Heights for line bundles on arithmetic varieties

Jorg Jahnel*

Abstract

Let X be an arithmetic variety and L be an element of the Néron-
Severi group of its generic fiber Xg. Then there are only finitely many
line bundles £ on X, generically belonging to L, such that the degrees of
L on the irreducible components of the special fibers of X and the height
of £ are bounded. The concept of a height used here is recalled. Several
elementary properties of this height are proven.

1 Introduction

Let K be a number field, Ok its ring of integers and 7 : X — Spec Ok an arith-
metic variety, i.e. a regular scheme, projective and flat over O, whose generic
fiber X we assume to be geometrically connected of dimension d. In [J96] there
was suggested a definition for a concept of a height for line bundles on X, fol-
lowing the philosophy of [BoGS] that heights should be objects in arithmetic
geometry, analogous to degrees in algebraic geometry. These heights depend on

i) a Kéhler metric w on X(C) being invariant under complex conjugation Fi,
and

ii) a hermitian line bundle 7 = (7, |.||7) € Pic (X) or, equivalently, its first
Chern class L

a(T,|llr) = (T.gr) € CH'(X).

1.1 Definition. A hermitian metric ||.||ais on a line bundle £ € Pic(X) being
mwvariant under Fo, is called distinguished, if

i) its Chern form c\(Lc, ||||lais) is harmonic and

ii) deg (det Rm.L, ||.|lg) = 0.
Here ||.||q is Quillen’s metric [Qu], [BGS] induced by ||.||ais on the determinant
of cohomology det Rm,.L € Pic (Spec Ok).

1.2 Lemma. Assume the Euler characteristic x(Lr) is different from zero.
Then

a) there exists a distinguished metric ||.||qs on L.

b) ¢ (L, |-|lais) € CHY(X) is uniquely determined up to a summand (0,C),
where C' is a locally constant function on X(C) being invariant under Fy, and

satisfying
/ Cw = 0.
X(C)
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c) Such (0,C) € éﬁl(X) are numerically equivalent to zero.
The Proof is an application of the dd-lemma of Hodge theory and elementary
calculations. See [J96, section 1]. O

1.3 Definition. The height hz (L) of a line bundle L € Pic (X) is given by
h (L) = degm & (L, || |ai) - & (T |1 17)")
where ||.||lais s a distinguished metric on L.

1.4 In [J96] we have analyzed the case of an arithmetic surface.

Theorem (Equivalence). Let C'/O be a regular projective variety of dimension
2, flat over Ok and generically connected of genus g, v € Ck(K) be a K-valued
point and © be the Theta divisor on J = Pic?(Ck) (defined using x). On C(C)
let w be a Kdhler form invariant under F.,. Fix, finally, a real number H.

Then, for line bundles L € Pic (C), fiber-by-fiber of degree g and of degree of
absolute value less than H on every irreducible component of the special fibers of
C,

o (L) = ho(Lx) +O(1),

where hg is the height on J defined using the ample divisor © and O(x) € Pic ()
is any hermitian line bundle extending O(x) € Pic (Ck).

1.5 In the higher dimensional case there is no analogue of that theorem to be
expected, since there is no canonical polarization on the Picard scheme. That
is why we are going directly to investigate the fundamental finiteness property
with respect to hz ,. For arithmetic surfaces C' and line bundles fiber-by-fiber
of degree g = g(Ck) this is a direct consequence of the theorem above.
Theorem (Finiteness). Let X/Ok be a regular, projective and flat scheme with
X(K) # 0, whose generic fiber X we assume to be connected. Equip X (C) with
a Kdahler form w being invariant under F,. Let L € NS(Xg) be an equivalence
class of line bundles satisfying the following condition.

Fir v € Xg(K) and let P € Pic (Xg x Pic(Xg)) be tautological with (1)
Pliaycpict(xx) = Opict(xy)- Then (det Ry, P)~" is ample.
Further assume x(Lx) > 0 for L € L. Let, finally, T € Pic(X), underlying
the hermitian line bundle T € Pic (X), defining the heights, be ample. Then for
every H € R there are only finitely many L € Pic (X)) with
1) Lx €L,
i) |[degsLlx, | < H for every irreducible component X, ; of the special fibers,
iii) hz (L) < H.

1.6 Remarks. i) We note that Pic’(Xf) is an abelian variety by [FGA, Exposé
236, Theorem 2.1]. It represents the functor

Pic’(Xk) : (Sch/K) — (Sets)
T +— {F € Pic(Xk xT), fiber-by-fiber algebraically
equivalent to zero} /73 Pic (7).

Pic’(Xk) is a torsor over Pic’(X).
ii) Condition (1) seems to be a little bit dubious. Nevertheless it turns out
to be fulfilled as the class L is sufficiently large.



Jahnel

1.7 Theorem. Let K be a field and R/K be a smooth, proper and connected
scheme with R(K) # 0 and fix an x € R(K). Further, let L € NS(R). Consider
the tautological P € Pic (R x Pic*(R)) with Pliayxpict(r) = Opict(ry- Then

(det Ry, P)~!

is ample on Pic(R), if

a) R is a curve,

b) R is an abelian variety and L is an ample class,

c) (R € NS(R) is arbitrary), L' is any equivalence class and A an ample
equivalence class, for L = L' +nA when n > 0.

1.8 Remark. By the Nakai-Moishezon criterion [KI, Chapter III, §1] the prop-
erty of a line bundle to be ample depends only on its class modulo numerical
equivalence. In particular we would be allowed to weaken our assumptions to
Playxpict (r) having to be numerically equivalent to zero.

1.9 Remarks. i) The remainder of this paper will mainly be devoted to the
proof of the two theorems above. We will organize it as follows. In the next
section we prove some elementary properties of the heights hz ,(£). Section
3 will be devoted to the proof of Theorem 1.7. Then, in section 4, the finite-
ness statement is shown ignoring one technical detail concerning the existence
of "suitable” sections of sufficiently high powers of an ample line bundle on the
total space of a family. That point we put at the end of the paper to section 5.

ii) In this paper we do not deal with the questions related to extensions of the
ground field K. The behaviour of the equivalence given in Theorem 1.4 under
field extensions and a corresponding generalization of the Finiteness Theorem
will be discussed in a forthcoming paper [J97]. Note that these questions are
technically more difficult as the base changes X Xgpec 0, Spec Op, are not regular
in general.

2 Elementary Properties

2.1 Remark. In the finiteness statement we restrict ourselves to line bundles
(of given equivalence class modulo algebraic equivalence), whose degrees in the
components of the special fibers are limited. To the contrary, Proposition 2.2 will
investigate the behaviour of the height, when £ is changed by a vertical divisor.

2.2 Proposition. Let D € Div (X) be supported over the prime p. Then, for
L € Pic(X) with x(Lk) # 0,
X (L(D
7 o(£(D) = by (£) + 108(:0k /p) - |degr D — () - X ED)0)
X(Lk)

In particular hz ,(L(D)) = hz (L) if D is a complete fiber.
Proof. The short exact sequence 0 — £ — L(D) — L(D)|p — 0 induces
det Rm, L(D) = det Rm.L ® det Rm.L(D)|p, which implies by Lemma 2.3 below,
if we assume ||.||zp) = C - |||z,

deg (det Rm.L(D), ||.@) = deg (det Rm.L, ||-[lo)
+ log(10x/p) - X(L(D)|p) — X(Lx) [K : Q] log C.
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X(£(D)|p)

For the distinguished metrics it follows that one has to put C' = (1O /p) xEr) K0,
Intersecting ¢ (7 )¢ with ¢, (L(D), |- |lais) — 1 (L, ||.]lais) gives the claim. If D is a
complete fiber the term in the brackets breaks down to the difference of the two
self-intersection numbers (7,%) — (T¢). O

2.3 Lemma. Let Y/Ok be an arithmetic variety and £ € Pic(Y). If h and
Ch with C' > 0 are two hermitian metrics on L, then

deg (det R, L, ho.cp) = deg (det R, L, hgn) + [K : Q] x(Lx) log C.
Proof. This is [J96, Lemma 1.3] and the definition of arithmetic degree. O

2.4 Remark. We will study the behaviour of ~_(£) under changes of the initial
data. The differences will turn out to be of algebro-geometric or complex-analytic
nature, i.e. they consist of degrees and Euler characteristics, data being bounded
in the considerations concerning finiteness.

2.5 Proposition (Change of hermitian line bundle by vertical divisors and
metric). Let £ € Pic (X) with x(Lx) # 0.
a) Let F' € Div (X) be an (effective) divisor supported over p. Then

d
d
h?(p),w(ﬁ) = hfw(ﬁ) +dlog(1O0k /p) -degTL‘]FJrZ (k’) log(tOr /p) - degr L|pr,

k=2

where F* denotes a representative of F* € CHI)“(p (X)o. The right summand
disappears as F' = [X,] ord = 1.
b) On 1¢ € Pic (X(C)) let ||.|| = e? - ||.|| be another hermitian metric. Then

b0 =hr (£) 45 3 /X@ per(T) (T ) H(er(£))

where H denotes the harmonic representative of a cohomology class. In particu-
lar, when ¢ is constant,

d
h?’,w(ﬁ) = hz (L) + 5 ¥ [K : Q] degr L.

Proof. a) As the change considered is of no effect on the distinguished metrics,
we can calculate explicitly

— o \d
rol0) = hro€) = T (@ (L) | (2T + F0) -~ a7y )
A\ — = —k
= 3 (}) @@ (£ o) 5 (T O,
=\
b) Here a direct calculation shows

hz (L) — hz (L)
= degm. (& (2) - [a(T)' & (T)"])
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_ a(;gm@ 0 Y aTy a(?)"aﬁ’@?—l))

i+j=d—1

_ﬁm@@n;;%ﬂ%ﬁ”mﬂ

-1y H(er (L) (T e (T)' . O

itj=d—17X(C)

2.6 Proposition (Change of Kéhler metric). Let w,w’ be Kdhler metrics on
X(C). Then for everyl € H*(X,Z)NH""(X(C)) there exists a smooth function
g1 on X(C), such that for every T € Pic(X) and L € Pic (X) with ¢;(Lc) =1

D) =t D)+ [ ae(TY
X(C)
Proof. Let £y € Pic(X) with ¢1(Loc) = [ and ||| and ||.||" be distinguished

metrics on Ly with respect to w and w’. We obtain ¢g; = log H'”‘Q and have to show

that every £ € Pic (X) with ¢;(L¢) = [ yields exactly the same function. Hence
it has to be shown that, if |||/ is distinguished for w, then |.||, := % ]z 1s

for w’. First,

ar(Le, [1z) = ex(Loc, 1) = er(Loc, 1) + ex(Le, [1-lle)

is harmonic with respect to w’ since the last two summands are equal as they are
harmonic with respect to w and in the same cohomology class. Furthermore, by
[BGS, Theorem 0.2 and Theorem 0.3]

0 = deg(det Rm.Lo. | lg..) — deg (det Rr.Lo, )

= 5 [ o L Tdmw) + 5 [ (Lo ) T, w2,
2 Jx@ 2 Jx@©

But when we turn over to £ in the formula above all the data remain unchanged,
since this is tensoring by (£, ||.||z) ® (Lo, ||.||) !, the Chern form of whose restric-
tion to X (C), and therefore also the Chern character form, vanish. Note formula
(1.3.5.2) in [GS90). 0

2.7 Proposition (Birational morphisms). Let p : X' — X be a morphism of
arithmetic varieties inducing an isomorphism between the generic fibers. Then,

for L € Pic (X),
hp*?w (p*L)

= hz,(L) -

((7523) > 10g(t0xk/p) Y (=1)x (X, (R'p.Ox)|x, ® L)
p

X >1

If Rip,Ox: =0 for all j > 1, then the correction term vanishes. This is the case
if X' is the blow-up of a reqular embedding.

Proof. Let ||.||z be distinguished and p*L be equipped with the same metric.
We easily obtain

deg (det R(mp).p L, ||.|lq) — deg (det Rm.L, ||.{l¢)
= Z(—l)q (log fcokerh, — log tkerh,) ,

q>0
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where h, : HY(X,L) — HYX',p*L) is the natural map. Indeed, the Quillen
metrics are the same on both sides and what remains is elementary linear algebra.

The Leray spectral sequence H (X, Rip,p*L) = H'" (X', p*L) gives, when
we note that p.p*L = L,

Z(—l)q (log #icokerh, — log tkerh,)

q>0
= ) (1) logtH (X, Rp.p L)
§>1,i>0

_ ZZ X, (R'p.Ox)|x, ® L) log(1Ox /p)

j>1
= .

So the metric on p*L has to be changed by the factor e “XEOEE | Tt follows that

c (p* -ldis) = NG > [1-1ldis) — il
and, thus
byt 00 = Fogmp.|(FEL M) ~ s e O1)) palTY
’ X (Lr) [K: Q)
(7:)
T,w( ) X(EK) 4
The last statement is [SGA6, Exposé VII, Lemma 3.5]. O

2.8 Remark (Change of model). Let X and X' be arithmetic varieties connec-
ted by an isomorphism ¢ : X — X} between their generic fibers. If 7 € Pic (X)
and T’ € Pic (X') are such that there is an isomorphism ¢*7}. — 7Ty, then the
results above control the difference hz (L) — hz (L) for L € Pic(X) and
L' € Pic(X') with *L} = Lk. To make this precise one needs birational
morphisms, inducing isomorphisms between the generic fibers, as follows:

X
vy N
X X'

For X one could choose the Zariski closure of the diagonal in
XK XKX;( — X Xog X/,

but, unfortunately, there is no regular model available. Nevertheless the results
above work well, since on a singular scheme we can use the intersection product
from [GS92, Theorem 4]. Alternatively one can resolve singularities by an alter-
ation as proven in [Jo, Theorem 8.2|, intersect the Chern classes of the pull-backs,
push-forward again and divide by the degree. See [J97, Appendix] for details.
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3 Negativity of the Determinant Line Bundle

3.1 Remark. In this section we will prove Theorem 1.7. First we recall the
case of curves where the statement is well known. Then we deal with the higher
dimensional case by some induction argument which is mainly based on the
weak Lefschetz Theorem. Afterwards the situation of an abelian variety will be
considered separately by a direct computation using the Grothendieck-Riemann-
Roch theorem.

For this section we fix the following notations. K is a field and R/K a
connected smooth projective scheme with R(K) # (). We choose one point
r € R(K). Pic’(R) denotes the neutral connected component of the Picard
scheme of R. As R is regular, this is an abelian variety. Let P € Pic(R x Pic’(R))
be the tautological line bundle, i.e. assume

i) P|{x}><Pic0(R) = OPiCO(R)a

ii) If P/K is an arbitrary scheme and £ € Pic(R x P), fiber-by-fiber
algebraically equivalent to zero, then there exist exactly one morphism
i: P — Pic’(R) and & € Pic (P) such that £ 2 (id x i)*P @ 1&.

Further, let £, € Pic (R). Our question is whether (det Ry, (P ® w3 Lo)) "
is ample on Pic’(R).

3.2 Lemma (Curves). If R is a curve and Ly € Pic (R) is arbitrary, then
(det Ry, (P @ 75 L))~

is ample on the Jacobian J := Pic’(R). It is, independently of Ly, algebraically
equivalent to O(O).

Proof. The question depends only on the class of £y modulo algebraic equiva-
lence. So assume Ly = O(dz) for some d € Z. Consider two integers d; < ds.
The exact sequence 0 — O(d1z) — O(dox) — O(gy—d,)e — 0 induces

det Rmy, (P @ m1O(dy)) = det Ry, (P @ 170(dy)) .

So we are reduced to the case d = g — 1. But then by [Fa84, p. 396] or [MB,
Proposition 2.4.2]
(det Rma, (P @ w5 L))~ =2 O(O)

and this is ample on J. 0

3.3 Proposition (Higher dimensional varieties). Let R/K be a connected
proper smooth variety, P € Pic (R x Pic’(R)) the tautological line bundle and
A € Pic(R) be ample. Then for every Ly € Pic (R) there is an ng € N such that

(det Ry, (P @ 77 (Lo @ A®n)))_l

1s ample for n > ny.
Proof. The statement is trivial for dim R = 0 and we know it is true for
dim R = 1. So using induction we assume the theorem is clear for varieties of
dimension d — 1 and want to prove it for dimension d > 2.

A can be replaced by an arbitrary tensor power. So assume it is very ample.
Then, by Bertini’s theorem, A = Og(D), where D can be assumed to be a
smooth connected prime divisor. The short exact sequence

00— O —A— Alp — 0
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induces
0 — PR (LoRA®") — PR (Lo@AYT) — PR (Lo@ A" p) — 0
and therefore an isomorphism

det Rra, (P @ 75 (Lo @ A®"H)) (2)
>~ det Rma, (P @ 7} (Lo ® A®™)) @ det Rma, (P @ 7} (Lo @ A% |p)) .

This formula will lead us to the assertion.

First Case: dim X = 2.
The functor det Rmy, commutes with arbitrary base changes and the restriction
morphism Pic’(R) — Pic”(D) is finite by the weak Lefschetz Theorem [SGAG,
Exposé XIII, Lemma 3.11]. Therefore (det Ry, (P ® 7} (Lo @ A®"T|p)))~t is
dual to ample and, up to algebraic equivalence, it is independent of n as D is
one dimensional. It follows that

det R7a, (P @ 7} (Lo ® A®™))
% det Ry, (P ® 7 Lo) ® (det Rira, (P @ wH(Lo|p))) ™"

being ample for n > 0.

Second Case: dim X > 2.
Here the same argumentation as in the first case gives, combined with the in-
duction assumption, still that det R, (P ® 7} (Lo ® A®"|p)), the correction
term in (2), is dual to ample for n > 0. We shall study the dependence of this
determinant on n.

The line bundle O(D)|p is very ample on D and therefore it can be repre-
sented by a smooth connected prime divisor £ on D. We get a formula analogous
to (2).

det R7a, (P @ 7} (Lo ® A" p))
~ det R’/T2* (P ® 7I'T (EO ® A®W|D)) ® det R’/TQ* (7) ® ﬂ-f (EO ® A®n+1‘E)) .

Here (det Rmo, (P @ (Lo ® A2 )" is ample for n > 0 by weak Lefschetz
and the induction assumption, meaning that

det Ry, (77 ® 7] (Eg ® A®"+1|D))
>~ det Rmo, (P ® 7 (EO ® A®"|D)) ® (ample)_l.

Formula (2) goes over into
det Ra, (P @ 7} (Lo ® A®"H7))

> det Ry, (P ® 7} (Lo ® A®")) @ (X) det Ry, (P @ 1 (Lo @ A" | p))

=1
= det Ry, (P @ 7} (Lo @ A®")) @ (det Rra, (P @ 75 (Lo © A% )))*"
® (ample)™!,

and this is dual to ample as r > 0. ([l
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3.4 Proposition (Abelian varieties). Let R/K be an abelian variety and
P € Pic(R x RY) be the tautological line bundle. If Ly € Pic(R) is ample,
then

(det Rma, (P @ 7 Lo)) "

is ample on RV.

Proof. L, defines a polarization of the abelian variety R. So we have a finite
morphism ¢ : R — RY satisfying (id x ¢)*P oLy ® (T3 L)™' @ (m3Lo) 7Y,
where m : R X R — R denotes the composition and m; and 7y are the natural
projections as usual [Mu|. Obviously, we have to show that

1

(det Rra. (m* Lo @ (m5L0) "))
is ample on R. For this we will use the Grothendieck-Riemann-Roch theorem
ch(my, ) Td(TR) = ma.(ch(a) Td(Trxr)) , (3)

which simplifies in our case to the formula ch(m,«) = 7o, (ch(a)) as for abelian
varieties the Todd character is trivial. Here av denotes an element of Ky(R X R),
the Chern characters map Ko(?) to the Chow ring CHg(?) and 7, is the push-
forward in the sense of K-, respectively Chow-theory. But push-forward by m
in K-theory is the Rmy,, we are interested in, such that we can specialize (3) to

c1 (det R, (m*ﬁo ® (W;ﬁo)_l)) = (7T2* (Ch(m*ﬁo ® (71';[:0)_1)))(1)

1 * * d+1
= @ ma. (e (£0) = Ther (£)))),
where d = dim R. Note that for line bundles ch(£) = Y%, % (c1(L£))" but we are
interested in the direct summand CH'(R)q only. Since computations in the Chow
groups involving the composition map m are somewhat difficult we introduce the
isomorphism

s:RxR — RxR
(7"177“2) = (7"1 — T, 7”2)-
We note mys = my and ms = 7. It follows that

c1 (det Rmrs, (m*Lo ® (7350)71))

N (di 1)1 25 <S*<m*01 (Lo) — w31 (50))0’“)
N (d+1 1 ((7ien (£0) = maer (£0)))
d+1
= ﬁ T2 [§<_1)d+li (d—l— 1) (mier (Lo)) (whey (ﬁo))d—l-l—z’] .
But the summand for ¢ = d is the only one not vanishing under 7y, and we get
et . 0 (r30) ™)) = = (s ol i)
N _% ma,mic1(Lo)” - e1(Lo)
1
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where ¢;(Lp) is an ample divisor and the self-intersection number (cl(ﬁo)d) is
positive. Note finally that ampleness can be tested in CH'(R)q. O

3.5 Questions. Can one get a more precise result in the general case than

that shown in Proposition 3.37 Can, in particular, analytic methods lead to
better results than ours? Omne could use an analytic Riemann-Roch formula
[BGS, Theorem 0.1] and investigate whether the determinant of cohomology has
a hermitian metric with negative curvature. Proposition 3.4 above can be proven
this way by a rather straightforward computation.

4 Finiteness

4.1 Scheme-Theoretic Constructions

4.1.1 Remark. In this section we will prove Theorem 1.5. It is very natu-
ral to adopt the point of view of moduli spaces. So fix x € Xg(K) and let
P € Pic (Xx x Pic"(Xg)) be the tautological line bundle satisfying

P’{x}xPicL(XK) = OPicL(XK)'

Since our concept of a height depends on the determinant of cohomology, we
would like to change P in such a way that det Rmo, P’ becomes trivial. We have
det Rma, (P @ m3M) = det Rma, P @ M®, where | = x(P). So we would have
to divide the line bundle det Ry, P € Pic (Pic*(Xk)) by I. In general this is
impossible. There are obstructions lying in H2(Pic”(Xg), ). That is why we
carry out the idea to consider pull-backs under étale covers.

4.1.2 Convention. We will use the phrase commutative proper group scheme
(over a field) for an extension of a commutative finite group scheme by an abelian
variety. Note that in characteristic zero finite group schemes are nothing but
finite groups [Mu, §11].

4.1.3 Lemma. Let K be a field, A/K an abelian variety and | a natural num-
ber. Then there is a finite flat morphism p : A’ — A such that

a) for every L € Pic (A) the pull-back p*L is [-divisible,

b) A’ is an abelian variety,

c) if 2,1 1 char(K), then p is étale,

d) if K is a number field, then A(K)/p.A'(K) is a finite group.
Proof. We choose the multiplication map p = [2{] : A — A. Then b) is trivial
and c) is standard as well as the fact that p is finite flat.

a) By [Mu, §6, Corollary 3] p*L = [2[]*£ = L2®+) @ ([—1]*£)®** ) heing
obviously [-divisible.

d) We have A(K)/p.A'(K) = A(K)/2lA(K) and this is a finite group by the
weak Mordell-Weil theorem. O

4.1.4 Corollary. Let A/K be an abelian variety over a number field with
A(K) # 0 and | € N. Then there exist a commutative proper group scheme
A'/K and a finite étale morphism p : A” — A such that

a) for every L € Pic (A) the pull-back p*L is [-divisible.
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b) The natural map p, : A'(K) — A(K) is surjective.
Proof. Let G C A(K) be a (finitely generated) subgroup such that
G — A(K)/2IA(K) becomes surjective and G' C G be a torsion-free subgroup
with §G/G’ < co. We put
A= (AxQG)/G,
where G’ C A x G denotes the subgroup {(g,—2(-g)|g € G'}. Obviously, A" is a

commutative proper group scheme consisting of #G/21G’ components isomorphic
to A.

AxG — A
(a,9) — 2l-a+yg,

induces the finite étale morphism p : A’ — A. Now assertion b) is clear since
A(K) x G — A(K) is surjective by construction. For a) we note that on every
component A} C A" one has p|a = v,,[2l], where v,, denotes delay by some ;.
Hence (p|a)*L = [2{]*v}, L being obviously I-divisible. O

4.1.5 Remark. By the Mordell-Weil theorem one would be allowed to put
G = A(K). Note that we do not use this theorem here.

4.1.6 Proposition. There exist a commutative proper group scheme P/K, a
line bundle U € Pic (Xk Xk P), a divisor D € Div(Xk) and a natural number
n such that

i) U belongs to L fiber-by-fiber.

ii) The morphism p : P — Pic*(Xg) induced by U is finite, étale and sur-
jective on K-valued points. Further one has

det R, U = Op.

iii) U(r{D)*™ admits a suitable section s, i.e. s|xxy 7# 0 for everyy € P.
Proof. Consider the tautological P € Pic(Xgx x Pic*(Xg)) and put
A :=Pic"(Xg) and I := x(P|x,x(})- Then for P take the A’ given by Corollary
4.1.4 above. Choose M € Pic (P) such that M® = p*(det Rmy,P)~*. Then put

U = (id x p)"P @ m* M.
This is easily seen to fulfill i) and the first part of ii). Further, one has

det Rmo,Ud = det Rmo,((id x p)*P) @ M
= p*det Rmy, P @ M¥
= Op.

iii) By assumption (detRm,,P)~! is ample, hence p*(detRm,,P)~' and M
are, too [EGA II, Proposition 4.6.13.ii].  Consequently, the line bundle
Ulzyxp = P*Pliyspict(x) ® M = M is ample. Thus, U is ample fiber-by-
fiber since all the U|;yxp are mutually algebraically equivalent (up to extension
of ground field). By [EGA III, Théoreme 4.7.1] it is relatively ample. There-
fore, by [EGA II, Proposition 4.6.13.ii], there is a divisor D € Div (Xf) such
that U(7w;D) is ample. In the case dim X > 1 the assertion is a consequence
of Proposition 5.2. The case dim X = 0 is very degenerate; one has necessarily
X = Spec K and Pic*(Xg) = Spec K such that one can put [ := 1 and the
whole statement becomes trivial. OJ
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4.1.7 Corollary. There exist a quasi-projective smooth group scheme P/Ok,
a line bundle U € Pic(X X, P), a divisor D € Div(X) and n € N such that
1) Ul xpex P belongs to L fiber-by-fiber.
ii) The morphism p : Px — Pic*(Xg) induced by U|x, . p, is finite, étale
and surjective on K-valued points. Further one has

det R?TQ*U = OP(F),

where F'= 3" ccop.i i (Dpi) is a divisor supported in the special fibers.

iii) U(77D)®" admits a generically suitable section s, i.e., s|x, xqyy # 0 for
every geometric point y in Pk.

iv) All K-valued points of P can be extended to O -valued points.
Proof. For P choose the Néron model of the variety P. As this is smooth,
X Xo, P is a regular scheme. In particular, a divisor defining ¥ € Pic (X x P)
can be closed in the Zariski topology and defines a line bundle &. For D we
choose the Zariski closure of D. Then iv) is the defining property of the Néron
model, i) and the first part of ii) are clear and det Rmy, U is trivial on Pg. Thus
it allows a rational section defining F'. For iii) we know that U(7fD)®" has a
suitable section s’ being defined on X X i Pr. Its extension is a rational section
whose poles are supported in the special fibers. Putting s := as’, where a € Ok
is sufficiently highly divisible, gives the claim. O

4.2 Special Fibers

4.2.1 Proposition. Let X, be a special fiber of X and X,; be an irreducible
component of X,. Then for any scheme P/Og being of finite type and
U € Pic(X xo, P) there exists D € R such that |degr U|x, ,xy| < D for each
(TRS P(OK)

Proof. The question depends only on y, € P,(Ok/p). So we work with P, in-
stead of P. Further, we consider, more generally, geometric points § € P,(Ok/p).
Obviously we may replace P, by an integral scheme 7. By the result of de Jong
[Jo] we may assume it is regular.

Note that by assumption every local ring of a closed point of X, is Cohen-
Macaulay of dimension d. In particular dim X,; = d for every component X, ;.
So the degrees can be given as follows. Without restriction assume 7 to be very
ample. Then let i : X,; — P} «/p € an embedding such that 7 = *O(1). Take
the Chern class ¢; (U], lx{y}) € CH'(X,,) and put

degr U|x, g7y = deg [(i*cl(bﬂxp,ix{@})) 'cl((’)(l))d_l]
= deg (id x {7})" (i x id)cr(Ulx, 1)) - 1 O(1)) !

As we work on PgK Ip X T now, the claim follows from the next lemma. 0

4.2.2 Lemma. Let k be a field, M/k be a regular proper scheme of dimension
N and T/k be a regular scheme of finite type. Further, let o € CHY(M x T).
Then

deg oy = deg (id x t)*«
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s bounded when t runs over the geometric points of T, t € T(E).

Proof. Assume, the statement is wrong. By Noetherian induction there is
a minimal closed subscheme T, C T for whose geometric points deg«; is still
unbounded. Obviously, Ty must be integral. Let T ,ee € 1o be its regular locus.
Then choose a cycle A € Z¥(M x Tj o) representing | M xTp - BY [EGA TV,
Théoreme 6.9.1] there is a nonempty open subset U C T e, over which A is flat;
consequently dega; is bounded there. Thus it must be unbounded on Ty \ U
being a contradiction. 0

4.2.3 We are now going to deal with the whole group of divisors concentrated
in a special fiber X, of X.
Lemma. Let D, C Div (X) be the group of divisors supported over p. Then
a) (Xpi, Xpj) = degy O(Xy,4)|x, , gives rise to a symmetric bilinear pairing.
b) (X, Xp;) is the degree of [Xpi] - [Xp,] - a(T)T in CH%:I(X)@.
) (Xpi, Xp;) >0 fori#j. Equalzty holds if and only if | X, N |X,,;] = 0.
d) (Xp4, Xp) =0 for every i.
Proof. a), b) and d) are standard. For c) the case | X,;| N |X, ;| = 0 is trivial.
Otherwise [X,;] - [X, ;] is an effective cycle as the intersection multiplicities can
be defined using the Tor-formula of Serre and there are no higher Tor’s occurring
when one intersects properly with a locally main divisor. (X, ;, X, ;) is the degree
of its image in ng/p‘ O

4.2.4 Corollary. The pairing (.,.) on D, is negative semi-definite, whereas
only multiples of the fiber have square zero.
Proof. That works as in the case of a surface. Let [X,] = Y. C;[X,;]. Then
0= <Xp,’iaXp> = Ci<Xp,i7 Xp,i> -+ Z Ck<Xp,i7Xp,k>, hence

ki

<CiXp,i; Cz‘Xp,i> == Z<Oz‘Xp,ia Ck;Xp,k>~
ki

With by, ..., b;, ... € Q it follows that

<Zbicixp,i,2bicixp,i> = Zb2 CiXpis CiXpa) + Y bibi(Ci Xy, CiXip)

J#k

D) Z(bj — b)*(Ci Xp 5, CrXip)-
pors

Therefore (., .) is negative semi-definite; if the square is zero we must have b; = by,
as soon as X,; and X, meet. Since X, is connected all b; must be mutually
equal. O

4.2.5 Corollary. Let D € R. Then there are only finitely many L € Pic (X)
with L|x, = Ox, and |deg L]x, ,| < D for every X,;.

Proof. If X,; is irreducible, then degL|x, = 0. Hence it is enough to show
finiteness when deg L|x, , = D,; are fixed. Then by Corollary 4.2.4 £ is uniquely
determined up to a pull-back from Pic (Ok). But the class number is finite. O
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4.2.6 Proposition. Let P/Ok be a scheme of finite type, U € Pic (X Xp, P)
and F € Div (X) a divisor being supported over p € Specm O . Then

h . Ulxxy(F)) = bz, U] xxy) + O(1)

when y runs over P(Ok).

Proof. One has to use the formula from Proposition 2.2. It is clear that
everything in the correction term remains constant except, may be, the term
Y (L(D)|p) being here x U]xy(F)lr) = X(U(TF)lrxp ). But by flatness
the Euler characteristic is locally constant on P, and therefore bounded. 0

4.3 Comparison With Heights For Cycles

4.3.1 Remark. In the situation of Corollary 4.1.7 we want to compare
hz ., U|xxy) with the height hz(div(s|xx,)) of the cycle div(s|xx,) for
y € P(Ok). We are going to use the finiteness statement for this concept of
a height [BoGS, Theorem 3.2.5].

4.3.2 Proposition. Let P/Og be a scheme of finite type whose generic fiber
Pk is proper and U € Pic (X Xp, P) such that det Rmo,Ud = Op(F') where F
1s a divisor supported in special fibers. Assume for some n € N there are some
divisor D € Div(X) and a suitable section s € T'(X xo, P, U(m;D)*"). Then,
when y runs over P(O), one has

o Ulxy) = i (div(sl) + O(1).

Proof. We equip the line bundle U on (X X, P)(C) with a hermitian metric,
which is invariant under F,, and whose Chern form ¢, (Uc, ||.||) is harmonic fiber-
by-fiber. The hermitian line bundle (det Rmy.U, ||.||g) € Pic (P) commutes with
arbitrary base changes, in particular we may consider its restrictions to Og-
valued points y € P(Of). Then the unit section

1 € I(P,det Rmy,U) = T'(P,Op(F))

yields only finitely many different pole-zero-divisors on Spec O, while ||1|| re-
mains bounded as P(C) is compact. Consequently,

deg (det RmaU| xxy, |1-ll0)

is bounded for y € P(Ok). By Lemma 2.3 there is a distinguished metric
| llais = € - ||.]| on (U|xxy)c, where C,, remains bounded in its dependence on

y € P(Ok). Hence,
— d
Mo Ulxey) = deg ey, |l ) - Togr) |

)
— - d —_— B
= deg |t Ul 1) - (Togr)"| +degm.] (0, -2C,) - (T g)

d

1— 1. n d
=~ degm B U s 1) - (Togr)' | + O().
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But ¢ (O(7iD)|xxy, |Ill) = & (O(D), ||.||) is independent of y as soon as we
have metrized appropriately, i.e. we can replace U®" by U(m;D)®", admitting
the section s. We get

h?,w(u|X><y)
1 — . 5 d
= —degm.|([@V(slxxy)s— 108 sl - (Togr)' | +0(1)

| — 1 s g
= de (Togr) \dw(sm))—§ X / log ||s|xxy” - i+ O(1)

1 .
=y iv(sho) — 5 3 / log [l 12 - At + O(),

aKt—»(C

where (.|.) : CH¢ (X) X Zg(X) — CH! (Spec Ok) denotes the restriction pair-
ing introduced in [BoGS, section 2.3] and hz is the height for cycles being the
main subject of that paper. It remains to bound the integrals. This is done in
Proposition 4.3.4 below. 0

4.3.3 Remark. All the cycles div (s|xx,) have the the same degree and they
are different as soon as the line bundles defined by them are different. The
Proposition above and [BoGS, Theorem 3.2.5] imply, among the line bundles
U| x «y there are only finitely many with bounded height. In order to prove the
asserted finiteness it will remain to bring the degree condition into play.

4.3.4 Proposition (fiber integrals). Let M be a connected compact complex
manifold of dimension d and T be a complex space. We consider a hermitian
line bundle L € Pic (M x T) and a section s € T'(M x T, L) not vanishing in any
fiber M x {t}. Let a € C¥(M x T) be a continuous (d,d)-form. Then

[ autogls?

M

depends continuously ont € T.

Proof. Let t E T. For every x € M there are open euclidian neighbourhoods
U, of z and Utx of ¢ such that £ is trivial on U, x Utx and there exists a
trivialization (L[ U D = (O, U , ||-]lcan) of bounded norm whose inverse
is of bounded norm, too. Because of compactness finitely many U, cover M, say
M = UZ 1 Uz, We may choose a smooth partition of unity embedded into

Thus shrmking M and T we may assume that £ is trivial if we allow M
to be no more compact. Instead we still have at least suppa C G x T, where
G C M is open and G is compact. The section s is reduced to a holomorphic
function M x T'— C not vanishing in any fiber. The asserted continuity is [St,
Theorem 4.9]. O

4.3.5 Conjecture. Let M and T as above and o € A*(M x T) be a closed
form. Let Zy and Zy be cycles on M x T of codimensions py, respectively po,
pr > 0. Putk :=dy +1—py — ps. Further, let g be a Green form for Zi of
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logarithmic type along |Z1|. Assume, Zy and Zy meet properly and for every
teT, Zy, Zy and |Zy| N | Zy| meet M x {t} properly. Then

/ Oétgt522,t
M

4.3.6 Remark. In [BoGS, Proposition 1.5.1] the case dim 7" = 1 of Conjecture
4.3.5 is shown. The general case, although widely accepted, seems to be surpris-
ingly complicated. Good results for the case p; = 1 are given in [St] and [Ki].
For our purposes they turned out to be sufficient. Nevertheless it seems that
what is known is very much constructed for special cases.

depends continuously on t.

4.3.7 Proof of Theorem 1.5. Let £ € Pic(X) be as in the theorem. By con-
struction Lx = U|xx{y, for some y € P(Ok), hence £ = U|x xy @ F, where F is
supported in the special fibers. Now let D := maxx, . ep(ox) !degTU\quiX{ypﬂ
be the constant given by Proposition 4.2.1. Then |degT f]xw.‘ < H + D for
every X,;, i.e. there are only finitely many possibilities for F. So it is enough

to show finiteness for a fixed F. But this is Proposition 4.2.6 combined with
Remark 4.3.3. [

5 Suitable Sections

5.1 Definition. Let Y — T be a surjective proper morphism of schemes and
L € Pic(Y). We say, s € I'(Y, L) would be suitable, if s|y, # 0 for allt € T.

5.2 It is our goal to prove the following
Proposition. Let Y — T be a proper morphism of schemes of finite type over
an infinite field k, all whose geometric fibers are at least one-dimensional, and let
L € Pic(Y) be ample. Then there are n € N and a suitable section s € T'(Y, L®™).

5.3 Definition. Let k be an algebraically closed field and P C P be a reduced
subscheme. Then the linear hull L(P) of P is given by

L(P) := N H.

HCPN hyperplane, HDOP

5.4 Lemma. Let k be algebraically closed, P C P be a closed subscheme and
P — T be a surjective morphism. Assume

dim L ((FP),pq) = dim T

for every closed point t € T. Then a general section s € I'(P,O(1)) is suitable.

Proof. We have to consider the linear system |O(1)| of the hyperplanes H in
P and we are looking for such satisfying H 2 L ((P,),.4) for every closed point
t € T. Those with H D L((P),,y) form a subspace of (P{)Y of dimension
N—-1—dimL((P),y) <N —-1—dim7T. They form a family in (P})¥ x T,
the dimension of whose total space can obviously be at most N — 1. The same
is true for its projection into (P4)V. O
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5.5 Corollary. Let k be infinite, P C Py be a closed subscheme and P — T
be a surjective morphism. Assume

dim L ((P),.q) > dim T
for every closed geometric point t of T. Then there exists a suitable section

se(P,O(1)).
Proof. We are looking for p € P¥(k), which does not belong to a given closed

subvariety V(f1, ..., fr). So it is enough to find xg, ..., zxy € k such that
the algebraic equation fi(xg, ..., xy) = 0 is not fulfilled. This is possible as
tk = oo. O

5.6 Lemma. Let k be algebraically closed, P C P¥ be a reduced scheme of
dimension > 1 and P’ C PkN/ be its 2-uple embedding. Then

dim L(P') > dim L(P).

Proof. Let C(P) C AN*! and C(P') € AN'*! denote the affine cones. Let
0 :=dim L(P). Then there are 6 4+ 1 linearly independent points

Q1 ..., Qsy1 € C(P) C ANT

Choose coordinates such that (); becomes the i-th unit vector. Let
Qs+2 € C(P) C AN*L be another point, whose image in PV is different from
those of Qq, ..., Qsi1-

Q. = (1,0, ...,0, 0, ..., 0)
Qss1 = (0, ..., 0,1, 0, ..., 0)
Q5+2 = (C(l, ...,a(SJrl,O’ ,0)

The 2-uple embedding gives

Qr — (1,0, ...,0, 0, ..., 0)
Qss1 — (0, ..., 01, 0, ..., 0)
Qsra — (af, oo, Ahiq,y vy oy, ... ).

Here at least one of the products ;o is different from zero, implying
dim L(P'") > 0 + 1, which is the claim. O

5.7 Proof of Proposition 5.2. Let L% define an embedding Y — PY. Then
Lemma 5.6 implies that £&m2"™" gives an embedding such that

dim L ((Y}),eq) = dim T

for every geometric fiber of Y — T'. Corollary 5.5 yields the assertion. U
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