-Theoretic Constructions

4.1.1 Remark. In this section we will prove Theorem 1.5. It is very natu-
ral to adopt the point of view of moduli spaces. So fix x ∈ XK(K) and let
P ∈ Pic (XK ×PicL(XK)) be the tautological line bundle satisfying

P|{x}×PicL(XK)
∼= OPicL(XK).

Since our concept of a height depends on the determinant of cohomology, we
would like to change P in such a way that det Rπ2∗P ′ becomes trivial. We have
det Rπ2∗(P ⊗ π∗2M) = det Rπ2∗P ⊗M⊗l, where l = χ(P). So we would have
to divide the line bundle det Rπ2∗P ∈ Pic (PicL(XK)) by l. In general this is
impossible. There are obstructions lying in H2

ét(PicL(XK), µl). That is why we
carry out the idea to consider pull-backs under étale covers.

4.1.2 Convention. We will use the phrase commutative proper group scheme
(over a field) for an extension of a commutative finite group scheme by an abelian
variety. Note that in characteristic zero finite group schemes are nothing but
finite groups [Mu, §11].

4.1.3 Lemma. Let K be a field, A/K an abelian variety and l a natural num-
ber. Then there is a finite flat morphism p : A′ → A such that

a) for every L ∈ Pic (A) the pull-back p∗L is l-divisible,
b) A′ is an abelian variety,
c) if 2, l - char(K), then p is étale,
d) if K is a number field, then A(K)/p∗A

′(K) is a finite group.
Proof. We choose the multiplication map p = [2l] : A → A. Then b) is trivial
and c) is standard as well as the fact that p is finite flat.

a) By [Mu, §6, Corollary 3] p∗L = [2l]∗L = L⊗(2l2+l) ⊗ ([−1]∗L)⊗(2l2−l) being
obviously l-divisible.

d) We have A(K)/p∗A
′(K) = A(K)/2lA(K) and this is a finite group by the

weak Mordell-Weil theorem. �

4.1.4 Corollary. Let A/K be an abelian variety over a number field with
A(K) 6= ∅ and l ∈ N. Then there exist a commutative proper group scheme
A′/K and a finite étale morphism p : A′ → A such that

a) for every L ∈ Pic (A) the pull-back p∗L is l-divisible.



Jahnel

b) The natural map p∗ : A′(K) → A(K) is surjective.
Proof. Let G ⊆ A(K) be a (finitely generated) subgroup such that
G � A(K)/2lA(K) becomes surjective and G′ ⊆ G be a torsion-free subgroup
with ]G/G′ < ∞. We put

A′ := (A×G)/G′,

where G′ ⊆ A×G denotes the subgroup {(g,−2l · g)|g ∈ G′}. Obviously, A′ is a
commutative proper group scheme consisting of ]G/2lG′ components isomorphic
to A.

A×G → A

(a, g) 7→ 2l · a + g,

induces the finite étale morphism p : A′ → A. Now assertion b) is clear since
A(K) × G � A(K) is surjective by construction. For a) we note that on every
component A′

i ⊆ A′ one has p|A′
i
= vxi

[2l], where vxi
denotes delay by some xi.

Hence (p|A′
i
)∗L = [2l]∗v∗xi

L being obviously l-divisible. �

4.1.5 Remark. By the Mordell-Weil theorem one would be allowed to put
G = A(K). Note that we do not use this theorem here.

4.1.6 Proposition. There exist a commutative proper group scheme P/K, a
line bundle U ∈ Pic (XK ×K P ), a divisor D ∈ Div (XK) and a natural number
n such that

i) U belongs to L fiber-by-fiber.
ii) The morphism p : P → PicL(XK) induced by U is finite, étale and sur-

jective on K-valued points. Further one has

det Rπ2∗U ∼= OP .

iii) U(π∗1D)⊗n admits a suitable section s, i.e. s|X×{y} 6= 0 for every y ∈ P .
Proof. Consider the tautological P ∈ Pic (XK × PicL(XK)) and put
A := PicL(XK) and l := χ(P|XK×{.}). Then for P take the A′ given by Corollary
4.1.4 above. Choose M∈ Pic (P ) such that M⊗l = p∗(det Rπ2∗P)−1. Then put

U := (id× p)∗P ⊗ π2
∗M.

This is easily seen to fulfill i) and the first part of ii). Further, one has

det Rπ2∗U = det Rπ2∗((id× p)∗P)⊗M⊗l

= p∗ det Rπ2∗P ⊗M⊗l

= OP .

iii) By assumption (detRπ2∗P)−1 is ample, hence p∗(detRπ2∗P)−1 and M
are, too [EGA II, Proposition 4.6.13.ii]. Consequently, the line bundle
U|{x}×P = p∗P|{x}×PicL(XK) ⊗M = M is ample. Thus, U is ample fiber-by-
fiber since all the U|{.}×P are mutually algebraically equivalent (up to extension
of ground field). By [EGA III, Théorème 4.7.1] it is relatively ample. There-
fore, by [EGA II, Proposition 4.6.13.ii], there is a divisor D ∈ Div (XK) such
that U(π∗1D) is ample. In the case dim X ≥ 1 the assertion is a consequence
of Proposition 5.2. The case dim X = 0 is very degenerate; one has necessarily
X = Spec K and PicL(XK) = Spec K such that one can put l := 1 and the
whole statement becomes trivial. �
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4.1.7 Corollary. There exist a quasi-projective smooth group scheme P/OK,
a line bundle U ∈ Pic (X ×OK

P ), a divisor D ∈ Div (X) and n ∈ N such that
i) U|XK×KPK

belongs to L fiber-by-fiber.
ii) The morphism p : PK → PicL(XK) induced by U|XK×KPK

is finite, étale
and surjective on K-valued points. Further one has

det Rπ2∗U ∼= OP (F ),

where F =
∑

p∈SpecOK ,i ap,i (Pp,i) is a divisor supported in the special fibers.
iii) U(π∗1D)⊗n admits a generically suitable section s, i.e., s|XK×{y} 6= 0 for

every geometric point y in PK.
iv) All K-valued points of P can be extended to OK-valued points.

Proof. For P choose the Néron model of the variety P . As this is smooth,
X ×OK

P is a regular scheme. In particular, a divisor defining U ∈ Pic (X × P )
can be closed in the Zariski topology and defines a line bundle U . For D we
choose the Zariski closure of D. Then iv) is the defining property of the Néron
model, i) and the first part of ii) are clear and det Rπ2∗U is trivial on PK . Thus
it allows a rational section defining F . For iii) we know that U(π∗1D)⊗n has a
suitable section s′ being defined on XK×K PK . Its extension is a rational section
whose poles are supported in the special fibers. Putting s := as′, where a ∈ OK

is sufficiently highly divisible, gives the claim. �

4.2 Special Fibers

4.2.1 Proposition. Let Xp be a special fiber of X and Xp,i be an irreducible
component of Xp. Then for any scheme P/OK being of finite type and
U ∈ Pic (X ×OK

P ) there exists D ∈ R such that |degT U|Xp,i×y| < D for each
y ∈ P (OK).
Proof. The question depends only on yp ∈ Pp(OK/p). So we work with Pp in-
stead of P . Further, we consider, more generally, geometric points y ∈ Pp(OK/p).
Obviously we may replace Pp by an integral scheme T . By the result of de Jong
[Jo] we may assume it is regular.

Note that by assumption every local ring of a closed point of Xp is Cohen-
Macaulay of dimension d. In particular dim Xp,i = d for every component Xp,i.
So the degrees can be given as follows. Without restriction assume T to be very
ample. Then let i : Xp,i → PN

OK/p be an embedding such that T = i∗O(1). Take
the Chern class c1

(
U|Xp,i×{y}

)
∈ CH1

(
Xp,i

)
and put

degT U|Xp,i×{y} := deg
[(

i∗c1

(
U|Xp,i×{y}

))
· c1(O(1))d−1

]
= deg (id× {y})∗

[
((i× id)∗c1(U|Xp,i×T )) · c1(π

∗
1O(1))d−1

]
As we work on PN

OK/p × T now, the claim follows from the next lemma. �

4.2.2 Lemma. Let k be a field, M/k be a regular proper scheme of dimension
N and T/k be a regular scheme of finite type. Further, let α ∈ CHN(M × T ).
Then

deg αt = deg (id× t)∗α
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is bounded when t runs over the geometric points of T , t ∈ T (k).
Proof. Assume, the statement is wrong. By Noetherian induction there is
a minimal closed subscheme T0 ⊆ T for whose geometric points deg αt is still
unbounded. Obviously, T0 must be integral. Let T0,reg ⊆ T0 be its regular locus.
Then choose a cycle A ∈ ZN(M × T0,reg) representing α|M×T0,reg . By [EGA IV,
Théorème 6.9.1] there is a nonempty open subset U ⊆ T0,reg over which A is flat;
consequently deg αt is bounded there. Thus it must be unbounded on T0 \ U
being a contradiction. �

4.2.3 We are now going to deal with the whole group of divisors concentrated
in a special fiber Xp of X.
Lemma. Let Dp ⊆ Div (X) be the group of divisors supported over p. Then

a) 〈Xp,i, Xp,j〉 := degT O(Xp,i)|Xp,j
gives rise to a symmetric bilinear pairing.

b) 〈Xp,i, Xp,j〉 is the degree of [Xp,i] · [Xp,j] · c1(T )d−1 in CHd+1
Xp

(X)Q.
c) 〈Xp,i, Xp,j〉 ≥ 0 for i 6= j. Equality holds if and only if |Xp,i| ∩ |Xp,j| = ∅.
d) 〈Xp,i, Xp〉 = 0 for every i.

Proof. a), b) and d) are standard. For c) the case |Xp,i| ∩ |Xp,j| = ∅ is trivial.
Otherwise [Xp,i] · [Xp,j] is an effective cycle as the intersection multiplicities can
be defined using the Tor-formula of Serre and there are no higher Tor’s occurring
when one intersects properly with a locally main divisor. 〈Xp,i, Xp,j〉 is the degree
of its image in PN

OK/p. �

4.2.4 Corollary. The pairing 〈., .〉 on Dp is negative semi-definite, whereas
only multiples of the fiber have square zero.
Proof. That works as in the case of a surface. Let [Xp] =

∑
i Ci[Xp,i]. Then

0 = 〈Xp,i, Xp〉 = Ci〈Xp,i, Xp,i〉+
∑
k 6=i

Ck〈Xp,i, Xp,k〉, hence

〈CiXp,i, CiXp,i〉 = −
∑
k 6=i

〈CiXp,i, CkXp,k〉.

With b1, . . . , bi, . . . ∈ Q it follows that〈∑
i

biCiXp,i,
∑

i

biCiXp,i

〉
=

∑
i

b2
i 〈CiXp,i, CiXp,i〉+

∑
j 6=k

bjbk〈CjXp,j, CkXp,k〉

= −1

2

∑
j 6=k

(bj − bk)
2〈CjXp,j, CkXp,k〉.

Therefore 〈., .〉 is negative semi-definite; if the square is zero we must have bj = bk

as soon as Xp,j and Xp,k meet. Since Xp is connected all bi must be mutually
equal. �

4.2.5 Corollary. Let D ∈ R. Then there are only finitely many L ∈ Pic (X)
with L|XK

∼= OXK
and

∣∣degL|Xp,i

∣∣ < D for every Xp,i.
Proof. If Xp,i is irreducible, then degL|Xp = 0. Hence it is enough to show
finiteness when degL|Xp,i

= Dp,i are fixed. Then by Corollary 4.2.4 L is uniquely
determined up to a pull-back from Pic (OK). But the class number is finite. �
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4.2.6 Proposition. Let P/OK be a scheme of finite type, U ∈ Pic (X ×OK
P )

and F ∈ Div (X) a divisor being supported over p ∈ SpecmOK. Then

hT ,ω (U|X×y(F )) = hT ,ω (U|X×y) + O(1)

when y runs over P (OK).
Proof. One has to use the formula from Proposition 2.2. It is clear that
everything in the correction term remains constant except, may be, the term
χ (L(D)|D) being here χ (U|X×y(F )|F ) = χ((U(π∗1F )|F×Pp)yp). But by flatness
the Euler characteristic is locally constant on Pp and therefore bounded. �

4.3 Comparison With Heights For Cycles

4.3.1 Remark. In the situation of Corollary 4.1.7 we want to compare
hT ,ω (U|X×y) with the height hT (div(s|X×y)) of the cycle div(s|X×y) for
y ∈ P (OK). We are going to use the finiteness statement for this concept of
a height [BoGS, Theorem 3.2.5].

4.3.2 Proposition. Let P/OK be a scheme of finite type whose generic fiber
PK is proper and U ∈ Pic (X ×OK

P ) such that det Rπ2∗U = OP (F ) where F
is a divisor supported in special fibers. Assume for some n ∈ N there are some
divisor D ∈ Div (X) and a suitable section s ∈ Γ

(
X ×OK

P, U(π∗1D)⊗n). Then,
when y runs over P (OK), one has

hT ,ω(U|X×y) =
1

n
hT (div(s|X×y)) + O(1).

Proof. We equip the line bundle UC on (X ×OK
P )(C) with a hermitian metric,

which is invariant under F∞ and whose Chern form c1(UC, ‖.‖) is harmonic fiber-
by-fiber. The hermitian line bundle (det Rπ2∗U , ‖.‖Q) ∈ P̂ic (P ) commutes with
arbitrary base changes, in particular we may consider its restrictions to OK-
valued points y ∈ P (OK). Then the unit section

1 ∈ Γ(P, det Rπ2∗U) = Γ(P,OP (F ))

yields only finitely many different pole-zero-divisors on SpecOK , while ‖1‖ re-
mains bounded as P (C) is compact. Consequently,

d̂eg (det Rπ2∗U|X×y, ‖.‖Q)

is bounded for y ∈ P (OK). By Lemma 2.3 there is a distinguished metric
‖.‖dis = eCy · ‖.‖ on (U|X×y)C, where Cy remains bounded in its dependence on
y ∈ P (OK). Hence,

hT ,ω (U|X×y) = d̂eg π∗

[
ĉ1(U|X×y, ‖.‖dis) · (T, gT )

d
]

= d̂eg π∗

[
ĉ1(U|X×y, ‖.‖) · (T, gT )

d
]

+ d̂eg π∗

[
(0,−2Cy) · (T, gT )

d
]

=
1

n
d̂eg π∗

[
ĉ1(U⊗n|X×y, ‖.‖) · (T, gT )

d
]

+ O(1).
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But ĉ1 (O(π∗1D)|X×y, ‖.‖) = ĉ1 (O(D), ‖.‖) is independent of y as soon as we
have metrized appropriately, i.e. we can replace U⊗n by U(π∗1D)⊗n, admitting
the section s. We get

hT ,ω(U|X×y)

=
1

n
d̂eg π∗

[
(div(s|X×y),− log ‖s|X×y‖2) · (T, gT )

d
]

+ O(1)

=
1

n
d̂eg

(
(T, gT )

d
∣∣∣div (s|X×y)

)
− 1

2

∑
σ:K↪→C

∫
X(C)

log ‖s|X×y‖2 · ω∧d
(T,gT )

+ O(1)

=
1

n
hT (div (s|X×y))−

1

2

∑
σ:K↪→C

∫
X(C)

log ‖s|X×y‖2 · ω∧d
(T,gT )

+ O(1),

where (.|.) : ĈHd (X) × Zd (X) → ĈH1 (SpecOK) denotes the restriction pair-
ing introduced in [BoGS, section 2.3] and hT is the height for cycles being the
main subject of that paper. It remains to bound the integrals. This is done in
Proposition 4.3.4 below. �

4.3.3 Remark. All the cycles div (s|X×y) have the the same degree and they
are different as soon as the line bundles defined by them are different. The
Proposition above and [BoGS, Theorem 3.2.5] imply, among the line bundles
U|X×y there are only finitely many with bounded height. In order to prove the
asserted finiteness it will remain to bring the degree condition into play.

4.3.4 Proposition (fiber integrals). Let M be a connected compact complex
manifold of dimension d and T be a complex space. We consider a hermitian
line bundle L ∈ Pic (M ×T ) and a section s ∈ Γ(M ×T,L) not vanishing in any
fiber M × {t}. Let α ∈ Cdd(M × T ) be a continuous (d, d)-form. Then∫

M

αt · log ‖st‖2

depends continuously on t ∈ T .
Proof. Let t ∈ T . For every x ∈ M there are open euclidian neighbourhoods
Ux of x and U

(x)
t of t such that L is trivial on Ux × U

(x)
t and there exists a

trivialization (L|
Ux×U

(x)
t

, ‖.‖) → (O
Ux×U

(x)
t

, ‖.‖can) of bounded norm whose inverse
is of bounded norm, too. Because of compactness finitely many Ux cover M , say
M =

⋃r
i=1 Uxi

. We may choose a smooth partition of unity embedded into
{Uxi

}i∈{1,...,r}.
Thus, shrinking M and T we may assume that L is trivial if we allow M

to be no more compact. Instead we still have at least supp α ⊂ G × T , where
G ⊆ M is open and G is compact. The section s is reduced to a holomorphic
function M × T → C not vanishing in any fiber. The asserted continuity is [St,
Theorem 4.9]. �

4.3.5 Conjecture. Let M and T as above and α ∈ Akk(M × T ) be a closed
form. Let Z1 and Z2 be cycles on M × T of codimensions p1, respectively p2,
p1 > 0. Put k := d1 + 1 − p1 − p2. Further, let g be a Green form for Z1 of
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logarithmic type along |Z1|. Assume, Z1 and Z2 meet properly and for every
t ∈ T , Z1, Z2 and |Z1| ∩ |Z2| meet M × {t} properly. Then∫

M

αtgtδZ2,t

depends continuously on t.

4.3.6 Remark. In [BoGS, Proposition 1.5.1] the case dim T = 1 of Conjecture
4.3.5 is shown. The general case, although widely accepted, seems to be surpris-
ingly complicated. Good results for the case p1 = 1 are given in [St] and [Ki].
For our purposes they turned out to be sufficient. Nevertheless it seems that
what is known is very much constructed for special cases.

4.3.7 Proof of Theorem 1.5. Let L ∈ Pic (X) be as in the theorem. By con-
struction LK = U|X×{yK} for some y ∈ P (OK), hence L = U|X×y⊗F , where F is
supported in the special fibers. Now let D := maxXp,i; y∈P (OK)

∣∣degT U|Xp,i×{yp}
∣∣

be the constant given by Proposition 4.2.1. Then
∣∣degT F|Xp,i

∣∣ < H + D for
every Xp,i, i.e. there are only finitely many possibilities for F . So it is enough
to show finiteness for a fixed F . But this is Proposition 4.2.6 combined with
Remark 4.3.3. �

5 Suitable Sections

5.1 Definition. Let Y → T be a surjective proper morphism of schemes and
L ∈ Pic (Y ). We say, s ∈ Γ(Y,L) would be suitable, if s|Yt 6= 0 for all t ∈ T .

5.2 It is our goal to prove the following
Proposition. Let Y → T be a proper morphism of schemes of finite type over
an infinite field k, all whose geometric fibers are at least one-dimensional, and let
L ∈ Pic (Y ) be ample. Then there are n ∈ N and a suitable section s ∈ Γ(Y,L⊗n).

5.3 Definition. Let k be an algebraically closed field and P ⊆ PN
k be a reduced

subscheme. Then the linear hull L(P ) of P is given by

L(P ) :=
⋂

H⊆PN hyperplane, H⊇P

H.

5.4 Lemma. Let k be algebraically closed, P ⊆ PN
k be a closed subscheme and

P → T be a surjective morphism. Assume

dim L ((Pt)red) ≥ dim T

for every closed point t ∈ T . Then a general section s ∈ Γ(P,O(1)) is suitable.
Proof. We have to consider the linear system |O(1)| of the hyperplanes H in
PN

k and we are looking for such satisfying H 6⊇ L ((Pt)red) for every closed point
t ∈ T . Those with H ⊇ L ((Pt)red) form a subspace of (PN

k )∨ of dimension
N − 1 − dim L ((Pt)red) ≤ N − 1 − dim T . They form a family in (PN

k )∨ × T ,
the dimension of whose total space can obviously be at most N − 1. The same
is true for its projection into (PN

k )∨. �
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5.5 Corollary. Let k be infinite, P ⊆ PN
k be a closed subscheme and P → T

be a surjective morphism. Assume

dim L ((Pt)red) ≥ dim T

for every closed geometric point t of T . Then there exists a suitable section
s ∈ Γ(P,O(1)).
Proof. We are looking for p ∈ PN(k), which does not belong to a given closed
subvariety V (f1, . . . , fr). So it is enough to find x0, . . . , xN ∈ k such that
the algebraic equation f1(x0, . . . , xN) = 0 is not fulfilled. This is possible as
]k = ∞. �

5.6 Lemma. Let k be algebraically closed, P ⊆ PN
k be a reduced scheme of

dimension ≥ 1 and P ′ ⊆ PN ′

k be its 2-uple embedding. Then

dim L(P ′) > dim L(P ).

Proof. Let C(P ) ⊆ AN+1 and C(P ′) ⊆ AN ′+1 denote the affine cones. Let
δ := dim L(P ). Then there are δ + 1 linearly independent points

Q1, . . . , Qδ+1 ∈ C(P ) ⊆ AN+1.

Choose coordinates such that Qi becomes the i-th unit vector. Let
Qδ+2 ∈ C(P ) ⊆ AN+1 be another point, whose image in PN is different from
those of Q1, . . . , Qδ+1.

Q1 = (1, 0, . . . , 0, 0, . . . , 0)

. . .

Qδ+1 = (0, . . . , 0, 1, 0, . . . , 0)

Qδ+2 = (α1, . . . , αδ+1, 0, . . . , 0)

The 2-uple embedding gives

Q1 7→ (1, 0, . . . , 0, 0, . . . , 0)

. . .

Qδ+1 7→ (0, . . . , 0, 1, 0, . . . , 0)

Qδ+2 7→ (α2
1, . . . , α2

δ+1, . . . , αiαj, . . . ).

Here at least one of the products αiαj is different from zero, implying
dim L(P ′) ≥ δ + 1, which is the claim. �

5.7 Proof of Proposition 5.2. Let L⊗m define an embedding Y ↪→ PN . Then
Lemma 5.6 implies that L⊗m·2dim T

gives an embedding such that

dim L ((Yt)red) ≥ dim T

for every geometric fiber of Y → T . Corollary 5.5 yields the assertion. �
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