
The Asymptotics of Points of Bounded Height

on Diagonal Cubic and Quartic Threefolds

Andreas-Stephan Elsenhans1 and Jörg Jahnel2

Universität Göttingen, Mathematisches Institut, Bunsenstraße 3–5,
D-37073 Göttingen, Germany?

1elsenhan@uni-math.gwdg.de, 2jahnel@uni-math.gwdg.de

Abstract. For the families ax3 = by3 +z3 +v3 +w3, a, b = 1, . . . , 100,
and ax4 = by4 + z4 + v4 +w4, a, b = 1, . . . , 100, of projective algebraic
threefolds, we test numerically the conjecture of Manin (in the refined
form due to Peyre) about the asymptotics of points of bounded height
on Fano varieties.

1 Introduction — Manin’s Conjecture

Let V be a projective algebraic variety over . We fix an embedding ι : V → Pn .
In this situation, there is the well-known naive height Hnaive : V ( )→ which
is given by Hnaive(P ) := maxi=0,...,n |xi|. Here, (x0 : . . . : xn) := ι(P ) ∈ Pn( )
where the projective coordinates are integers satisfying gcd(x0, . . . , xn) = 1.

It is of interest to ask for the asymptotics of the number of -rational points
on V of bounded naive height. This applies particularly to the case V is a Fano
variety as those are expected to have many rational points (at least after a finite
extension of the ground-field). Simplest examples of Fano varieties are complete
intersections in Pn of a multidegree (d1, . . . , dr) such that d1 + . . . + dr ≤ n.
In this case, Manin’s conjecture reads as follows.

Conjecture 1. Let V ⊆ Pn be a non-singular complete intersection of multi-
degree (d1, . . . , dr). Assume dimV ≥ 3 and k := n + 1 − d1 − . . . − dr > 0.
Then, there exists a Zariski open subset V ◦ ⊆ V such that

#{x ∈ V ◦( ) | Hnaive(x)k < B} ∼ CB (1)

for a constant C.

Example 2. Let V ⊂ P4 be a smooth hypersurface of degree 4. Conjecture 1
predicts ∼ CB rational points of height < B. However, the hypersurface
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x4 + y4 = z4 + v4 + w4 contains the line given by x = z, y = v, and w = 0
on which there is quadratic growth, already. This explains the necessity of the
restriction to a Zariski open subset V ◦ ⊆ V .

Remark 3. Conjecture 1 is proven for Pn, linear subspaces, and quadrics. Fur-
ther, it is established [Bi] in the case that the dimension of V is very large com-
pared to d1, . . . , dr. Generalizations are known to be true in a number of further
particular cases. A complete list may be found in the survey article [Pe2, sec. 4].

In this note, we report numerical evidence for Conjecture 1 in the case of
the varieties V ea,b given by axe = bye + ze + ve + we in P4 for e = 3 and 4.

Remark 4. By the Noether-Lefschetz Theorem, the assumptions made on V im-
ply that Pic(V ) ∼= [Ha1, Corollary IV.3.2]. This is no longer true in dimen-
sion two. See Remark 6.ii) for more details.

The constant. Conjecture 1 is compatible with results obtained by the classical
circle method (e.g. [Bi]). Motivated by this, E. Peyre [Pe1] provided a description
of the constant C expected in (1). In the situation considered here, Peyre’s
constant is equal to the Tamagawa-type number

τH(V ) :=
∏

p∈ ∪{∞}

(1− 1
p )ωH,p(V ( p)).

In this formula, the Tamagawa measure ωH,p is given in local p-adic analytic co-
ordinates x1, . . . , xd by ‖ ∂

∂x1
∧ . . . ∧ ∂

∂xd
‖p dx1 . . . dxd. Here, each dxi denotes

a Haar measure on p which is normalized in the usual manner. ∂
∂x1
∧ . . . ∧ ∂

∂xd
is

a section of O(−K) ∼= O(−k).
For p finite, one has a canonical model V ⊆ Pn

p
of V . This defines the norm

‖.‖p on O(−k). It is almost immediate from the definition that

ωH,p(V ( p)) = lim
n→∞

#V ( /pn )
pdn

.

The place at infinity. Here, ‖.‖sup on O(1) is the hermitian metric, in the
sense of complex geometry, defined by ‖xi‖sup := inf

j=0,...,n
|xi/xj |. This induces the

hermitian metric ‖.‖∞ := ‖.‖−ksup on O(−k).

Lemma 5. If V ⊂ Pn is a hypersurface defined by the equation f = 0 then

ω∞(V ( )) =
1
2

∫
f(x0, ... ,xn)=0
|x0|, ... ,|xn|≤1

ωLeray.

The Leray measure ωLeray on {(x0, . . . , xn) ∈ n+1 | f(x0, . . . , xn) = 0} is
related to the usual hypersurface measure by the formula ωLeray = 1

grad f ωhyp.
On the other hand, one may also write

ωLeray =
1

| ∂f∂xi (x0, . . . , xn)|
dx0 . . . d̂xi . . . dxn.



Proof. The equivalence of the two descriptions of the Leray measure is a stan-
dard calculation. The main assertion is a particular case of [Pe1, Lemma 5.4.7].
2 is the number of roots of unity in . �

Remark 6. There are several ways to generalize Conjecture 1.
i) One may consider more general heights corresponding to the tautological line
bundle O(1). This includes to
a) replace the maximum norm by an arbitrary continuous hermitian metric
on O(1). This would affect the domain of integration for the factor at infinity.
b) multiply Hnaive(x) with a function that depends on the reduction of x modulo
some N ∈ . This augments Conjecture 1 by an equidistribution statement.
ii) Instead of complete intersections, one may consider arbitrary projective Fano
varieties V . Then, Hk

naive needs to be replaced by a height defined by the anti-
canonical bundle O(−KV ).
If Pic(V ) 6∼= then the description of the constant C gets more complicated in
several ways. First, there is an additional factor β := #H1(Gal( / ),Pic(V )).
Further, instead of the factors (1− 1

p ) one has to write 1/Lp(1,Pic(V )),
Lp being the local L-function corresponding to the Picard group. Finally, the
Tamagawa measure has to be taken not of the full variety V ( ) but of the
subset which is not affected by the Brauer-Manin obstruction.
If Pic(V ) 6∼= already over then the right hand side of (1) has to be replaced
by CB logtB. For the exponent of the log-term, there is the expectation that
t = rk Pic(V )−1. There are, however, examples [BT] in dimension three in which
the exponent is larger. The constant C gets equipped with yet another additional
factor α which depends on the structure of the effective cone in Pic(V ) and on
the position of −K in it [Pe1, Définition 2.4].
iii) Finally, there is a generalization to arbitrary number fields [Pe1].

2 Computation of the Tamagawa number

Counting points over finite fields. We consider the projective varieties V ea,b
given by axe = bye + ze + ve + we in P4

p
. We assume a, b 6= 0 (and p - e)

in order to avoid singularities. Observe that, even for large p, these are at most
e2 varieties up to obvious p-isomorphism as ∗

p consists of no more than e cosets
modulo ( ∗

p )e.
It follows from the Weil conjectures, proven by P. Deligne [De, Théorème

(8.1)], that
#V ea,b( p) = p3 + p2 + p+ 1 + Eea,b

where the error-term Eea,b may be estimated by |Eea,b| ≤ Cep3/2.
Here, C3 = 10 and C4 = 60 as dimH3(V 3, ) = 10 for every smooth cubic

threefold and dimH3(V 4, ) = 60 for every smooth quartic threefold in P4( ).
These dimensions result from the Weak Lefschetz Theorem together with
F. Hirzebruch’s formula [Hi, Satz 2.4] for the Euler characteristic which actually
works in much more generality.



Remark 7. Suppose e = 3 and p ≡ 2 (mod 3). Then, #V 3
a,b( p) = #V 1

a,b( p)
as gcd(p − 1, 3) = 1. Similarly, for e = 4 and p ≡ 3 (mod 4), one has
gcd(p − 1, 4) = 2 and #V 4

a,b( p) = #V 2
a,b( p). In these cases, the error term

vanishes and #V ea,b( p) = p3 + p2 + p+ 1.
In the remaining cases p ≡ 1 (mod 3) for e = 3 and p ≡ 1 (mod 4) for e = 4,

our goal is to compute the number of p-rational points on V ea,b. As V ea,b ⊆ P4,
there would be an obvious O(p4)-algorithm. We can do significantly better
than that.

Definition 8. Let K be a field and let x ∈ Kn and y ∈ Km be two vectors.
Then, their convolution z := x ∗ y ∈ Kn+m−1 is defined to be zk :=

∑
i+j=k

xiyj .

Theorem 9 (FFT convolution). Let n = 2l and K be a field which contains the
2n-th roots of unity. Then, the convolution x∗y of two vectors x, y of length ≤ n
can be computed in O(n log n) steps.
Proof. The idea is to apply the Fast Fourier Transform (FFT) [Fo, Satz 20.3].
The connection to the convolution is shown in [Fo, Satz 20.2, or CLR, Theo-
rem 32.8]. �
Theorem 9 is the basis for the following algorithm.

Algorithm 10 (FFT point counting on V ea,b).
i) Initialize a vector x[0 . . . p] with zeroes.
ii) Let r run from 0 to p− 1 and increase x[re mod p] by 1.
iii) Calculate ỹ := x ∗ x ∗ x by FFT convolution.
iv) Normalize by putting y[i] := ỹ[i] + ỹ[i+ p] + ỹ[i+ 2p] for i = 0, . . . , p− 1.
v) Initialize N as zero.
vi) (Counting points with first coordinate 6= 0)
Let j run from 0 to p− 1 and increase N by y[(a− bj4) mod p].
vii) (Counting points with first coordinate 0 and second coordinate 6= 0)
Increase N by y[(−b) mod p].
viii) (Counting points with first and second coordinate 0)
Increase N by (y[0]− 1)/(p− 1).
ix) Return N as the number of all p-valued points on V ea,b.

Remark 11. For the running-time, step iii) is dominant. Therefore, the running-
time of Algorithm 10 is O(p log p).

To count, for fixed e and p, p-rational points on V ea,b with varying a and b,
one needs to execute the first four steps only once. Afterwards, one may perform
steps v) through ix) for all pairs (a, b) of elements from a system of representa-
tives for ∗

p /(
∗
p )e. Note that steps v) through ix) alone are of complexity O(p).

We ran this algorithm for all primes p ≤ 106 and stored the cardinalities in a file.
This took several days of CPU time.

Remark 12. There is a formula for #V ea,b( p) in terms of Jacobi sums. A skilful
manipulation of these sums should lead to another efficient algorithm which
serves the same purpose as Algorithm 10.



The local factors at finite places. We are interested in the Euler product

τea,b,fin :=
∏
p∈

(
1− 1

p

)
lim
n→∞

#V ea,b( /pn )
p3n

.

Lemma 13. a) (Good reduction)
If p -abe then the sequence (#V ea,b( /pn )/p3n)n∈ is constant.
b) (Bad reduction)
i) If p divides ab but not e then the sequence (#V ea,b( /pn )/p3n)n∈ becomes
stationary as soon as pn divides neither a nor b.
ii) If p = 2 and e = 4 then the sequence (#V ea,b( /pn )/p3n)n∈ becomes
stationary as soon as 2n does not divide 8a or 8b.
iii) If p = 3 and e = 3 then the sequence (#V ea,b( /pn )/p3n)n∈ becomes
stationary as soon as 3n divides neither 3a nor 3b.

Theorem 14. For every pair (a, b) of integers such that a, b 6= 0, the Euler prod-
uct τea,b,fin is convergent.
Proof. Let p be a prime bigger than |a|, |b|, and e. Then, the factor at p is
τp := (1 − 1

p )(1 + p + p2 + p3 + Dpp
3/2)/p3 where |Dp| ≤ Ce for C3 = 10 and

C4 = 60, respectively.
Taking the logarithm, we consider

∑
p log τp. In the case e = 3, the sum is

effectively over the primes p = 1 (mod 3). If e = 4 then summation extends
over all primes p = 1 (mod 4). In either case, we take a sum over one-half of
all primes. This leads to the following estimate,∑
p≥N
| log τp| ≤

∑
p≥N

[
Ce
p3/2

+O(p−5/2)
]
∼ Ce

2

∫ ∞
N

1
t3/2 log t

dt

≤ Ce
2 logN

∫ ∞
N

t−3/2dt =
Ce√

N logN
. �

Remark 15. We are interested in an explicit upper bound for |
∑

p≥106
log τp|. Using

Taylor’s formula, one gets∣∣∣∣∣ ∑
p≥106

log τp −
∑
p≥106

Dp

p3/2

∣∣∣∣∣ ≤ 10−8.

Since Dp
p3/2 is zero for p ≡ 3 (mod 4) (or p ≡ 2 (mod 3)), the sum should be com-

pared with log(ζK(3/2)). Here, ζK is the Dedekind Zeta function of K = (i)
or (ζ3), respectively. This yields

∑
p≥106

p≡1 (mod 4)

1
p3/2

≤ log

√
ζ (i)(3/2)

(1− 2−3/2)−1/2 ·
∏

p≡3 (mod 4)

(1− p−3)−1/2 ·
∏

p<106

p≡1 (mod 4)

(1− p−3/2)−1



and, for the other case, a similar estimate containing ζ (ζ3)(3/2). Note that the
infinite product in the denominator converges a lot faster than the left hand side.

Using Pari, we evaluated the right hand side numerically. We found 0.39%
for the quartic and 0.065% for the cubic as upper bounds for the error of ap-
proximation.

Remark 16. In practice, the error of the approximation is much smaller.
The main reason is that the error-term Dp may have a positive or a nega-
tive sign. Some cancellations happen during summation. The assumption of a
random distribution would result in a higher order of convergence. In fact, we
observed this effect numerically.

Approximation of the Euler product. Lemma 13 allows us to determine
each factor of the Euler product exactly. As we need to know the numerical value
of τea,b,fin, we approximate it by a finite product.

Observe that the factor at a good prime p is simply (1− 1/p) ·#V ea,b( p)/p3.
In particular, for this factor there are only e2 values possible. Even more, these
numbers had been precomputed using FFT point counting (Algorithm 10).
The algorithm below is based on the fact that the vast majority of the factors
actually do not need to be computed. They are available from a list.

Algorithm 17 (Compute an approximate value for τ3
a,b,fin (τ4

a,b,fin)).

i) Let p run over all prime numbers such that p ≡ 2 (mod 3) (p ≡ 3 (mod 4))
and p ≤ N and calculate the product of all values of (1− 1/p4).

ii) Compute the factor corresponding to p = 3 (p = 2) by Lemma 13.b).

iii) Let p run over all prime numbers such that p ≡ 1 (mod 3) (p ≡ 1 (mod 4))
and p ≤ N . Calculate the product of the factors described below.

If p|ab then the corresponding factor is given by Lemma 13.b). Otherwise, com-
pute the e-th power residue-symbols of a and b and look up the precomputed
factor for this p-isomorphism class of varieties in the list.

iv) Multiply the two products from steps i) and iii) and the factor from step ii)
with each other. Correct the product by taking the bad primes p ≡ 2 (mod 3)
(p ≡ 3 (mod 4)) into consideration.

Remark 18. When we meet a bad prime p, we have to count /pn -valued points
on V ea,b. This is done by an algorithm which is very similar to Algorithm 10.

We used Algorithm 17 to compute the Euler products τ3
a,b,fin and τ4

a,b,fin for
a, b = 1, . . . , 100. We did all calculations for N = 106. Note that step i) had to
be done only once for e = 3 and once for e = 4. The running-time was a quarter
of an hour for either exponent.



The factor at the infinite place. For the quartic V 4
a,b, we have the integral

ωH,∞(V 4
a,b( )) =

1
4 4
√
a

∫∫∫∫
R

1
(by4 + z4 + v4 + w4)3/4

dy dz dv dw

over R := {(y, z, v, w) ∈ 4 | |y|, |z|, |v|, |w| ≤ 1 and |by4 + z4 + v4 + w4| ≤ a} .
The integrand is singular in one point. We used a simple substitution to make
it sufficiently smooth for numerical integration.

On the other hand, for the cubic V 3
a,b, we have to consider

ωH,∞(V 3
a,b( )) =

1
6 3
√
a

∫∫∫∫
R

1
(by3 + z3 + v3 + w3)2/3

dy dz dv dw

for R := {(y, z, v, w) ∈ 4 | |y|, |z|, |v|, |w| ≤ 1 and |by3 + z3 + v3 + w3| ≤ a} .
The difficulty here is the handling of the singularity of the integrand. It is located
in the zero set of by3 + z3 + v3 + w3 in R.

Since (by3 + z3 + v3 + w3)−2/3 is a homogeneous function, it is enough
to integrate over the boundary of R. This reduces the problem to several
three-dimensional integrals of functions having a two-dimensional singular lo-
cus. If a ≥ b + 3 then R is a cube and the boundary of R is easy to describe.
We restricted our attention to this case. We smoothed the singularities by sep-
aration of Puiseux expansions and substitutions. The resulting integrals were
treated by the Gauß-Legendre formula [Kr].

3 On the geometry of diagonal cubic threefolds

Lemma 19. Let V ⊂ P4 be any smooth hypersurface. Then, every (reduced
but possibly singular) surface S ⊂ V is a complete intersection V ∩Hd with a
hypersurface Hd ⊂ P4.
Proof. By the Noether-Lefschetz Theorem, we have Pic(V ) ∼= . The surface S
is a Weil divisor on V . Hence, O(S) = O(d) ∈ Pic(V ) for a certain d > 0. The re-
striction Γ (P4,O(d))→ Γ (V,O(d)) is surjective as H1(P4,OV (d− deg V )) = 0
[Ha2, Theorem III.5.1.b)]. �

Elliptic Cones. Let V ⊂ P4( ) be the diagonal cubic threefold given by the
equation x3 + y3 + z3 + v3 + w3 = 0. Fix ζ ∈ such that ζ3 = 1. Then, for
every point (x0 : y0 : z0) on the elliptic curve F : x3 + y3 + z3 = 0, the line given
by (x : y : z) = (x0 : y0 : z0) and v = −ζw is contained in V . All these lines
together form a cone CF over F the cusp of which is (0 : 0 : 0 : −ζ : 1). CF is
a singular model of a ruled surface over an elliptic curve. This shows, there are
no other rational curves contained in CF .

By permuting coordinates, one finds a total of thirty elliptic cones of that type
within V . The cusps of these cones are usually named Eckardt points [Mu,CG].
We call the lines contained in one of these cones the obvious lines lying on V .
It is clear that there are an infinite number of lines on V running through each
of the thirty Eckardt points.



Proposition 20 (cf. [Mu, Lemma 1.18]). Let V ⊂ P4 be the diagonal cubic
threefold given by the equation x3+y3+z3+v3+w3 = 0. Then, through each point
p ∈ V different from the thirty Eckardt points there are precisely six lines on V .
Proof. Let P = (x0 : y0 : z0 : v0 : w0). A line l through P and another point
Q = (x : y : z : v : w) is parametrized by (s : t) 7→ ((sx0 + tx) : . . . : (sw0 + tw)).
Comparing coefficients at s2t, st2, and t3, we see that the condition that l lies
on V may be expressed by the three equations below.

x2
0x + y2

0y +z2
0z + v2

0v + w2
0w = 0 (2)

x0x
2 + y0y

2 + z0z
2 + v0v

2 + w0w
2 = 0 (3)

x3 + y3 + z3 + v3 + w3 = 0 (4)

The first equation means that Q lies on the tangent hyperplane HP at P while
equation (4) just encodes that Q ∈ V . By [Za, Corollary 1.15.b)], HP ∩ V is an
irreducible cubic surface.

On the other hand, the quadratic form q on the left hand side of equation (3)
is of rank at least 3 as P is not an Eckardt point. Therefore, q is not just the
product of two linear forms. In particular, q|HP 6≡ 0.

As HP ∩ V is irreducible, Z(q|HP ) and HP ∩ V do not have a component in
common. By Bezout’s theorem, their intersection in HP is a curve of degree 6. �

Remark 21. It may happen that some of the six lines coincide. Actually, it turns
out that a line appears with multiplicity > 1 if and only if it is obvious [Mu,
Lemma 1.19]. In particular, for a general point P the six lines through it are
different from each other.

Under certain exceptional circumstances it is possible to write down all
six lines explicitly. For example, if P = ( 3

√
−4 : 1 : 1 : 1 : 1) then the line

( 3
√
−4t : (t+ s) : (t+ is) : (t− s) : (t− is)) through P lies on V . Permuting the

three rightmost coordinates yields all six lines.

4 Detection of accumulating subvarieties

The detection of -rational lines on the cubics. On a cubic three-
fold V 3

a,b, quadratic growth is predicted for the number of -rational points
of bounded height. Lines are the only curves with such a growth rate.

The moduli space of the lines on a cubic threefold is well-understood. It is a
surface of general type [CG, Lemma 10.13]. Nevertheless, we do not know of a
method to find all -rational lines on a given cubic threefold, explicitly. For that
reason, we use the algorithm below which is an irrationality test for the six lines
through a given point (x0 : y0 : z0 : v0 : w0) ∈ V 3

a,b( ).

Algorithm 22 (Test the six lines through a given point for irrationality).
i) Let p run through the primes from 3 to N .
For each p, solve the system of equations (2), (3), (4) (adapted to V 3

a,b) in 5
p .

If the multiples of (x0, y0, z0, v0, w0) are the only solutions then output that there
is no -rational line through (x0 : y0 : z0 : v0 : w0) and terminate prematurely.



ii) If the loop comes to its regular end then output that the point is suspicious.
It could possibly lie on a -rational line.

Remark 23. We use a very naive O(p)-algorithm to solve the system of equations
over p. If, say, x0 6= 0 then it is sufficient to consider quintuples such that x = 0.
We parametrize the projective plane given by (2). Then, we compute all points
on the conic given by (2) and (3). For each such point, we compute the cubic
form on the left hand side of (4).

We carried out the irrationality test on every -rational point found on any
of the cubics except for the points lying on an obvious line. We worked
with N = 600. It turned out that suspicious points are rare and that, at least in
our sample, each of them actually lies on a -rational line.

We found only 42 non-obvious -rational lines on all of the cubics V 3
a,b for

100 ≥ a ≥ b ≥ 1 together. Among them, there are only five essentially differ-
ent ones. We present them in the table below. The list might be enlarged by
two, as V 3

21,6 and V 3
22,5 may be transformed into V 3

48,21 and V 3
40,22, respectively,

by an automorphism of P4. Further, each line has six pairwise different images
under the obvious operation of the group S3.

Table 1. Sporadic lines on the cubic threefolds

a b Smallest point Point s.t. x = 0

19 18 (1 : 2 : 3 : -3 : -5) (0 : 7 : 1 : -7 : -18)

21 6 (1 : 2 : 3 : -3 : -3) (0 : 9 : 1 : -10 : -15)

22 5 (1 : -1 : 3 : 3 : -3) (0 : 27 : -4 : -60 : 49)

45 18 (1 : 1 : 3 : 3 : -3) (0 : 3 : -1 : 3 : -8)

73 17 (1 : 5 : -2 : 11 : -15) (0 : 27 : -40 : 85 : -96)

Remark 24. It is a priori unnecessary to search for accumulating surfaces, at
least if we assume some conjectures.

First of all, only rational surfaces are supposed to accumulate that many
rational points that it could be seen through our asymptotics. Indeed, a sur-
face which is abelian or bielliptic may not have more than O(logtB) points of
height < B. Non-rational ruled surfaces accumulate points in curves, anyway.
Further, it is expected [Pe2, Conjecture 3.6] that K3 surfaces, Enriques surfaces,
and surfaces of Kodaira dimension one may have no more than O(Bε) points of
height < B outside a finite union of rational curves. For surfaces of general type,
finally, expectations are even stronger (Lang’s conjecture).

A rational surface S is, up to exceptional curves, the image of a rational
map ϕ : P2 //__ V ⊂ P4. There is a birational morphism ε : P → P2 such that
ϕ := ϕ ◦ ε is a morphism of schemes. ε is given by a sequence of blowing-
ups [Bv, Theorem II.11]. ϕ is defined by the linear system |dH − E| where
d := degϕ, H is a hyperplane section, and E is the exceptional divisor. On the



other hand, K := KP = −3H + E. Therefore, if d ≥ 3 then

Hnaive(ϕ(p)) = HdH−E(p) = H3H− 3
dE

(p)d/3 ≥ c · H−K(p)d/3

for p 6∈ supp(E). Manin’s conjecture implies there are O((B logtB)
3
d ) = o(B2)

points of height < B on the Zariski-dense subset ϕ(P \ supp(E)) ⊆ S.
It remains to show that there are no rational maps ϕ : P2 //__ V of de-

gree d ≤ 2. Indeed, under this assumption, degϕ(P2) ≤ 4. This implies, by virtue
of Lemma 19, that ϕ(P2) is necessarily a hyperplane section V ∩H . Zak’s the-
orem [Za, Corollary 1.8] shows that V ∩ H contains only finitely many singu-
lar points. It is, however, well known that cubic surfaces in 3-space which are
the image of P2 under a quadratic map have a singular line [Bv, Corollary IV.8].

The detection of -rational conics on the quartics. On a quartic
threefold, linear growth is predicted for the number of -rational points of
bounded height. The assumption b > 0 ensures that there are no -rational
lines contained in V 4

a,b. The only other curves with at least linear growth one
could think about are conics.

We were not able to create an efficient routine to test whether there is a
-rational conic through a given point. The resulting system of equations seems

to be too complicated to handle.

Conics through two points. A conic Q through (x0 : y0 : z0 : v0 : w0)
and (x1 : y1 : z1 : v1 : w1) may be parametrized in the form

(s : t) 7→ ((λx0s
2 + µx1t

2 + xst) : . . . : (λw0s
2 + µw1t

2 + wst))

for some x, y, z, v, w, λ, µ ∈ . The condition that Q is contained in V 4
a,b leads to

a system G of seven equations in x, y, z, v, w, and λµ. The phenomenon that
λ and µ do not occur individually is explained by the fact that they are not
invariant under the automorphisms of P1 which fix 0 and ∞.

Algorithm 25 (Test for conic through two points).
i) Let p run through the primes from 3 to N .
In the exceptional case that G could allow a solution such that p|x, y, z, v, w but
p2 -λµ, do nothing. Otherwise, solveG in 6

p . If (0, 0, 0, 0, 0, 0) is the only solution
then output that there is no -rational conic through (x0 : y0 : z0 : v0 : w0) and
(x1 : y1 : z1 : v1 : w1) and terminate prematurely.
ii) If the loop comes to its regular end then output that the pair is suspicious.
It could possibly lie on a -rational conic.

To solve the system G in 6
p , we use an O(p)-algorithm. Actually, compari-

son of coefficients at s7t and st7 yields two linear equations in x, y, z, v, and w.
We parametrize the projective plane I given by them. Comparison of coefficients
at s6t2 and s2t6 leads to a quadric O and an equation λµ = q(x, y, z, v, w)/M
with a quadratic form q over and an integer M 6= 0. The case p|M sends us to
the next prime immediately. Otherwise, we compute all points on the conic I∩O.
For each of them, we test the three remaining equations.



Conics through three points. Three points P1, P2, and P3 on V 4
a,b define a projec-

tive plane P. The points together with the two tangent lines P∩TP1 and P∩TP2

determine a conic Q, uniquely. It is easy to transform this geometric insight into
a formula for a parametrization of Q. We then need a test whether a conic given
in parametrized form is contained in V 4

a,b. This part is algorithmically simple
but requires the use of multiprecision integers.

Detecting conics. For each quartic V 4
a,b, we tested every pair of -rational

points of height < 10 000 for a conic through them. The existence of a conic
through (P,Q) is equivalent to the existence of a conic through (gP, gQ)
for g ∈ ( /2 )4 o S3 ⊆ Aut(V 4

a,b). This reduces the running time by a fac-
tor of about 96. Further, pairs already known to lie on the same conic were
excluded from the test.

For each pair (P,Q) found suspicious, we tested the triples (P,Q,R) for
R running through the -rational points of height < 10 000, until a conic
was found. Due to the symmetries, one finds several conics at once. For each
conic detected, all points on it were marked as lying on this conic.

Actually, there were a few pairs found suspicious through which no conic
could be found. In any of these cases, it was easy to prove by hand that there
is actually no -rational conic passing through the two points. This means,
we detected every conic which meets at least two of the rational points of
height < 10 000.

The conics found. Up to symmetry, we found a total of 1 533 -rational conics
on all of the quartics V 4

a,b for 1 ≤ a, b ≤ 100 together.
Among them, 1 410 are contained in a plane of type z = v + w and

Y x−Xy = 0 for (X,Y, t) a rational point on the genus one curve aX4−bY 4 = 2t2.
Further, there are 90 conics which are slight modifications of the above with y
interchanged with z, v, or w. This is possible if b is a fourth power.

There is a geometric explanation for the occurrence of these conics. The hy-
perplane given by z = v +w intersects V 4

a,b in a surface S with the two singular
points (0 : 0 : −1 : e±2πi/3 : e∓2πi/3). The linear projection π : S //__ P1 to the
first two coordinates is undefined only in these two points. Its fibers are plane
quartics which split into two conics as (v+w)4 +v4 +w4 = 2(v2 +vw+w2)2. Af-
ter resolution of singularities, the two conics become disjoint. S̃ is a ruled surface
over a twofold cover of P1 ramified in the four points such that ax4 − by4 = 0,
i.e. over a curve of genus one.

In the case a is twice a square, a different sort of conics comes from the
equations v = z + Dy and w = Ly when (L,D) is a point on the affine genus
three curve Cb : L4+b = D4. We found 28 conics of this type. Cb has a -rational
point for b = 5, 15, 34, 39, 65, 80, and 84. The conics actually admit a -rational
point for a = 2, 18, 32, and 98.

The remaining five conics are given as follows. For a = 3, 12, 27, or 48
and b = 10, intersect with the plane given by v = y + z and w = 2y + z.
For a = 17 and b = 30, put v = 2x+ y and w = x+ 3y + z.



Remark 26. Again, it is not necessary to search for accumulating surfaces.
Here, rational maps ϕ : P2 //__ V ⊂ P4 such that degϕ ≤ 3 need to be taken
into consideration. We claim, such a map is impossible.

If degϕ = 3 then we had ϕ : (λ : µ : ν) 7→ (K0(λ, µ, ν) : . . . : K4(λ, µ, ν))
where K0, . . . ,K4 are cubic forms defined over . K0 = 0 defines a plane cu-
bic which has infinitely many real points, automatically. As the image of ϕ
is assumed to be contained in V 4

a,b, we have that K0(λ, µ, ν) = 0 implies
K1(λ, µ, ν) = . . . = K4(λ, µ, ν) = 0 for λ, µ, ν ∈ . By consequence,K1, . . . ,K4

are divisible by K0 (or by a linear factor of K0 in the case it is reducible) and
ϕ is not of degree three.

For degϕ ≤ 2, we had degϕ(P2) ≤ 4 such that ϕ(P2) = V ∩ H is a hy-
perplane section. Zak’s theorem [Za, Corollary 1.8] shows it has at most finitely
many singular points. On the other hand, a quartic in P3 which is the image of
a quadratic map from P2 is a Steiner surface. It is known [Ap, p. 40] to have
one, two, or (in generic case) three singular lines.

5 The final results

A technology to find solutions of Diophantine equations. In [EJ1] and
[EJ2], we described a modification of D. Bernstein’s [Be] method to search ef-
ficiently for all solutions of naive height < B of a Diophantine equation of the
particular form f(x1, . . . , xn) = g(y1, . . . , ym). The expected running-time of
our algorithm is O(Bmax{n,m}). Its basic idea is as follows.

Algorithm 27 (Search for solutions of a Diophantine equation).
i) (Writing)
Evaluate f on all points of the cube {(x1, . . . , xn) ∈ n | |xi| < B} of dimen-
sion n. Store the values within a hash table H .
ii) (Reading)
Evaluate g on all points of the cube {(y1, . . . , ym) ∈ m | |yi| < B}. For each
value, start a search in order to find out whether it occurs in H . When a co-
incidence is detected, reconstruct the corresponding values of x1, . . . , xn and
output the solution.

Remark 28. In the case of a variety V ea,b, the running-time is obviously O(B3).
We decided to store the values of ze+ve+we into the hash table. Afterwards, we
have to look up the values of axe − bye.

In this form, the algorithm would lead to a program in which almost the
entire running-time is consumed by the writing part. Observe, however, the
following particularity of our method. When we search on up to O(B) threefolds,
differing only by the values of a and b, simultaneously, then the running-time is
still O(B3).

We worked with B = 5 000 for the cubics and B = 10 000 for the quartics.
In either case, we dealt with all threefolds arising for a, b = 1, . . . , 100, simulta-
neously. For the quartics, the running-time was around four days of CPU time.



This is approximately only three times longer than searching on a single three-
fold had lasted. For the cubics, a program with integrated line detection took us
approximately ten days.

The result for the cubics. We counted all -rational points of height less
than 5 000 on the threefolds V 3

a,b where a, b = 1, . . . , 100 and b ≤ a. Note that
V 3
a,b
∼= V 3

b,a. Points lying on one of the elliptic cones or on a sporadic -rational
line in Va,b were excluded from the count. The smallest number of points found
is 3 930 278 for (a, b) = (98, 95). The largest numbers of points are 332 137 752
for (a, b) = (7, 1) and 355 689 300 in the case that a = 1 and b = 1.

On the other hand, for each threefold V 3
a,b whereas a, b = 1, . . . , 100

and b + 3 ≤ a, we calculated the expected number of points and the quotients

# { points of height < B found } /# { points of height < B expected }.

Let us visualize the quotients by two histograms.
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Fig. 1. Distribution of the quotients for B = 1 000 and B = 5 000.

The statistical parameters are listed in the table below.

Table 2. Parameters of the distribution in the cubic case

B = 1 000 B = 2 000 B = 5 000

mean value 0.981 79 0.988 54 0.993 83
standard deviation 0.012 74 0.008 23 0.004 55



The results for the quartics. We counted all -rational points of height less
than 10 000 on the threefolds V 4

a,b where a, b = 1, . . . , 100. It turns out that
on 5 015 of these varieties, there are no -rational points occurring at all as
the equation is unsolvable in p for some small p. In this situation, Manin’s
conjecture is true, trivially.

Further, there is the case (a, b) = (58, 87) in which the smallest 96 solutions
are the images of (6 465 : 637 : 4 321 : 6 989 : 17 719) under the obvious operation
of the group ( /2 )4 o S3. Here, τH(V 4

58,87) ≈ 0.002 722.
For the remaining varieties, the points lying on a known -rational conic

in Va,b were excluded from the count. Table 3 shows the quartics sorted by the
numbers of points remaining.

Table 3. Numbers of points of height < 10 000 on the quartics.

a b #points # not on conic # expected

29 29 2 2 13.5
58 58 2 2 38.8
51 71 96 96 319.8
87 87 98 98 35.7

...
...

...
...

...
34 1 995 808 569 088 567 300
17 64 581 640 581 640 564 300
1 14 682 830 598 038 648 300
3 1 1 262 048 739 008 752 600

We see that the variation of the quotients is higher than in the cubic case.

0

1

2

3

4

5

6

7

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0

1

2

3

4

5

6

7

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fig. 2. Distribution of the quotients for B = 1 000 and B = 10 000.



The statistical parameters are listed in the table below.

Table 4. Parameters of the distribution in the quartic case

B = 1 000 B = 10 000

mean value 0.9853 0.9957
standard deviation 0.3159 0.1130

Interpretation of the result. The results suggest that Manin’s conjecture
should be true for the two families of threefolds considered. In the cubic case, the
standard deviation is by far smaller than in the case of the quartics. This, how-
ever, is not very surprising as on a cubic there tend to be much more rational
points than on a quartic. This makes the sample more reliable.

Remark 29. The data we collected might be used to test the sharpening of the
asymptotic formula (1) suggested by Sir P. Swinnerton-Dyer [S-D].

Question 30. Our calculations seem to indicate that the number of rational
points often approaches its expected value from below. Is that more than an
accidental effect?
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