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Abstract

The quadruple (1 484 801, 1 203 120, 1 169 407, 1 157 520) already known
is essentially the only non-trivial solution of the Diophantine equation
x4 + 2y4 = z4 + 4w4 for |x|, |y|, |z|, and |w| up to one hundred million.
We describe the algorithm we used in order to establish this result, thereby
explaining a number of improvements to our original approach [EJ].

1 Introduction

1.1. –––– In [EJ], we described a systematic method to search efficiently for all

solutions of a Diophantine equation of the form

f(x1, . . . , xn) = g(y1, . . . , ym)

which are contained within the (n+m)-dimensional cube

{(x1, . . . , xn, y1, . . . , ym) ∈ n+m | |xi|, |yi| ≤ B}.

The expected running-time of this algorithm is O(Bmax{n,m}).

1.2. –––– The basic idea is as follows.

Algorithm H.

i) Evaluate f on all points of the n-dimensional cube {(x1, . . . , xn) ∈ n | |xi| ≤ B}.
Store the values within a set L.
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for Scientific Computing at the Göttingen Mathematical Institute. Both authors are grateful to
Prof. Y. Tschinkel for the permission to use these machines as well as to the system administrators
for their support.
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ii) Evaluate g on all points of the cube {(y1, . . . , ym) ∈ m | |yi| ≤ B} of dimen-

sion m. For each value start a search in order to find out whether it occurs in L.

When a coincidence is detected, reconstruct the corresponding values of x1, . . . , xn
and output the solution.

1.3. Remarks. ––––

a) In fact, we are interested in the very particular Diophantine equation

x4 + 2y4 = z4 + 4w4 which was suggested by Sir Peter Swinnerton-Dyer. It is

unknown whether this equation admits finitely or infinitely many primitive solu-

tions. If their number were actually finite then this would settle a famous open

problem in the arithmetic of K3 surfaces [PT, Problem/Question 6.a)].

b.i) In the form stated above, the main disadvantage of Algorithm H is that it

requires an enormous amount of memory. Actually, the set L is too big to be stored

in the main memory even of our biggest computers, already when the value of B is

only moderately large.

For that reason, we introduced the idea of paging. We choose a page prime pp and

work with the sets Lr := {s ∈ L | s ≡ r (mod pp)} for r = 0, . . . , pp − 1, separately.

At the cost of some more time spent on initializations, this yields a reduction of the

memory space required by a factor of 1
pp

.

ii) The sets Lr were implemented in the form of a hash table with open addressing.

iii) It is possible to achieve a further reduction of the running-time and the memory

required by making use of some obvious congruence conditions modulo 2 and 5.

c) Precisely ten primitive solutions of the Diophantine equation x4 + 2y4 = z4 + 4w4

are known up to now. Among them, there are the two obvious ones (±1:0 :±1:0).

Furthermore, by an implementation of Algorithm H, the non-obvious solutions

(±1 484 801 :±1 203 120 :±1 169 407 :±1 157 520) were found. We searched through

the hypercube {(x, y, z, w) ∈ 4 | |x|, |y|, |z|, |w| ≤ 2.5 · 106}. Details are given

in [EJ].

1.4. –––– The goal of this note is to describe an improved implementation of Algo-

rithm H which we used in order to find all solutions of x4 +2y4 = z4 +4w4 contained

within the hypercube {(x, y, z, w) ∈ 4 | |x|, |y|, |z|, |w| ≤ 108}.
Unfortunately, our result is not very spectacular. There is no new primitive solution.

2 More Congruences

2.0.1. –––– The most obvious way to further reduce the size of the sets Lr and

to increase the speed of Algorithm H is to find further congruence conditions for
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solutions and evaluate f and g only on points satisfying these conditions. As the

equation, we are interested in, is homogeneous, it is sufficient to restrict considera-

tion to primitive solutions.

2.0.2. –––– It should be noticed, however, that this idea is subject to strict limi-

tations. If we were using the most naive O(Bn+m)-algorithm then, for more or less

every l ∈ , the congruence f(x1, . . . , xn) ≡ g(y1, . . . , ym) (mod l) caused a reduc-

tion of the number of (n+m)-tuples to be checked. For Algorithm H, however, the

situation is by far less fortunate.

One may gain something only if there are residue classes (r mod l) which are rep-

resented by f , but not by g, or vice versa. Values, the residue class of which is not

represented by g, do not need to be stored into Lr. Values, the residue class of which

is not represented by f , do not need to be searched for.

Unfortunately, if l is prime and not very small then the Weil conjectures ensure

that all residue classes modulo l are represented by both f and g. In this case,

the idea fails completely. The same is, however, not true for prime powers l = pk.

Hensel’s Lemma does not work when all partial derivatives ∂f
∂xi

(x1, . . . , xn), respec-

tively ∂g
∂yi

(y1, . . . , ym), are divisible by p. This makes it possible that certain residue

classes (r mod pk) are not representable although (r mod p) is.

2.1 The prime 5. Congruences modulo 625

2.1.1. –––– In [EJ], we made use of the fact that y is always divisible by 5. How-

ever, at this point, one can do a lot better. When one takes into consideration that

a4 ≡ 1 (mod 5) for every a ∈ not divisible by 5, a systematic inspection shows

that there are actually two cases.

Either, 5|w. Then, 5-x and 5-z. Or, otherwise, 5|x. Then, 5-z and 5-w. Note that,

in the latter case, one indeed has z4 + 4w4 ≡ 1 + 4 ≡ 0 (mod 5).

2.1.2. –––– The Case 5|w. We call this case “N” and use the letter N at a

prominent position in the naming of the relevant files of source code. N stands

for “normal”. To consider this case as the ordinary one is justified by the fact that

all primitive solutions known actually belong to it. Note, however, that we have no

theoretical reason to believe that this case should in whatever sense be better than

the other one.

In case N, we rearrange the equation to fN(x, z) = gN(y, w) where

fN(x, z) := x4 − z4 and gN(y, w) := 4w4 − 2y4.

As y and w are both divisible by 5, we get gN(y, w) = 4w4 − 2y4 ≡ 0 (mod 625).

Consequently, fN(x, z) ≡ 0 (mod 625).
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This yields an enormous reduction of the set Lr. To see this, recall 5-x and 5-z.
That means, for x, there are precisely ϕ(625) possibilities in /625 . Further, for

each such value, the congruence z4 ≡ x4 (mod 625) may not have more than four so-

lutions. All in all, there are 4 · ϕ(625) = 2 000 possible pairs (x, z) ∈ ( /625 )2.

Further, these pairs are very easy to find, computationally. The fourth roots of unity

modulo 625 are ±1 and ±182. For each x ∈ /625 ∗, put z := (±x mod 625) and

z := (±182x mod 625).

We store the values of fN into the set Lr. Only 2 000 out of 6252 values (0.512%)

need to be computed and stored. Then, each value of gN is looked up in Lr. Here, as

y and w are both divisible by 5, only one value out of 25 (4%) needs to be computed

and searched for.

2.1.3. –––– The Case 5|x. We call this case “S” and use the letter S at a promi-

nent position in the naming of the relevant files of source code. S stands for “Son-

derfall” which means “exceptional case”. It is not known whether there exists a

solution belonging to case S.

Here, we simply interchange both sides of the equation. Define

fS(z, w) := z4 + 4w4 and gS(x, y) := x4 + 2y4.

As x and y are divisible by 5, we get x4 + 2y4 ≡ 0 (mod 625) and, therefore,

z4 + 4w4 ≡ 0 (mod 625).

Again, this congruence allows only 4 · ϕ(625) = 2 000 solutions (z, w) ∈ ( /625 )2

and these pairs are easily computable, too. The fourth roots of (−4) in /625 are

±181 and ±183. For each x ∈ /625 ∗, one has to consider z := (±181x mod 625)

and z := (±183x mod 625).

We store the values of fS into the set Lr. Then, we search through Lr for the values

of gS. As above, only 2 000 out of 6252 values need to be computed and stored and

one value out of 25 needs to be computed and searched for.

2.2 The prime 2

2.2.1. –––– Any primitive solution is of the form that x and z are odd while y

and w are even.

2.2.2. –––– In case S, there is no way to do better than that as both fS and gS
represent (r mod 2k) for k ≥ 4 if and only if r ≡ 1 (mod 16).

In case N, the situation is somewhat better. gN(y, w) = 4w4−2y4 is always divisible

by 32 while fN(x, z) = x4 − z4 ≡ 0 (mod 32), as may be seen by inspecting the
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fourth roots of unity modulo 32, implies the condition x ≡ ±z (mod 8). This may

be used to halve the size of Lr.

2.3 The prime 3

2.3.1. –––– Looking for further congruence conditions, a primitive solution must

necessarily satisfy, we did not find any reason to distinguish more cases. But there

are a few more congruences which we used in order to reduce the size of the sets Lr.

To explain them, let us first note two theorems on binary quadratic forms. They may

both be easily deduced from [HW, Theorems 246 and 247].

2.3.2. Theorem. –––– The quadratic forms q1(a, b) := a2+b2, q2(a, b) := a2−2b2,

and q3(a, b) := a2 + 2b2 admit the property below.

Suppose n0 := qi(a0, b0) is divisible by a prime p which is not represented by qi.

Then, p|a0 and p|b0.

2.3.3. Theorem. –––– A prime number p is represented by q1, q2, or q3, respec-

tively, if and only if (0 mod p) is represented in a non-trivial way. In particular,

i) p is represented by q1 if and only if p = 2 or p ≡ 1 (mod 4).

ii) p is represented by q2 if and only if p = 2 or
(

2
p

)
= 1. The latter means

p ≡ 1, 7 (mod 8).

iii) p is represented by q3 if and only if p = 2 or
(−2
p

)
= 1. The latter is equivalent

to p ≡ 1, 3 (mod 8).

2.3.4. Remark. –––– There is the obvious asymptotic estimate

]{qi(a, b) | a, b ∈ , qi(a, b) ∈ , qi(a, b) ≤ n} ∼ n

2 logn
.

Further,

]{qi(a, b) | a, b ∈ , |qi(a, b)| ≤ n} ∼ Ci
n√

log n

where C1, C2, and C3 are constants which can be expressed explicitly by Eu-

ler products. (For q1, this is worked out in [Br, Satz (1.8.2)]. For the other forms,

J. Brüdern’s argument works in the same way without essential changes.)

2.3.5. Congruences modulo 81. ––––

In case N, gN(y, w) = (2w2)2− 2(y2)2 = q2(2w2, y2) where q2 does not represent the

prime 3. Therefore, if 3|gN(y, w) then 3|2w2 and 3|y2 which implies y and w are

both divisible by 3. By consequence, if 3|gN(y, w) then, automatically, 81|gN(y, w).
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If 3|fN(x, z) but 81-fN(x, z) then fN(x, z) does not need to be stored into Lr. Fur-

ther, if 3|x and 3|z then fN(x, z) does not need to be stored, either, as it can-

not lead to a primitive solution. This reduces the size of the set Lr by a factor

of 1
9

+ 4 · 1
3
(1

3
− 1

81
) = 131

243
≈ 53.9%.

In case S, the situation is the other way round. fS(z, w) = (z2)2+(2w2)2 = q1(z2, 2w2)

and q1 does not represent the prime 3. Therefore, if 3|fS(z, w) then 3|z2 and 3|2w2

which implies that z and w are both divisible by 3 and 81|fS(z, w).

We use this in order to reduce the time spent on reading. If 3|gS(x, y) but 81-gS(x, y)

or if 3|x and 3|y then gS(x, y) does not need to be searched for. Although modular

operations are not at all fast, the reduction of the number of attempts to read

by 53.9% is highly noticeable.

2.4 Some more hypothetical improvements

2.4.1. ––––

i) In the argument for case N given above, p = 3 might be replaced by any other

prime p ≡ 3, 5 (mod 8).

In case S, the same argument as above works for every prime p ≡ 3 (mod 8).

For primes p ≡ 5 (mod 8), the strategy could be reversed. q3 is a binary quadratic

form which represents (0 mod p) only in the trivial manner. Therefore, if p|gS(x, y)

then p|x and p|y. It is unnecessary to store fS(z, w) if p|z and p|w or if p|fS(z, w)

but p4-fS(z, w).

i′) Each argument mentioned may be extended to some primes p ≡ 1 (mod 8).

For example, in case N, what is actually needed is that 2 is not a fourth power

modulo p. This is true, e.g., for p = 17, 41, and 97, but not for p = 73 and 89.

ii) fN and fS do not represent the residue classes of 6, 7, 10, and 11 modulo 17.

gN and (−gS) do not represent 1, 3, and 9 modulo 13. This could be used to reduce

the load for writing as well as reading.

2.4.2. Remarks. ––––

a) We did not implement these improvements as it seems the gains would be

marginal or the cost of additional computations would even dominate the effect. It is,

however, foreseeable that these congruences will eventually become valuable when

the speed of the CPU’s available will continue to grow faster than the speed of mem-

ory. Observe that alone the congruences noticed in a) could reduce the amount of

data to be stored into L to a size asymptotically less than εB2 for any ε > 0.

b) For every prime p different from 2, 5, 13, and 17, the quartic forms fN , gN , fS,

and gS represent all residue classes modulo p. This means, ii) may not be carried
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over to any further primes.

This can be seen as follows. Let b be equal to fN , fS, gN , or gS . (0 mod p) is

represented by b, trivially. Otherwise, b(x, y) = r defines an affine curve Cr of

genus three with at most four points on the infinite line. The Weil conjectures [We,

Corollaire 3 du Théorème 13] imply that [(p+1−6
√
p)−4] is a lower bound for the

number of p-rational points on Cr. This is a positive number as soon as p ≥ 43.

In this case, every residue class (r mod p) is represented, at least, once.

For the remaining primes up to p = 41, an experiment shows that all residue classes

modulo p are represented by fN , fS, gN , as well as gS.

3 A 64 bit based implementation of the algorithm

3.1. –––– We migrated the implementation of Algorithm H from a 32 bit processor

to a 64 bit processor. This means, the new hardware supports addition and mul-

tiplication of 64 bit integers. Even more, every operation on (unsigned) integers is

automatically modulo 264.

From this, various optimizations of the implementation described in [EJ] are al-

most compelling. The basic idea is that 64 bits should be enough to define hash

value and control value, two integers significantly less than 232 which should be

independent on each other, by selection of bits instead of using (notoriously slow)

modular operations.

Note, however, that the congruence conditions modulo 2 imposed imply that

x4 ≡ z4 ≡ 1 (mod 16) and 2y4 ≡ 4w4 ≡ 0 (mod 16). This means, the four least

significant bits of f and g may not be used as they are always the same.

3.2. –––– The description of the algorithm below is based on case S, case N being

completely analogous.

Algorithm H64.

I. Initialization. Fix B := 108. Initialize a hash table of 227 = 134 217 728 integers,

each being 32 bit long. Fix the page prime pp := 200 003.

Further, define two functions, the hash function h and the control function c, which

map 64 bit integers to 27 bit integers and 31 bit integers, respectively, by selecting

certain bits. Do not use any of the bits twice to ensure h and c are independent on

each other and do not use the four least significant bits.

II. Loop. Let r run from 0 to pp − 1 and execute steps A. and B. for each r.

A. Writing. Build up the hash table, which is meant to encode the set Lr, as follows.
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a) Find all pairs (z, w) of non-negative integers less than or equal to B which satisfy

z4 + 4w4 ≡ r (mod pp) and all the congruence-conditions for primitive solutions,

listed above. (Make systematic use of the Chinese remainder theorem.)

b) Execute steps i) and ii) below for each such pair.

i) Evaluate fS(z, w) := (z4 + 4w4 mod 264).

ii) Use the hash value h(fS(z, w)) and linear probing to find a free place in the

hash table and store the control value c(fS(z, w)) there.

B. Reading. Search within the hash table, as follows.

a) Find all pairs (x, y) of non-negative integers less than or equal to B which satisfy

x4 + 2y4 ≡ r (mod pp) and all the congruence conditions for primitive solutions,

listed above. (Make systematic use of the Chinese remainder-theorem.)

b) Execute steps i) and ii) below for each such pair.

i) Evaluate gS(x, y) := (x4 + 2y4 mod 264) on all points found in step a).

ii) Search for the control value c(gS(x, y)) in the hash table, starting at the hash value

h(gS(x, y)) and using linear probing, until a free position is found. Report all hits

and the corresponding values of x and y.

3.3. Remarks. (Some details of the implementation). —–

i) The fourth powers and fourth roots modulo pp are computed during the initial-

ization part of the program and stored into arrays because arithmetic modulo pp is

slower than memory access.

ii) The control value is limited to 31 bits as it is implemented as a signed integer.

We use the value (−1) as a marker for an unoccupied place in the hash table.

iii) In contrast to our previous programs [EJ], we do not precompute large tables

of fourth powers modulo 264 because an access to these tables is slower than the

execution of two multiplications in a row (at least on our computer).

iv) It is the impact of the congruences modulo 625, 8, and 81, described above,

that the set of pairs (y, w) [(x, y)] to be read is significantly bigger than the

set of pairs (x, z) [(z, w)] to be written. They differ actually by a factor of
6252

2 000·25
· 243

112
· 2 ≈ 33.901 in case N and 6252

2 000·25
· 112

243
≈ 3.601 in case S.

As a consequence of this, only a small part of the running-time is spent on writing.

The lion’s share is spent on unsuccessful searches within L.

3.4. Remarks (Post-Processing). —–

i) Most of the hits found in the hash table actually do not correspond to solutions of

the Diophantine equation. Hits indicate only a similarity of bit-patterns. Thus, for

each pair of x and y reported, one needs to check whether a suitable pair of z and w
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does exist. We do this by recomputing z4 + 4w4 for all z and w which fulfill the

given congruence conditions modulo pp and powers of the small primes.

Although this method is entirely primitive, only about 3% of the total running-time

is actually spent on post-processing. One reason for this is that post-processing is

not called very often, on average only once on about five pages. For those pages,

the writing part of the algorithm needs to be recapitulated. This is, however, not

time-critical as only a small part of the running-time is spent on writing, anyway.

ii) An interesting alternative for post-processing would be to apply the theory of

binary quadratic forms. The obvious strategy is to factorize x4 + 2y4 completely

into prime powers and to deduce from the decomposition all pairs (a, b) such that

a2 + b2 = x4 + 2y4. Then, one may check whether for one of them both a and b
2

are

perfect squares.

3.5. Remark. –––– The migration to a more bit-based implementation led to an

increase of the speed of our programs by a factor of approximately 1.35.

4 Adaption to the memory architecture of our

computer – generalities

4.0.1. –––– The factor of 1.35 is less than what we actually hoped for. For that

reason, we made various tests in order to find out what the limiting bottleneck of

our program is. It turned out that the major slowdown is the access of the processor

to main memory.

Our programs are, in fact, doing only two things, integer arithmetic and memory ac-

cess. The integer execution units of modern processors are highly optimized circuits

and several of them work in parallel inside one processor. They work a lot faster

than main memory does. In order to reach a further improvement, it will therefore

be necessary to take the architecture of memory into closer consideration.

4.1 The memory architecture

4.1.1. The Situation. –––– Computer designers try to bridge the gap between

the fast processor and the slow memory by building a memory hierarchy which

consists of several cache levels.

The cache is a very small and fast memory inside the processor. The first cache level,

called L1 cache, of our processor consists of a data cache and an instruction cache.

Both are 64 kByte in size. The cache manager stores the most recently used data

into the cache in order to make sure a second access to them will be fast.
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If the cache manager does not find necessary data within the L1 cache then the pro-

cessor is forced to wait. In order to deliver data, the cache management first checks

the L2 cache which is 1024 kByte large. It consists of 16384 lines of 64 Byte, each.

4.1.2. Our Program. –––– Our program fits into the instruction cache, com-

pletely. Therefore, no problem should arise from this.

When we consider the data cache, however, the situation is entirely different.

The cache manager stores the 1024 most recently used memory lines, each being

64 Byte long, within the L1 data cache.

This strategy is for sure good for many applications. It guarantees main memory

may be scanned at a high speed. On the other hand, for our application, it fails com-

pletely. The reason is that access to our 500 MByte hash table is completely random.

An access directly to the L1 cache happens in by far less than 0.1% of the cases.

In all other cases, the processor has to wait.

Even worse, it is clear that in most cases we do not even access the L2 cache.

This means, the cache manager needs to access main memory in order to transfer

the corresponding memory line of 64 Byte into the L1 cache. After this, the processor

may use the data. In the case that there is no free line available within the L1 cache,

the cache manager must restore old data back to main memory, first. This process

takes us 60 nanoseconds, at least, which seems to be short, but the processor could

execute more than 100 integer instructions during the same time.

The philosophy for further optimization must, therefore, be to adapt the programs

as much as possible to our hardware, first of all to the sizes of the L1 and L2 caches.

4.1.3. Programmer’s position. –––– Unfortunately, the whole memory hierar-

chy is invisible from the point of view of a higher programming language, such as C,

since such languages are designed for being machine-independent. Further, the hard-

ware executes the cache management in an automatic manner. This means, even by

programming in assembly, one cannot control the cache completely although some

new assembly instructions such as prefetch allow certain direct manipulations.

4.1.4. A way out. –––– A practical way, nonetheless to gain some influence on

the memory hierarchy, is to rearrange the algorithm in an apparently nonsensical

manner, thereby making memory access less chaotic. One may then hope that the

automatic management of the cache, when confronted with the modified algorithm,

is able to react more properly. This should allow the program to run faster.

4.2 Our first trial

4.2.1. –––– Our first idea for this was to work with two arrays instead of one.
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Algorithm M.

i) Store the values of f into an array and the values of g into a another one.

Write successively calculated values into successive positions. It is clear that this

part of the algorithm is not troublesome as it involves a linear memory access which

is perfectly supported by the memory management.

ii) Then, use Quicksort in order to sort both arrays. In addition to being fast,

Quicksort is known to have a good memory locality when large arrays are sorted.

iii) In a final step, search for matches by going linearly through both arrays as

in Mergesort.

4.2.2. Remark. –––– Unfortunately, the idea behind Algorithm M is too simple

to give it any chance of being superior to the previous algorithms. However, it is a

worthwhile experiment. Indeed, our implementation of Algorithm M causes at least

30 times more memory transfer compared with the previous programs but, actually,

it is only three times slower. This indicates that our approach is reasonable.

5 Hashing with partial presorting

5.1 The algorithm

5.1.1. –––– Our final algorithm is a combination of sorting and hashing. An im-

portant aspect of it is that the sorting step has to be considerably faster than the

Quicksort algorithm. For that reason, we adopted some ideas from linear-time sort-

ing algorithms such as Radix Sort or Bucket Sort.

5.1.2. –––– The algorithm works as follows. Again, the description is based on

case S, case N being analogous.

Algorithm H64B.

I. Initialization. Fix B := 108. Initialize a hash table H of 227 = 134 217 728 inte-

gers, each being 32 bit long. Fix the page prime pp := 200 003.

In addition, initialize 1024 auxiliary arrays Ai each of which may contain

217 = 131 072 long (64 bit) integers.

Further, define two functions, the hash function h and the control function c, which

map 64 bit integers to 27 bit integers and 31 bit integers, respectively, by selecting

certain bits. Do not use any of the bits twice to ensure h and c are independent on

each other and do not use the four least significant bits.

Finally, let h(10) denote the function mapping 64 bit integers to integers

within [0, 1023] which is given by the ten most significant bits of h. In other words,
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for every x, h(10)(x) is the same as h(x) shifted to the right by 17 bits.

II. Outer Loop. Let r run from 0 to pp − 1 and execute A. and B. for each r.

A. Writing. Build up the hash table, which is meant to encode the set Lr, as follows.

a) Preparation. Find all pairs (z, w) of non-negative integers less than or equal to B

which satisfy z4 + 4w4 ≡ r (mod pp) and all the congruence-conditions for primitive

solutions, listed above. (Make systematic use of the Chinese remainder theorem.)

b) Inner Loop. Execute steps i) – iii) below for each such pair.

i) Evaluate fS(z, w) := (z4 + 4w4 mod 264).

ii) Do not store fS(z, w) into the hash table, immediately. Put i := h(10)(fS(z, w)),

first.

iii) Add fS(z, w) to the auxiliary array Ai. Maintain Ai as an unordered list, i.e. al-

ways write to the lowest unoccupied address.

If there is no space left in Ai then output an error message and abort the algorithm.

c) Storing. Let i run from 0 to 1023. For each i let j run through the addresses

occupied in Ai.

For fixed i and j, extract from the 64 bit integer Ai[j] the 27 bit hash value h(Ai[j])

and the 31 bit control value c(Ai[j]).

Use the hash-value h(Ai[j]) and linear probing to find a free place in the hash table

and store the control-value c(Ai[j]) there.

d) Clearing up. Clear the auxiliary arrays Ai for all i ∈ [0, 1023] to make them

available for reuse.

B. Reading. Search within the hash table, as follows.

a) Preparation. Find all pairs (x, y) of non-negative integers less than or equal to B

which satisfy x4 + 2y4 ≡ r (mod pp) and all the congruence conditions for primitive

solutions, listed above. (Make systematic use of the Chinese remainder-theorem.)

b) Inner Loop. Execute steps i) – iii) below for each such pair.

i) Evaluate gS(x, y) := (x4 + 2y4 mod 264).

ii) Do not look up gS(x, y) in the hash table, immediately. Put i := h(10)(gS(x, y)),

first.

iii) Add gS(x, y) to the auxiliary array Ai. Maintain Ai as an unordered list, i.e. al-

ways write to the lowest unoccupied address.

If there is no space left in Ai then call d[i] and add gS(x, y) to Ai, afterwards.

c) Searching. Clearing all buffers. Let i run from 0 to 1023. For each i, call d[i].

When this is finished, terminate the algorithm.

Subroutine d[i]) Clearing a buffer. Let j run through the addresses occupied in Ai.

For fixed j, search for the control value c(Ai[j]) within the hash table H , starting
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at the hash value h(Ai[j]) and using linear probing, until a free place is found.

Report all hits and the corresponding values of x and y.

Having done this, declare Ai to be empty.

5.1.3. Remark. –––– The auxiliary arrays Ai play the role of a buffer. Thus, one

could say that we introduced some buffering into the management of the hash ta-

ble H. However, this description misses the point.

What is more important is that the values of fS to be stored into Lr are partially

sorted according to the 10 most significant bits of h(fS(z, w)) by putting them into

the auxiliary arrays Ai. When the hash table is then built up, the records arrive

almost in order. The same is true for reading.

What we actually did is, therefore, to introduce some partial presorting into the

management of the hash table.

5.1.4. Remark. –––– It is our experience that each auxiliary array carries more

or less the same load. In particular, in step II.A.b.iii), when the buffers are filled

up for writing, a buffer overflow should never occur. For this reason, we feel free to

treat this possibility as a fatal error.

5.2 Running-Time

5.2.1. –––– Algorithm H64B uses about three times more memory than our pre-

vious algorithms but our implementation runs almost three times as fast. It was

this factor which made it possible to attack the bound B = 108 in a reasonable

amount of time.

The final version of our programs took almost exactly 100 days of CPU time on an

AMD Opteron 248 processor. This time is composed almost equally of 50 days for

case N and 50 days for case S. The main computation was executed in parallel on

two machines in February and March, 2005.

5.2.2. Why is this algorithm faster? –––– To answer this question, one has

to look at the impact of the cache. For the old program, the cache memory was

mostly useless. For the new program, the situation is completely different.

When the auxiliary arrays are filled in step II.A.b.ii) and II.B.b.ii), access to these

arrays is linear. There are only 1024 of them which is exactly the number of lines

in the L1 cache. When an access does not hit into that innermost cache then the

corresponding memory line is moved to it and the next seven accesses to the same

auxiliary array are accesses to that line. Altogether, seven of eight memory accesses

hit into the L1 cache.



14 Elsenhans and Jahnel

When an auxiliary array is emptied in step II.A.b.d) or II.B.b.d[i]), the situation

is similar. There are a high number of accesses to a very short segment of the

hash table. This segment fits completely into the L2 cache. It has to be moved into

that cache, once. Then, it can be used many times. Again, access to the auxiliary

array is linear and a hit into the L1 cache occurs in seven of eight cases.

All in all, for Algorithm H64B, most memory accesses are hits into the cache.

This means, at the cost of some more data transfer altogether, we achieved that

main memory may be mostly used at the speed of the cache.
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Birkhäuser, Progress in Mathematics 226, Boston 2004
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