
EXAMPLES OF K3 SURFACES WITH REAL MULTIPLICATION
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Abstract. We construct explicit examples of K3 surfaces over Q having
real multiplication. Our examples are of geometric Picard rank 16. The stan-
dard method for the computation of the Picard rank provably fails for the
surfaces constructed.

1. Introduction

It is well known that the endomorphism algebra of a general elliptic curve X
over C is equal to Z, while for certain exceptional curves the endomorphism algebra
is larger. There are only countably many exceptions and these have complex mul-
tiplication. I.e., End(X)⊗ZQ is an imaginary quadratic number field.

There is a rich theory about CM elliptic curves, cf. [38, Chapter II] or [6, Chap-
ter 3]. We will not go into details, but mention only a few facts that are relevant
for what follows. First of all, the construction of CM elliptic curves in an analytic
setting is very classical [41, 17. bis 23. Abschnitt]. The situation becomes slightly
more complicated, however, when explicit equations are asked for.

Concerning their arithmetic, CM elliptic curves are, may be, even more spe-
cial. There are only nine imaginary quadratic number fields that may occur as
the endomorphism field of a CM elliptic curve, defined over Q, those being of
class number one. Further, on all general elliptic curves, the traces of the Frobenii
Frobp ∈ End(H1

ét((Xp)Fp
,Ql)) have the same statistics [33], while, in the CM case,

a different statistics occurs.

The whole theory generalizes to higher dimensions. The most obvious situation
is certainly that of an abelian surface. Here, once again, the general case is that
the endomorphism algebra is equal to Z.

But there is more than one way, in which an abelian surface may be exceptional.
A new feature is, for example, that real multiplication occurs [18]. Concerning the
possible statistics of the Frobenii on an abelian surface over Q, interesting investi-
gations have been undertaken by K. S. Kedlaya and A.V. Sutherland [23].

From the point of view of the classification of algebraic surfaces, there are natural
generalizations of elliptic curves to dimension two, other than abelian surfaces.
One kind of these is provided by the so-called K3 surfaces. Indeed, elliptic curves
may be characterized as being the curves with trivial canonical class.

By definition, a K3 surface is a simply connected, projective algebraic surface
with trivial canonical class. The property of being K3 determines the Hodge di-
amond. The Picard group of a complex K3 surface is isomorphic to Zn, where
n may range from 1 to 20.
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Examples include the classical Kummer surfaces, smooth space quartics and dou-
ble covers of P2, branched over a smooth sextic curve. As long as the singularities
are rational, the minimal resolutions of singular quartics and double covers of P2,
branched over a singular sextic, are K3 surfaces, too.

Since K3 surfaces do not carry a natural group structure, the endomorphism
algebra may no longer be defined naively. One has to take a look at the cohomology.
For X a K3 surface, one has H1(X,Q) = 0, but H := H2(X,Q) is non-trivial. It is
a pure weight-2 Hodge structure of dimension 22, consisting of the image P of the
Picard group under the Chern class map and its orthogonal complement T := P⊥,
which is called the transcendental part of H .

The endomorphism algebra End(T ) may only beQ, a totally real number field, or
a CM field. If E % Q is totally real then T (or the underlying K3 surface X) is said
to have real multiplication. If E is CM then one speaks of complex multiplication.
Observe the difference to the situation of an elliptic curve or abelian surface, where
End(H1(X,Q)) is considered.

The Kummer surface Kum(E1×E2) attached to the product of two elliptic curves
E1 and E2 has complex multiplication if one of the elliptic curves has. On the other
hand, a Kummer surface does not inherit the property of having real multiplica-
tion from the underlying abelian surface A. Indeed, in this case,

√
d ∈ Q(

√
d)

operates on H1,0(A,C) with eigenvalues ±
√

d. Consequently, Q(
√

d) operates on
Λ2H1,0(A,C) = H2,0(A,C) →֒ HC := H2(KumA,C) via multiplication by the
norm, and the same is true for the whole TC ⊂ HC.

Nonetheless, B. van Geemen showed that there exist K3 surfaces of Picard
rank 16 that have real multiplication by Q(

√
d), as soon as d is an odd num-

ber being the sum of two squares [17, Example 3.4]. Van Geemen’s approach is
analytic and does not lead to explicit equations. He poses the problem to construct
explicit examples in [17, paragraph 3.1]. We shall give van Geemen’s argument in
a slightly more general form in an appendix.

1.1. The results. In this note, we will present algorithms to efficiently test a
K3 surface X over Q for real multiplication. These do not provide a proof, but
only strong evidence. Experiments using the algorithms delivered two families of
K3 surfaces of geometric Picard rank 16 and an isolated example.

For infinitely many members X(2,t) of the first family, we will prove in this
note (4.13 and Theorem 5.2) that they have real multiplication by Q(

√
2). To our

knowledge, these are the first explicit examples of K3 surfaces, for which real mul-
tiplication is proven.

The members of the second family are highly suspicious to have real multi-
plication by Q(

√
5), while the isolated example is highly suspicious to have real

multiplication by Q(
√

13).

Unfortunately, no practical algorithm is known that proves real (or complex)
multiplication for a given K3 surface. It seems that, in principle, there is such an
algorithm under the assumption of the Hodge conjecture, cf. the indications given
in the proof of [4, Theorem 6]. But the idea is to inspect the Hilbert scheme of
X ×X , which is far from realistic to do in practice.

That is why our proof for real multiplication is an indirect one. It is based on
showing that #Xp(Fp) ≡ 1 (mod p) for all primes p ≡ 3, 5 (mod 8). In order to
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do this, we analyze in detail one of the elliptic fibrations the surfaces X(2,t) have.
We do not have a geometric explanation for the occurrence of real multiplication.

1.2. An application. Van Luijk’s method. This is the standard method to
determine the geometric Picard rank of a K3 surface over Q. Its fundamental
idea is that, for every prime p of good reduction, one has rk PicXQ ≤ rk PicXFp

.
Further, the method relies on the hope to find good primes such that

rkPic XFp
≤ rkPicXQ + 1 . (1)

To see the method at work, the reader is advised to consult the original papers of
R. van Luijk [26, 27] or some of the authors’ previous articles [10, 12, 13]. Fur-
ther, there is the remarkable work of N. Elkies and A. Kumar [9], where they com-
pute, among other data, the Néron-Severi ranks of all Hilbert-Blumenthal surfaces
corresponding to the real quadratic fields of discriminants up to 100. Several of
them are K3.

Quite recently, F. Charles [4] provided a theoretical analysis on the existence of
primes fulfilling condition (1). The result is that such primes always exist, unless
X has real multiplication by a number field E and (22− rkPicXQ)/[E :Q] is odd.
In particular, for the explicit examples of K3 surfaces with real multiplication,
provided by our experiments, the method is bound to fail in its original form.

For K3 surfaces having real multiplication, there is a modification of van Luijk’s
method, cf. [4, Proposition 18]. We will make use of this in the proof of Theorem 5.2.
But, still, things will fail whenever a surface is met that has real multiplication,
but for which this fact is not known or cannot be assured.

2. Hodge structures

Recall the following definition, cf. [7, Définition 2.1.10 and Proposition 2.1.9].

Definition 2.1. i) A (pure Q-) Hodge structure of weight i is a finite dimensionalQ-vector space V together with a decomposition

VC := V ⊗QC = H0,i ⊕H1,i−1 ⊕ . . .⊕Hi,0

having the property that Hm,n = Hn,m, for every m, n ∈ N0 such that m + n = i.
A morphism f : V → V ′ of (pure Q-) Hodge structures is a Q-linear map such that
fC : VC → V ′C respects the decompositions.

ii) A Hodge structure of weight 2 is said to be of K3 type if dimCH2,0 = 1.

Remark 2.2. Hodge structures of weight i form an abelian category [7, 2.1.11].
Further, this category is semisimple. I.e., every Hodge structure is a direct sum of
primitive ones [7, Définition 2.1.4 and Proposition 2.1.9].

Examples 2.3. i) Let X be a smooth, projective variety over C. Then
Hi(X(C),Q) is in a natural way a pure Q-Hodge structure of weight i.

ii) In H2(X(C),Q), the image of c1 : Pic(X)⊗ZQ→ H2(X(C),Q) defines a sub-

Hodge structure P such that H0,2
P = H2,0

P = 0.

iii) If X is a surface then H := H2(X(C),Q) is actually a polarized pure Hodge
structure, the polarization 〈. , .〉 : H × H → Q being given by the cup product,
together with Poincaré duality. The sub-Hodge structure P and its orthogonal
complement T are polarized Hodge structures, too.
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Yu. G. Zarhin [42, Theorem 1.6.a) and Theorem 1.5.1] proved that, for T a
polarized weight-2 Hodge structure of K3 type, E := End(T ) is either a totally real
field or a CM field. Thereby, every ϕ ∈ E operates as a self-adjoint mapping. I.e.,

〈ϕ(x), y〉 = 〈x, ϕ(y)〉 ,
for the identity map in the case that E is totally real and the complex conjugation
in the case that it is a CM field. Observe that, in either case, T carries the structure
of an E-vector space. Further, in the case of real multiplication, dimE T = 1 is
impossible [42, Remark 1.5.3.c)].

Remark 2.4. Motivated by the analysis of F. Charles, we are interested in K3 sur-
faces having real multiplication and an odd E-dimensional T . The simplest case one
can think of is that E = Q(

√
d) is real quadratic and dimE T = 3, i.e. dimQ T = 6.

3. Some arithmetic consequences of real multiplication

Let X be a K3 surface over Q. We put

P := im(c1 : Pic(XC)⊗ZQ →֒ H2(X(C),Q)) ,

T := P⊥, and write E for the endomorphism algebra of the Hodge structure T .
Further, let us choose a prime number l and turn to l-adic cohomology. This es-

sentially means to tensor with Ql, as there is the canonical comparison isomor-
phism [34, Exposé XI, Théorème 4.4.iii)]

H2(X(C),Q)⊗QQl

∼=←− H2
ét(XQ,Ql) .

An important feature of the l-adic cohomology theory is that it is acted upon by
the absolute Galois group of the base field. I.e., there is a continuous representation

̺l : Gal(Q/Q) −→ GL(H2
ét(XQ,Ql)) .

The image of ̺l is an l-adic Lie group. Its Zariski closure is an algebraic group Gl,
called the algebraic monodromy group associated to ̺l.

On the other hand, there are, in a way compatible with Betti cohomology, the
image Pl of Pic(XQ)⊗ZQl under the Chern map and its orthogonal complement Tl.
The image of ̺l, and hence the whole of Gl, maps Pl to Pl. Thereby, orthogonality
is preserved with respect to the pairing 〈. , .〉. Thus, the algebraic monodromy group
Gl must map Tl into itself, as well.

Theorem 3.1 ((Tankeev, Zarhin)). The neutral component G◦
l of the algebraic

monodromy group with respect to the Zariski topology is equal to the centralizer
of E in GO(Tl, 〈. , .〉). In particular, the operation of E on Tl ⊂ H2

ét(XQ,Ql)
commutes with that of G◦

l .

Proof. This follows from the Mumford-Tate conjecture, proven by S.G. Tankeev
[39, 40], together with Yu. G. Zarhin’s explicit description of the Mumford-Tate
group in the case of a K3 surface [42, Theorem 2.2.1]. We refer the reader to the
original articles and to the discussion in [4, Section 2.2]. �

For every prime p, choose an absolute Frobenius element Frobp ∈ Gal(Q/Q).
If p 6= l is a prime, at which X has good reduction then, by virtue of the smooth base
change theorem [34, Exp. XVI, Corollaire 2.5], there is a canonical isomorphism

H2
ét(XQ,Ql) ∼= H2

ét((Xp)Fp
,Ql) .
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Here, the vector space on the right hand side is naturally acted upon by Gal(Fp/Fp)
and the operation of Frobp ∈ Gal(Q/Q) on the left hand side is compatible with
that of Frob ∈ Gal(Fp/Fp) on the right.

Corollary 3.2. There is a positive integer f such that the following statement
is true. For every prime number p and every prime number l, the operation of
(Frobp)

f on Tl commutes with that of E.

Proof. By definition, ̺l(Frobp) ∈ Gl. Hence, for f := #(Gl/G◦
l ), we have

̺l((Frobp)
f ) ∈ G◦

l . Further, the groups Gl/G◦
l are canonically isomorphic to each

other, for the various values of l, as was proven by M. Larsen and R. Pink [24,
Proposition 6.14]. �

Notation 3.3. For every prime p, choose l 6= p and denote by χT
pn the characteristic

polynomial of (Frobp)
n on Tl. This has coefficients in Q and is independent of l,

whether X has good reduction at p [8, Théorème 1.6] or not [31, Theorem 3.1].
χT

pn is nothing but the characteristic polynomial of (Frobp)
n on the transcendental

part of H2
ét(XQ,Ql). It might have zeroes of the form pn times a root of unity.

We write χtr
pn ∈ Q[Z] for the corresponding cofactor. If p is a good prime then,

according to the Tate conjecture, χtr
pn is the characteristic polynomial of Frobn on

the transcendental part of H2
ét(XFp

,Ql).

For the remainder of this section, we assume that E = Q(
√

d), for d 6= 1 a square-
free integer. I.e., that X has real or complex multiplication by a quadratic num-
ber field.

Proposition 3.4. Let p be a prime number and l be a prime that is ramified or
inert in Q(

√
d). Then the polynomial χT

pf ∈ Q[Z] splits as

χtr
pf = glg

σ
l ,

for gl ∈ Ql(
√

d)[Z] and σ : Ql(
√

d)→ Ql(
√

d) the conjugation.

Proof. The assumption ensures that Ql(
√

d) is a quadratic extension field. Fur-
ther, Tl is a Ql(

√
d)-vector space and, by Corollary 3.2, ̺l((Frobp)

f ) commutes
with the operation of

√
d ∈ E. In other words, ̺l((Frobp)

f ) is a Ql(
√

d)-
linear map. For the corresponding characteristic polynomial cl ∈ Ql(

√
d)[Z], we

have χT
pf = clc

σ
l .

cl may be divisible by polynomials of the form Φ(Z/p), for Φ a cyclotomic poly-
nomial. The assertion follows, for gl the cofactor corresponding to the product of
all these factors, normalized to a monic polynomial. �

Theorem 3.5. Let p be a prime of good reduction of the K3 surface X over Q,
having real or complex multiplication by the quadratic number field Q(

√
d). Then at

least one of the following two statements is true.

i) The polynomial χtr
p ∈ Q[Z] splits in the form

χtr
p = ggσ,

for g ∈ Q(
√

d)[Z] and σ : Q(
√

d)→ Q(
√

d) the conjugation.

ii) The polynomial χtr
pf is a square in Q[Z].

Proof. According to [43], χtr
p = hk, for an irreducible polynomial h ∈ Q[Z] and

k ∈ N. The polynomial h(f) having the zeroes xf
i , for xi the zeroes of h, might
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once again be a perfect power. Write h(f) = hk′

, for h an irreducible polynomial.
Then χtr

pf = hkk′

.
If one of the integers k and k′ is even then assertion ii) is true. Thus, assume

from now on that k and k′ are both odd. By Proposition 3.4, hkk′

= χtr
pf splits into

two factors conjugate over Ql(
√

d), for every l that is not inert in Q(
√

d). As kk′

is odd, the same is true for h.
In particular, for every prime L lying above (l) in the field Q[Z]/(h), one has

that f(L|(l)) is even for l inert in Q(
√

d) and that e(L|(l)) is even for l ramified
in Q(

√
d). [30, Chapter VII, Proposition 13.9] implies that Q(

√
d) ⊆ Q[Z]/(h).

Let now x0 ∈ Q be an element having h as its minimal polynomial. Then, clearly,Q(xf
0 ) ∼= Q[Z]/(h). Altogether, Q(

√
d) ⊆ Q(xf

0 ) ⊆ Q(x0). But, according to
Lemma 3.12 below, this is equivalent to h being reducible over Q(

√
d). It must

split into two conjugate factors. �

Remark 3.6. In general, for an irreducible polynomial h ∈ Q[Z], the polyno-
mial h(f) may not factor otherwise as into the power of an irreducible polynomial.
In fact, Gal(Q/Q) permutes the roots x1, . . . , xr of h transitively. Therefore, it
does the same to xf

1 , . . . , xf
r .

Remarks 3.7. i) Let h be an irreducible polynomial such that χtr
p = hk and con-

sider Gal(h) as a permutation group on the roots of h. As such, it has an obvious
block structure B :=

{
{z, z} | h(z) = 0

}
into blocks of size two. Indeed, h is a real

polynomial without real roots and every root is of absolute value p. Thus, z = p2

z ,
such that the pairs are respected by the operation of the Galois group.

ii) Assume that k is odd and d > 0, i.e., that there is real multiplication. We claim
that this causes a second block structure.

Suppose first that variant i) of Theorem 3.5 is true. Then there is the block
structure B

′ :=
{
{z | g(z) = 0}, {z | gσ(z) = 0}

}
into two blocks of size deg h

2 . As g
and gσ are real polynomials, the blocks in B′ are non-minimal. Each is a union of
some of the blocks in B.

If option ii) of Theorem 3.5 happens to be true then there is the block structure
B′′, the blocks in which are formed by the roots of h having their f -th power
in common. The mutual refinement of B′′ and B is trivial. As k is assumed odd,
the blocks are of even size. Thus, the block structure generated by B

′′ and B

consists of blocks of a size that is a multiple of 4.

Corollary 3.8. Suppose that d > 0. Then, for every good prime p, deg χtr
p is

divisible by 4.

Proof. Write χtr
p = hk. As seen in Remark 3.7.i), deg h is even, which implies the

claim as long as k is even. When k is odd, the observations made in Remark 3.7.ii)
show in both cases that deg h must be divisible by 4. �

Corollary 3.9. Suppose that d > 0. Then, for every good prime p ≥ 5, we have

rkPic((Xp)Fp
) ≡ 2 (mod 4) .

Proof. The characteristic polynomial of Frob on H2
ét((Xp)Fp

,Ql) has exactly
22−degχtr

p zeroes of the form p times a root of unity. Further, the Tate conjecture
is known to be true for K3 surfaces in characteristic ≥ 5, cf. [5, Corollary 2]
and [25]. �



EXAMPLES OF K3 SURFACES WITH REAL MULTIPLICATION 7

Corollary 3.10. Suppose that d > 0 and let p ≥ 5 be a good prime number that is
inert in E = Q(

√
d).

i) Then Xp is not ordinary.

ii) Suppose that dimE T ≤ 3. Then, either rk Pic((Xp)Fp
) = 22 or χtr

pf is the square

of an irreducible quadratic polynomial.

Proof. i) Xp being ordinary would mean that χtr
pf has exactly one zero that is a

p-adic unit. Indeed, we have dimCH0,2 = 1 and ordinarity means that the Newton
polygon coincides with the Hodge polygon [21, Définition IV.4.12], cf. [19, pages
48f].

By Theorem 3.5, in any case, we can say that there is a factorization χtr
pf = ggσ,

for some g ∈ OE [Z]. Assume without restriction that the zero being a p-adic unit
is a root of gσ. Then, for the coefficients of the polynomial

g(Z) = Zn + an−1Z
n−1 + . . . + a0 ,

one has that νp(aj) > 0, for every j. But, p being inert, the same is true for gσ.

In particular, νp(a
σ
n−1) > 0. This shows that it is impossible for gσ to have exactly

one root that is a p-adic unit.

ii) The second variant comes from option ii) of Theorem 3.5. The quadratic
polynomial appearing is irreducible, as its zeroes are non-reals.

Otherwise, there is a factorization χtr
p = ggσ, for some g ∈ E[Z]. We have to

show that deg g = 0. Assume the contrary. Then deg g = 2, since dimE T ≤ 3
implies that deg g ≤ 3. Further, from Corollary 3.8, we know that deg g is even.

Write g(Z) = Z2 + aZ ± p2 = (Z − x1)(Z − x2). Then

νp(x1) + νp(x2) = νp(x1x2) = νp(±p2) = 2

and min(νp(x1), νp(x2)) ≤ νp(x1 + x2) = νp(−a), with equality obviously being
true when νp(x1) 6= νp(x2). However, a ∈ Q(

√
d) implies that νp(−a) is an integer

and νp(xi) ≥ 0 is well-known. Thus, there are only two cases. We will show that
they are both contradictory.

If νp(x1) = νp(x2) = 1 then, as p is inert, the same is true for xσ
1 and xσ

2 .
Further, since x1/p, x2/p, xσ

1/p, and xσ
2/p are known to be l-adic units for every

l 6= p, they must be roots of unity. This is a contradiction to the definition of χtr
p .

If, without restriction, νp(x1) = 0 and νp(x2) = 2 then νp(x
σ
1 ) = 0, too.

We obtain a contradiction to the classical result that the Newton polygon always
runs above the Hodge polygon [28], cf. [3, Theorem 8.39]. �

Corollary 3.11. Suppose that dimE T ≤ 3. If χtr
pf is the square of a quadratic

polynomial, but χtr
p is not, then Gal(χtr

p ) ∼= Z/2Z× Z/2Z.

Proof. The assumption implies that χtr
p = h is irreducible of degree four. Fur-

ther, Gal(h) has two different block structures, both into blocks of size two.
The only transitive subgroup of S4 having this property is the Klein four group.

�

Lemma 3.12. Let K be any field, K(
√

d)/K a quadratic field extension, and
h ∈ K[Z] an irreducible polynomial. Then h splits in K(

√
d) if and only if

K(
√

d) ⊆ K[Z]/(h).

Proof. “⇐=” Let z0 ∈ K[Z]/(h) be a zero of h. As [Q(z0) :Q(
√

d)] = deg h
2 , the

minimal polynomial over Q(
√

d) is of degree deg h
2 and a factor of h.
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“=⇒” Write h = ggσ. Then the extension fields K[Z]/(h) and K(
√

d)[Z]/(g)
both contain a zero of g and have the same degree over K. Hence, they must be
isomorphic to each other. �

4. Efficient algorithms to test a K3 surface for real multiplication

Generalities. According to the Lefschetz trace formula [35, Exposé XII, 6.3
and Exemple 7.3], a K3 surface Y over Fp is non-ordinary if and only if
#Y (Fp) ≡ 1 (mod p). In particular, non-ordinarity may be tested by counting
points only over Fp.

Further, we expect naively that a K3 surface X over Q has non-ordinary reduc-
tion at p with a probability of 1

p . Thus, the number of non-ordinary primes ≤N
should be of the order of log log N . However, for K3 surfaces with real multiplica-
tion by Q(

√
d), we expect approximately half the primes to be non-ordinary.

This suggests to generate a huge sample of K3 surfaces over Q, each having
geometric Picard rank ≥ 16, and to execute the following statistical algorithm on
all of them.

Algorithm 4.1 (Testing a K3 surface for real multiplication–statistical version).

i) Let p run over all primes p ≡ 1 (mod 4) between 40 and 300. For each p,
count the number #Xp(Fp) of Fp-rational points on the reduction of X modulo p.
If #Xp(Fp) ≡ 1 (mod p) for not more than five primes then terminate immediately.

ii) Put p0 to be the smallest good and ordinary prime for X .

iii) Determine the characteristic polynomial of Frob on H2
ét((Xp0

)Fp0

,Ql). For this,
use the strategy described in [11, Examples 27 and 28]. It involves to count, in ad-
dition, the points on Xp0

defined over Fp2
0

and, possibly, those defined over Fp3
0
.

Factorize the polynomial obtained to determine the factor χtr
p0

. If deg χtr
p0
6= 4

then terminate. If Gal(χtr
p0

) ∼= Z/2Z× Z/2Z or χtr
p0

is the square of a quadratic
polynomial then raise p0 to the next good and ordinary prime and iterate this step.

iv) Now, one has deg χtr
p0

= 4. Further, χtr
pf
0

is certainly irreducible, although the
value of f is not known to us. Determine the Galois group of χtr

p0
and the quadratic

subfields of its splitting field. Only one real quadratic field may occur. Put d to be
the corresponding radicand.

v) Let p run over all good primes below 300, starting from the lowest. If

#Xp(Fp) 6≡ 1 (mod p) for a prime inert in Q(
√

d) then terminate.

vi) Output a message saying that X is highly suspicious to have real multiplication
by Q(

√
d).

Remarks 4.2. i) The reason for restricting in step i) to primes 1 mod 4 is that,
otherwise, too many surfaces are found that are suspicious to have complex multi-
plication by Q(

√
−1).

ii) For small primes p, it happens too often that #Xp(Fp) ≡ 1 (mod p), indepen-
dently of whether or not X has real multiplication. That is why we restricted the
calculations to primes p > 40.

iii) Algorithm 4.1 is, of course, only statistically correct. There is a certain, very
low but positive, probability that a K3 surface with real multiplication is thrown
away in step i).

iv) On the other hand, the algorithm is extremely efficient. The point is that,
for the lion’s share of the surfaces, it terminates directly after step i). Only for a
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negligible percentage of the surfaces, the more time-consuming steps ii)-v) have to
be carried out.

This shows, in particular, that step i) is the only time-critical one. An efficient
algorithm for point counting over relatively small prime fields is asked for.

When testing surfaces for real multiplication by a particular field Q(
√

d), the fol-
lowing modification of Algorithm 4.1 may be used.

Algorithm 4.3 (Testing a K3 surface for real multiplication–deterministic version).

o) In an initialization step, list the first ten primes that are inert in Q(
√

d).

i) Let p run over the list. For each p, count the numbers #Xp(Fp) of Fp-rational
points on the reduction Xp. If one of them turns out not to be congruent to 1
modulo p then terminate immediately.

ii) Let p run over all good primes below 300, starting from the lowest. If

#Xp(Fp) 6≡ 1 (mod p) for a prime inert in Q(
√

d) then terminate.

iii) Output a message saying that X is highly suspicious to have real multiplication
by Q(

√
d).

Remarks 4.4. i) This algorithm finds every surface in the sample having real
multiplication by Q(

√
d). It could, in principle, find a few others, too.

ii) One might be afraid that, for some of the surfaces X having real multi-
plication by Q(

√
d), there exists an inert prime p of bad reduction, for which

#Xp(Fp) 6≡ 1 (mod p). These surfaces would be thrown away in step i). How-
ever, this does not happen, at least not in our samples.

Lemma 4.5. Let X be a double cover of P2Q, branched over the union of six lines.
Suppose there is a quadratic number field Q(

√
d) such that #Xq(Fq) ≡ 1 (mod q)

for every good prime q that is inert in Q(
√

d).

Then #Xp(Fp) ≡ 1 (mod p), too, for every bad prime p that is inert.

Proof. If at least two of the six lines coincide modulo p then Xp is a rational
surface and #Xp(Fp) ≡ 1 (mod p) is automatic. Thus, let us assume the contrary.

We fix an auxiliary prime number l that is split in Q(
√

d) and let p be a bad, in-
ert prime. For every prime q inert in Q(

√
d), choose an absolute Frobenius element

Frobq ∈ Gal(Q/Q). By Cebotarev, the elements σ−1 Frobq σ ∈ Gal(Q/Q), for σ
running through Gal(Q/Q), are dense in the coset Gal(Q/Q) \Gal(Q/Q(

√
d)), to

which Frobp belongs. The same is still true when restricting to the primes q, at
which X has good reduction.

For those, we have the congruence TrFrobH2
ét

((Xq)Fq
,Ql) ≡ 0 (mod q). In other

words,

Tr 1
q FrobH2

ét
((Xq)Fq

,Ql) = Tr 1
q Frobq,H2

ét
(XQ,Ql) = TrFrobq,H2

ét
(XQ,Ql(1))

is an integer, necessarily within the range [−22, 22]. As this condition defines a
Zariski closed subset of GL(H2

ét(XQ,Ql(1))), one has

Tr FrobH2
ét

(XQp
,Ql) = Tr Frobp,H2

ét
(XQ,Ql) ≡ 0 (mod p) , (2)

too, cf. [34, Exposé XVI, Corollaire 1.6]
Further, the eigenvalues of Frob on H2

ét(XQp
,Ql) are the same as those on

H2
ét(XQp

,Qp) [31, Theorem 3.1]. In addition, a main result of p-adic Hodge theory
[14, Theorem III.4.1] implies, as X is K3, that not more than one of the eigenvalues
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of Frob on H2
ét(XQp

,Qp) may be a p-adic unit, the others being of strictly posi-
tive p-adic valuation. Under these circumstances, the congruence (2) expresses the
property that, among the eigenvalues, there is actually no p-adic unit.

For comparison with the cohomology H2
ét((Xp)Fp

,Ql) of the singular fiber, the
theory of vanishing cycles [36, Exposés I, XIII, and XV] applies, as Xp has only
isolated singularities [20, Corollaire 2.9]. In our case, it states that H2

ét((Xp)Fp
,Ql)

naturally injects into H2
ét(XQp

,Ql). In particular, the eigenvalues of Frob on
H2

ét((Xp)Fp
,Ql) form a subset of the 22 eigenvalues of Frob on H2

ét(XQp
,Ql).

This shows that all eigenvalues on H2
ét((Xp)Fp

,Ql) are of strictly positive p-adic
valuation. Further, using the Leray spectral sequence together with the proper base
change theorem [34, Exposé XII, Corollaire 5.2.iii)], one sees that blow-ups do not
affect the transcendental part Tl ⊂ H2

ét((Xp)Fp
,Ql). Hence, #X̃p(Fp) ≡ 1 (mod p),

for X̃p the minimal resolution of singularities. The same is true for Xp. �

Counting points on degree-2 K3-surfaces.

4.6 (Structure of our samples). K3 surfaces that are given as desingularizations
of the double covers of the projective plane, branched over the union of six lines.
Our reason is that this family offers computational advantages, too.

We do not ask all lines to be defined overQ, however, as this seems to be too re-
strictive. At least, this is what we learned during our experiments. A compromise
is as follows.

The lines are allowed to form three Galois orbits, each of size two. Assuming the
three Q-rational points of intersection not to be collinear, we may suppose them to
be the standard base of P2. The equation of the surface then takes the form

w2 = q1(y, z)q2(x, z)q3(x, y) .

This representation is unique up to action of the monomial group. I.e., up to
permutation and scaling of the variables.

Algorithm 4.7 (Counting points on one surface). In order to determine the num-
ber of Fq-rational points on one surface, we count the points over the q affine lines of
the form (1:u :⋆) and the affine line (0 :1 :⋆) and sum up these numbers. Finally, we
add 1, as, on each of our surfaces, there is exactly one point lying above e3.

Remark 4.8 (Counting points above one line). It is easy to count the number of
points above the affine line Lx,y : A1 → P2, given by t 7→ (x : y : t). Observe that
q3 is constant on this line. Thus, we get a quadratic twist of an elliptic curve.
The number of points on it is q + χ(q3(x, y))λx,y, for

λx,y :=
∑

t∈Fq

χ(q1(y, t)q2(x, t)) (3)

and χ the quadratic character of Fq.

Strategy 4.9 (Treating a sample of surfaces). Our samples are given by three lists
of quadratic forms. One list for q1, another for q2, and third one for q3. In the case
that we want to count the points on all surfaces, given by the Cartesian product of
the three lists, we perform as follows.

i) For each quadratic form q3, compute the values of χ(q3(1, ⋆)) and χ(q3(0, 1)) and
store them in a table.
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ii) Run in an iterated loop over all pairs (q1, q2). For each pair, do the following.

• Using formula (3), compute λ1,⋆ and λ0,1.

• Run in a loop over all forms q3. Each time, calculate

Sq1,q2,q3
:=

∑

⋆

χ(q3(1, ⋆))λ1,⋆ ,

using the precomputed values. The number of points on the surface, corresponding
to (q1, q2, q3), is then q2 + q + 1 + χ(q3(0, 1))λ0,1 + Sq1,q2,q3

.

Remarks 4.10. i) (Complexity and performance). In the case that the number
of quadratic forms is bigger than q, the costs of building up the tables are small
compared to the final step. Thus, the complexity per surface is essentially reduced
to (q + 1) table look-ups for the quadratic character and (q + 1) look-ups in the
small table, containing the values λ1,⋆ and λ0,1.

ii) We are limited by the memory transfer generated by the former table access.
We store the quadratic character in an 8-bit signed integer variable. This doubles
the speed compared to a 16-bit variable.

Remark 4.11 (Detecting real multiplication). We used the point counting algo-
rithm, in the version described in 4.9, within the deterministic Algorithm 4.3, in or-
der to detect K3 surfaces having real multiplication by a prescribed quadratic num-
ber field. This allowed us to test more than 2.2 ·107 surfaces per second on one core
of a 3.40GHz Intel(R)Core(TM)i7-3770 processor. The code was written in plain C.

The results. i) A run of Algorithm 4.1 over all triples (q1, q2, q3) of coefficient
height ≤ 12, using the method described in 4.9 for point counting, found the first
five surfaces suspicious to have real multiplication byQ(

√
5). Observe that a sample

of more than 1011 surfaces was necessary to bring these examples to light.
Analyzing the examples, we observed that the product of the discriminants of

the three binary quadratic forms was always a perfect square.

ii) We added this restriction to our search strategy, which massively reduces the
number of surfaces to be inspected. Doing so, we could raise the search bound up
to 80. This resulted in more surfaces with probable real multiplication by Q(

√
5)

and one example suspicious for real multiplication by Q(
√

2).
From the results, we observed that the square class of one of the three discrimi-

nants always coincided with the discriminant of the field of real multiplication.

iii) This restriction led to a further reduction of the search space. Further, it clearly
suggests to use the deterministic version of the algorithm.

At a final stage, we could raise the search bound to 200 for real multiplication byQ(
√

2), Q(
√

5), Q(
√

13), and Q(
√

17). We found many more examples for Q(
√

2)
and Q(

√
5), one example for Q(

√
13), but none for Q(

√
17).

Remark 4.12. The final sample for Q(
√

17) consisted of about 4.18·1013 surfaces
and required about 24 days of CPU time. The computations were executed in
parallel on two machines, making use of two cores on each machine. The other
samples were comparable in size.
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In the cases of Q(
√

2) and Q(
√

5), the examples found were sufficient to guess
1-parameter families. To summarize, our experiments let us suspect the following.

Observation–Theorem 4.13. Let t ∈ Q be arbitrary and X(2,t) be the K3 surface
given by

w2 = [(1
8 t2− 1

2 t+ 1
4 )y2 + (t2−2t+2)yz + (t2−4t+2)z2]

[(1
8 t2+ 1

2 t+ 1
4 )x2 + (t2+2t+2)xz + (t2+4t+2)z2][2x2 + (t2+2)xy + t2y2] .

Then #X
(2,t)
p (Fp) ≡ 1 (mod p) for every prime p ≡ 3, 5 (mod 8).

Proof. The case p = 3 is elementary. For p 6= 3, we shall prove this result below in
Theorem 5.3, under some additional restrictions on t. For the cases left out there,
similar arguments work. Cf. Remark 5.4 for a few details. �

Observation–Conjecture 4.14. i) Let t ∈ Q be arbitrary and X(5,t) be the
K3 surface given by

w2 = [y2 + tyz + ( 5
16 t2+ 5

4 t+ 5
4 )z2][x2 + xz + ( 1

320 t2+ 1
16 t+ 5

16 )z2][x2 + xy + 1
20y2] .

Then #X
(5,t)
p (Fp) ≡ 1 (mod p) for every prime p ≡ 2, 3 (mod 5).

ii) Let X(13) be the K3 surface given by

w2 = (25y2 + 26yz + 13z2)(x2 + 2xz + 13z2)(9x2 + 26xy + 13y2) .

Then #X
(13)
p (Fp) ≡ 1 (mod p) for every prime p ≡ 2, 5, 6, 7, 8, 11 (mod 13).

Remark 4.15. We verified the congruences above for all primes p < 1000.
This concerns X(13) as well as the X(5,t), for any residue class of t modulo p.
There is further evidence, as we computed the characteristic polynomials of Frobp

for X(13) as well as for X(5,t) and several exemplary values of t ∈ Q, for the primes p
below 100. It turns out that indeed they show the very particular behaviour, de-
scribed in Theorem 3.5 and its corollaries.

5. The proof for real multiplication in the case of the Q(
√

2)-family

Lemma 5.1. Let a, D ∈ Z be such that gcd(a, D) = 1 and X a K3 surface over Q.
Suppose that #Xp(Fp) ≡ 1 (mod p) for every good prime p ≡ a (mod D). Then X
has real or complex multiplication.

Proof. For each prime p, choose an absolute Frobenius element Frobp ∈ Gal(Q/Q).
By Cebotarev’s density theorem, the elements σ−1 Frobp σ ∈ Gal(Q/Q), for the
good primes p ≡ a (mod D) and σ ∈ Gal(Q/Q), are topologically dense in the
coset of Gal(Q/Q) modulo Gal(Q/Q(ζD)), they belong to. Thus, there are finitely
many elements σ1, . . . , σk ∈ Gal(Q/Q) such that

{ σiσ
−1 Frobp σ | i = 1, . . . , k, p ≡ a (mod D), p good for X, σ ∈ Gal(Q/Q) }

is dense in Gal(Q/Q).
Now choose any prime l 6≡ a (mod D), put Tl ⊂ H2

ét(XQ,Ql) to be the tran-
scendental part of l-adic cohomology, and write r := dimTl. Then, for every good
prime p ≡ a (mod D), one has Tr Frobp,Tl

= kp, for −22 < −r ≤ k ≤ r < 22, and
det Frobp,Tl

= ±pr. Hence,

(Tr Frobp,Tl
)r = ±kr det Frobp,Tl

,
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which defines a Zariski closed subset I $ GO(Tl, 〈. , .〉), invariant under conjugation.
As GO(Tl, 〈. , .〉) is irreducible, the union σ1I∪ . . .∪σkI cannot be the whole group.
Consequently, the image of Gal(Q/Q)→ GO(Tl, 〈. , .〉) is not Zariski dense. In view
of Theorem 3.1, this is enough to imply real or complex multiplication. �

Theorem 5.2. Let t ∈ Q be such that ν17(t− 1) > 0 and ν23(t− 1) > 0. Then the

K3 surface X(2,t) has geometric Picard rank 16 and real multiplication by Q(
√

2).

Proof. We will prove #X
(2,t)
p (Fp) ≡ 1 (mod p) for all primes p ≡ 3, 5 (mod 8),

p > 3, in Theorem 5.3, below. By Lemma 5.1, this guarantees that X(2,t) has real
or complex multiplication by a number field E.

Further, all the surfaces X(2,t) considered coincide modulo 17 and modulo 23,
these two primes being good. Counting points, one finds #X

(2,t)
17 (F17i) = 313,

83 881, and 24 160 345, as well as #X
(2,t)
23 (F23i) = 547, 280 729, and 148 114 771,

for i = 1, 2, 3. The characteristic polynomials of Frob17 and Frob23 turn out to be

χtr
17(Z) = Z4 + 28Z3 + 646Z2 + 8092Z + 83521 and

χtr
23(Z) = Z4 + 52Z3 + 1702Z2 + 27508Z + 279841 ,

both being irreducible. In particular, rkPic(X
(2,t)F17

) = rkPic(X
(2,t)F23

) = 18. Applica-
tions of the Artin-Tate formula [29, Theorem 6.1] show

disc Pic(X
(2,t)F17

) ∈ (2 mod (Q∗)2) and discPic(X
(2,t)F23

) ∈ (14 mod (Q∗)2) .

From this information, one deduces that rkPic(X
(2,t)Q ) = 16 or 17. If the rank was

17 then [4, Theorem 1, together with Remark 2] shows that

rkPic(X
(2,t)Q ) ≤ rkPic(X

(2,t)F17

)− [E : Q] ,

a contradiction as the right hand side is at most 16.
Our next assertion is that [E : Q] = 2. As dimT = 6, the potential alternative

degrees would be 3 or 6. In the first case, E is certainly totally real. In the second
case, it must be CM. In both cases, there is a totally real, cubic number field E′,
contained in End(T ).

For l a prime that is inert in E′, Tl carries the structure of a vector space over the
field E′⊗QQl. Further, there is a constant f such that (Frobp)

f is an E′⊗QQl-linear
map, for every prime p 6= l. This, however, implies that the number of eigenvalues
of (Frobp)

f , considered as a Ql-linear map, that are roots of unity multiplied by p,
is a multiple of 3. The calculations shown above for p = 17 and p = 23 clearly
disagree with that.

It remains to determine the quadratic number field E exactly. For this, an easy
computation reveals that the Galois group of

χtr
17(Z) = Z4 + 28Z3 + 646Z2 + 8092Z + 83521

is cyclic of order four. In particular, variant i) of Theorem 3.5 applies, showing
that χtr

17 splits over E into two conjugate factors. But Q(
√

disc χtr
17) is the only

quadratic subfield of the splitting field of χtr
17. A direct calculation yields, finally,

that disc χtr
17 = 229 ·176. �

Theorem 5.3 (The point count). Let Fq be a finite field of characteristic
6= 2, 3 such that 2 is a non-square in Fq and V the singular surface given by
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w2 = q1(y, z)q2(x, z)q3(x, y), for t ∈ Fq and

q1(y, z) := (1
8 t2− 1

2 t+ 1
4 )y2 + (t2−2t+2)yz + (t2−4t+2)z2 ,

q2(x, z) := (1
8 t2+ 1

2 t+ 1
4 )x2 + (t2+2t+2)xz + (t2+4t+2)z2 ,

q3(x, y) := (x + y)(2x + t2y) .

Suppose that t 6= 0 and t2 6= −2. Then #V (Fq) = q2 + q + 1.

Proof. We will prove this result in several steps.

First step. Preparations.
We will count fiber-wise using the fibration, given by y : x = l, for l ∈ P1(Fq).
This will yield a result by q too large, as the point lying over (0 : 0 : 1) will be
counted (q + 1) times.

The fiber Vl is the curve, given by w2 = (1+l)(2+t2l)x2q1(lx, z)q2(x, z). A partial
resolution is provided by Cl : w2 = (1 + l)(2+ t2l)q1(lx, z)q2(x, z), which defines an
elliptic fibration.

We claim that
∑

l #Cl(Fq) =
∑

l #Vl(Fq). Indeed, the two fibrations differ only
over the line “x = 0”. Since V ramifies over this line, Vx has exactly (q +1) points.
On the other hand, the curve Cx is given by w2 = (t4−12t2+4)·(1 + l)(2 + t2l).
Here, the constant t4 − 12t2 + 4 is non-zero, as 32 is not a square. Thus, Cx is
a double cover of P1, ramified at (−1) and (− 2

t2 ). But −1 6= − 2
t2 , since 2 is a

non-square. In other words, Cx is a conic, which has exactly (q + 1) points.

Second step. Singular fibers.
There are four singular fibers, at l = −1, − 2

t2 , 0, and ∞. In fact, for the first
two, the coefficient is zero, while, for the others, one of the quadratic forms has a
double zero. We claim that these are the only singular Fq-rational fibers.

To see this, we first observe that q1 is of discriminant

(t2−2t+2)2−4(1
8 t2− 1

2 t+ 1
4 )(t2−4t+2) = (t2+2t+2)2− 1

2 (t2+4t+2)2 = 1
2 (t2−2)2

and the same for q2. This term does not vanish, for any value of t. Therefore, q1

and q2 always define two lines each, never a double line. Consequently, for l 6= 0,∞,
neither of the two quadratic factors q1(lx, z) and q2(x, z) may have a double zero.

To exclude a common zero, one has to compute the resultant, which turns out
to be

1
64 (t4 − 12t2 + 4)2(l2 + −6t4+8t2−24

t4−12t2+4 l + 1)(l2 + −2t4−8t2−8
t4−12t2+4 l + 1) .

Here, t4 − 12t2 + 4 6= 0, as 32 is a non-square. Further, the quadratic polynomials
in l are of the discriminants 32(t2−2)2(t2+2)2

(t4−12t2+4)2 and 128t2(t2−2)2

(t4−12t2+4)2 , which are non-squares
in Fq, because of t 6= 0 and t2 6= ±2. Thus, the resultant does not vanish for any
value of l, as long as t is admissible.

Third step. Points on the singular fibers.
The curves C−1 and C− 2

t2
are part of the ramification locus and therefore degenerate

to lines. They have (q + 1) points each.
On the other hand, the fibers C0 and C∞ are given by w2 = 2(t2−4t+2)z2q2(x, z)

and w2 = t2(t2+4t+2)z2q1(y, z). Both are conics with the points over z = 0 unified
into a double point. The corresponding points on the non-singular conics Cns

0 and
Cns

∞ satisfy w2 = 1
4 (t4 − 12t2 + 4), and w2 = t2

8 (t4−12t2+4), respectively. The two
equations differ by a factor of t2

2 , which is a non-square. Hence, one of the curves
Cns

0 and Cns
∞ has two points such that z = 0, the other none. Accordingly, one of

the singular curves C0 and C∞ has q points, the other (q + 2).
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It therefore remains to show that
∑

l,Cl smooth #Cl(Fq) = (q − 3)(q + 1).

Fourth step. The classical invariants c4 and c6.
The invariants c4 and c6 of the family of binary quartic forms defining C are poly-
nomials in l and t. They may easily be written down, but the formulas become
quite lengthy. The discriminant ∆ turns out to be

∆ = 1
1024 t12(t2 − 2)4(t4 − 12t2 + 4)4l2(l + 2

t2 )6(l + 1)6

(l2 + −6t4+8t2−24
t4−12t2+4 l + 1)2(l2 + −2t4−8t2−8

t4−12t2+4 l + 1)2 .

The arguments given in the second step show that ∆ 6= 0, except for l = −1,− 2
t2 ,

0, and ∞.
By Lemma 5.6, Il : w2 = x3 − 27c4(l)x − 54c6(l) is isomorphic to the Jacobian

JacCl, for l 6= −1,− 2
t2 , 0,∞. This implies #Cl(Fq) = #(JacCl)(Fq) = #Il(Fq),

since genus-one curves over finite fields always have points.
We have to prove that

∑
l,Cl smooth #Il(Fq) = (q − 3)(q + 1). I.e., that the (q−3)

smooth fibers of I have, on average, exactly (q + 1) points.

Fifth step. l versus 1
l .

For the j-invariant j =
c3
4

∆ , one observes that j(1
l ) = j(l). More precisely,

c4(
1
l ) = K2c4(l) and c6(

1
l ) = K3c6(l) ,

for K := 2l+t2

l4(t2l+2) .
In other words, the elliptic curves Il and I 1

l
are geometrically isomorphic to

each other. They are quadratic twists, according to the extension Fq(
√

K)/Fq.
Consequently, if 2l+t2

t2l+2 ∈ Fq is a non-square then Il and I 1
l

together have exactly
2(q + 1) points.

Sixth step. Reparametrization.
We reparametrize according to the Möbius transformationP1→P1, l 7→ s := 2l+t2

t2l+2 .
This is not a constant map, for any value of t. Indeed, the determinant of the cor-
responding 2×2-matrix is 4− t4 = (2− t2)(2+ t2) 6= 0. The inverse transformation
is given by s 7→ l := −2s+t2

t2s−2 .
Write I ′ for the fibration, defined by I ′s := Il. Then the bad fibers are located

at s = −1,∞, t2

2 , 2
t2 . The correspondence l 7→ 1

l goes over into

s = 2l+t2

t2l+2 7→
2
l
+t2

t2

l
+2

= 2+t2l
t2+2l = 1

s .

Thus, for s 6= −1, t2

2 , 2
t2 ∈ F∗

q a non-square, the fibers I ′s and I ′1
s

together have ex-
actly 2(q + 1) points.

Seventh step. Pairing the squares I.
It remains to consider the fibers for s ∈ F∗

q , s 6= −1, a square and for s = 0.
For these, I ′s

∼= I ′1
s

, except for s = 0. There are 4n + 2 such fibers, for q = 8n + 3
as well as for q = 8n + 5.

It turns out that j′(s2) = j′(s1), for s1 = a2 and s2 = (a−1)2

(a+1)2 . More precisely,

c′4(s2) = F 2c′4(s1) and c′6(s2) = F 3c′6(s1) ,

for

F := 8
(a+1)2(a2− 2

t2
)4

(a2− 2t2+4

t2−2
a+1)4

.

We observe here that the denominator never vanishes for t 6= 0, In fact, the discrim-
inant of the quadratic polynomial is equal to 32t2

(t2−2)2 , which is always a non-square.
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As 8 is a non-square, we see that F is a non-square as long as F 6= 0, which happens
to be true for a 6= −1.

In other words, for a 6= −1, the elliptic curves I ′s1
and I ′s2

are non-trivial qua-
dratic twists of each other. This shows that #I ′s1

(Fq) + #I ′s2
(Fq) = 2(q + 1).

Eighth step. Pairing the squares II.
In particular, we have #I ′1(Fq) + #I ′0(Fq) = 2(q + 1). For the other 4n fibers, we

argue as follows. The group V := Z/2Z×Z/2Z operates on P1(Fq) via e1·a := −a
and e2·a := 1

a . The orbits are of size four, except for {0,∞}, {1,−1}, and, possibly,

{i,−i}. The map I : P1(Fq)→ P1(Fq), a 7→ a−1
a+1 , is compatible with the operation

of V in the sense that e1 ·I(a) = I(e2 ·a) and e2 ·I(a) = I(e1 ·a).
Therefore, I defines a mapping I : P1(Fq)/V → P1(Fq)/V from the orbit set

to itself. One easily sees that I(I(a)) = e1e2 ·a. I.e., I is actually an involution.
Solving the equations a−1

a+1 = ±a and a−1
a+1 = ± 1

a , utilizing the fact that 2 is a non-
square, we find that I has no fixed points, except for the possible orbit {i,−i}.

Accordingly, J : a2 7→ (a−1
a+1 )2 defines an involution of the squares in P1(Fq) mod-

ulo the equivalence relation generated by x ∼ 1
x . The only possible fixed point of J

is {−1}. Further, J({0,∞}) = {1}.
As a consequence, we see that the squares x ∈ F∗

q , different from ±1, decompose
into sets {a2, 1

a2 , (a−1
a+1 )2, (a+1

a−1 )2} of exactly four elements. The assertion follows
immediately from this. �

Remark 5.4. If t2 = −2 then the same result is true. For t = 0, however, one
has #V (Fq) = q2 + 2q + 1, while, for t = ∞, #V (Fq) = q2 + 1. Only minor mod-
ifications of the argument are necessary. The case t2 = −2 is actually simpler, as
then K = −1 is constant and easily seen to be a non-square. In each case, there
are exactly four singular Fq-rational fibers.

Remarks 5.5. i) Elliptic K3 surfaces generally have 24 singular fibers. In our case,
I−1 and I− 2

t2
each have have multiplicity six, while the other six singular fibers, four

of which are defined only over Fq2 , each have multiplicity two.

ii) The symmetry under l ↔ 1
l is enforced by the construction. In fact, consider

the double cover of P2, branched over the union of the four lines z = a1x, z = a2x,
z = b1y, and z = b2y. The fiber for y : x = l has branch points at a1, a2, b1l, b2l,
which is a quadruple projectively equivalent to a1, a2,

Kb1
l , Kb2

l , for K := a1a2

b1b2
.

For our fibration, independently of the parameter t, we have K = q2(1,0)
q2(0,1) : q1(1,0)

q1(0,1) = 1.
The twist factor is q3(1, K

l )/q3(1, l), which would be fractional-quadratic, in
general, is fractional-linear in our case.

iii) We found the second symmetry, which allowed us to pair the squares, by looking
at the factorizations of the rational functions j(l)−C. It seems to be very specific
for the particular fibrations, occurring in the proof of Theorem 5.3.

Lemma 5.6. Let C : w2 = F4(x, y, l) be a family of smooth genus-one curves,
parametrized by l ∈ B, for B an integral scheme in characteristic 6= 2 or 3,
c4(l) and c6(l) its classical invariants, and ∆ :=

c3
4(l)−c2

6(l)
1728 . Then, over the open

subscheme D(∆) ⊆ B,

I : w2 = x3 − 27c4(l)x− 54c6(l)

defines a family of elliptic curves, fiber-wise isomorphic to the relative Jacobian
of C.
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Proof. The existence of the relative Jacobian J follows from [16, Exposé 232,
Théorème 3.1]. This is a family of elliptic curves. I is a family of elliptic curves,
too, as −16[4(−27c4(l))

3 + 27(−54c6(l))
2] = 612∆(l) 6= 0.

Further, the generic fiber Iη is isomorphic to the Jacobian of Cη [15, Proposition
2.3]. Thus, over D(∆), we have two families of elliptic curves that coincide over the
generic point η ∈ D(∆). The assertion follows from this, since the moduli stack
of elliptic curves is separated [22, First main Theorem 5.1.1, together with 2.2.11].

�

Appendix A. Dimension counting

Proposition A.1. Let T be a Q-vector space of dimension six, equipped with
a non-degenerate symmetric, bilinear pairing 〈. , .〉 : T × T → Q of discriminant
(1 mod (Q∗)2) and ϕ : T → T be a self-adjoint endomorphism such that ϕ◦ϕ = [d].

Then d ∈ Q is a sum of two rational squares.

Proof. Assume the contrary. Then, in particular, d is a non-square. The as-
sumptions on ϕ imply that ϕQ(

√
d) is diagonalizable. For the eigenvalues ±

√
d, the

eigenspaces, which we will denote by T+ and T−, both must be three-dimensional.
As ϕ is self-adjoint, they are perpendicular to each other.

In particular, the pairings 〈. , .〉|T+
and 〈. , .〉|T−

are non-degenerate, too. We may
choose an orthogonal system {x1, x2, x3} ⊂ T+ such that 〈xi, xi〉 =: ai 6= 0,
for i = 1, 2, 3. Then the real conjugates x′

1, x
′
2, x

′
3 ∈ T− also form an orthogo-

nal system, and one has 〈x′
i, x

′
i〉 = a′

i 6= 0.
From this, one finds an orthogonal decomposition T = T1 ⊕ T2 ⊕ T3, defined

over Q, when putting

Ti := span
(
xi + x′

i,
√

d (xi − x′
i)

)
.

The discriminant of Ti is in the class of

det

(
ai + a′

i

√
d (ai − a′

i)√
d (ai − a′

i) d(ai + a′
i)

)
= d[(ai+a′

i)
2−(ai−a′

i)
2] = 4daia

′
i = 4dNQ(

√
d)/Q(ai)

modulo squares. Consequently, disc T = ((4d)3NQ(
√

d)/Q(a1a2a3) mod (Q∗)2). By
our assumption about disc T , this implies that d is a norm from Q(

√
d).

As (−d) is clearly a norm, we conclude that (−1) must be a norm from Q(
√

d),
too. I.e., −1 = a2 − db2 for suitable a, b ∈ Q, such that d is a sum of two squares.

�

Remark A.2 (cf. [17, Example 3.4]). Suppose T ∼= Q6 and that 〈. , .〉 is the bilinear
form defined by the matrix diag(1, 1,−1,−1,−1,−1). Then, for every d ∈ Q being
a sum of two squares, there exists a self-adjoint endomorphism ϕ : T → T such that
ϕ ◦ ϕ = [d].

Indeed, decompose T orthogonally as Q2 ⊕ Q2 ⊕ Q2 such that, on each sum-
mand, the bilinear form is given by either diag(1, 1) or diag(−1,−1). Then define ϕ
component-wise by taking the matrix (u v

v −u ), for d = u2+v2, three times. The sym-
metry of the matrix implies that ϕ is self-adjoint and ϕ ◦ ϕ = [d] is a obvious.

Theorem A.3. Let d ∈ Q be a non-square.

i) If d is not a sum of two squares then there is no weight-2 Hodge structure of
dimension six, having a polarization of discriminant (1 mod (Q∗)2) and an endo-
morphism algebra containing Q(

√
d).
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ii) Suppose that d is a sum of two squares. Then there exists a one-dimensional
family of polarized, six-dimensional weight-2 Hodge structures of K3 type, having
the underlying quadratic space (Q6, diag(1, 1,−1,−1,−1,−1)) and real multiplica-

tion by Q(
√

d).

Proof. i) follows immediately from Proposition A.1. Cf. [42, Theorem 1.6.a) and
Theorem 1.5.1].

ii) To convert T := (Q6, diag(1, 1,−1,−1,−1,−1)) into a weight-2 Hodge structure
of K3 type, one has to select a one-dimensional isotropic subspace H2,0 ⊂ TC such
that H2,0 is not perpendicular to H2,0. This will automatically fix H0,2 := H2,0

and H1,1 := (H2,0 + H2,0)⊥.
In addition, we choose the endomorphism ϕ : T → T constructed in Remark A.2.

By construction, ϕC commutes with complex conjugation on TC. Furthermore, as
ϕC is self-adjoint and fulfills ϕC ◦ ϕC = [d], it respects orthogonality. Therefore,
ϕC(H2,0) ⊆ H2,0 alone will be sufficient for ϕ to cause real multiplication.

To ensure this, let us take H2,0 ⊂ TC,+. The eigenspace TC,+ has a real basis,
given by ei − u−

√
d

v ei+1, for i = 1, 3, 5. In this basis, the pairing 〈. , .〉|TC,+
is given by

the non-degenerate matrix diag(1 + (u−
√

d
v )2,−1− (u−

√
d

v )2,−1− (u−
√

d
v )2), which

is indefinite. Consequently, on P(TC,+) ∼= P2, the condition 〈x, x〉 = 0 defines a
conic C and, on this conic, 〈x, x〉 6= 0 is fulfilled on a dense open subset. �

Remark A.4. Consider the four-dimensional family of the K3 surfaces that are
given as desingularizations of the double covers of P2, branched over the union of
six lines. In this case, rk Pic(X) ≥ 16 and we are particularly interested in those
surfaces, for which equality occurs.

Anyway, the pull-back of a general line and the 15 exceptional curves generate
a sub-Hodge structure P ′ of dimension 16. The symmetric, bilinear form on P ′

is given by the matrix diag(2,−2, . . . ,−2). Indeed, the exceptional curves have
self-intersection number (−2) [2, Proposition VIII.13.i)]. According to [32, Ch. IV,
Theorem 9], P ′ ∼= (Q16, diag(1,−1, . . . ,−1)).

Corollary A.5. Let d ∈ Q be a non-square being the sum of two squares.
Then there exists a one-dimensional family of K3 surfaces over C, the generic
member of which has Picard rank 16 and real multiplication by Q(

√
d).

Proof. As a quadratic space, H = H2(X,Q) is the same for all K3 surfaces.
One has H ∼= (Q22, diag(1, 1, 1,−1, . . . ,−1)). By [1, Corollary 14.2], cf. [37, Ch. IX,
Theorem 4], there exists a complex-analytic K3 surface X for every choice of a one-
dimensional subspace span(x) ⊂ HC fulfilling 〈x, x〉 = 0 and 〈x, x〉 > 0.

We choose P ′ ⊂ HC as in Remark A.4, put T ′ := (P ′)⊥, and restrict considera-
tions to subspaces span(x) ⊂ T ′ ⊂ HC. By the classification of the quadratic forms
over Q [32, Ch. IV, §3], we have T ′ ∼= (Q6, diag(1, 1,−1,−1,−1,−1)).

Therefore, Theorem A.3 guarantees the existence of a one-dimensional family
of subspaces span(x) ⊂ T ′ such that 〈x, x〉 = 0 and 〈x, x〉 6= 0. The construction
given shows that the first condition actually defines a conic C and that 〈x, x〉 > 0
is satisfied on a non-empty open subset of C.

We still have to show that, generically, rk Pic(X) = 16. For this observe, by the
Lefschetz theorem on (1, 1)-classes, Picard rank 16 is equivalent to Q6 ∩H1,1 = 0.
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To investigate this condition, let 0 6= v = (v1, . . . , v6) ∈ Q6 be any vector. The in-
clusion v ∈ H1,1, for a particular choice of x, implies that v ∈ span(x)⊥. I.e.,

v1x1 + v2x2 − v3x3 − . . .− v6x6 = 0 .

This hyperplane meets the conic C in at most two points. Indeed, the plane P(TC,+)
is not contained in any Q-rational hyperplane, as an inspection of the base vectors
given above immediately shows. In total, there are only countably many exceptions,
for which rkPic(X) > 16. �
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(1899), 233–350
[19] Illusie, L.: Crystalline cohomology, in: Motives (Seattle 1991), Proc. Sympos. Pure Math.

55-1, AMS, Providence 1994, 43–70
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