data_base
❭ analyze
❭ temporal_binning
❭ temporal_binning_pd
temporal_binning_pd¶
-
data_base.analyze.temporal_binning.temporal_binning_pd(df, bin_size=
None
, min_time=None
, max_time=None
, normalize=True
, bin_borders=None
, rate=False
)¶ Bin timevalues in a pandas DataFrame.
Given a dataframe containing time values in columns whose name can be converted to an integer, this function bins the values. It assumes that all columns whose names are integer-convertible contain time values. This is true for Presynaptic spike times and Synapse activation dataframes.
- Parameters:¶
df (
pandas.DataFrame
) – DataFrame with containing time values in columns whose name are integer-convertible.bin_size (float, optional) – Size of the bins. If not specified,
bin_borders
have to be specified.min_time (float, optional) – Minimum time to consider. If not specified, the minimum value in the DataFrame is used.
max_time (float, optional) – Maximum time to consider. If not specified, the maximum value in the DataFrame is used.
bin_borders (list, optional) – List of bin borders. If not specified,
bin_size
has to be specified.normalize (bool, optional) – If True, normalize the output to the total number of elements in the DataFrame.
rate (bool, optional) – If True, normalize the output to the bin size.
- Returns:¶
Tuple containing the bin borders and the binned data.
- Return type:¶
tuple