
Basic programming in Bash

Bash programming

• In the previous tutorial you got to know basic Bash commands

• Bash is also a programming (scripting) language

• More sophisticated execution of commands (upon a condition,
several times in a row, etc.) is possible through Bash scripts

Motivation

• Basic programming is useful as it allows you to automate tasks

• MMseqs2 software suite allows creating tailored computational tools
by combining its modules and workflows in Bash scripts

createdb

taxonomy

filterdb

search

createdb

search

filterdb

The script file

• The first line of a Bash script is usually:

#!/bin/bash

• This indicates this file is a Bash script

• Lines that start with ‘#’ are comments

• To print something we use ‘echo’

• A script is just a text file.

• Under your home directory, create a directory called “Bash_scripts”

• We will create Bash scripts there

Creating the Hello_Bash.sh script file

Running a Bash script

• You need to give your script execution permission:

chmod +x ~/Bash_scripts/Hello_Bash.sh

• Then you can run it from the terminal:

Hello_Bash.sh

Create a Hello_Bash.sh script and run it

Bash variables

• A variable stores a value

• There are no variable types in Bash

• Assignment of a value is done with “=“:

#!/bin/bash

NAME="Eli"

NUMBER_OF_EYES=3

echo "Hello $NAME, you have $NUMBER_OF_EYES eyes"

• Modify the Hello_Bash.sh script to have a variable and run it

Arithmetic evaluation

• In order for bash to treat the variable as numeric we need to use
brackets:

CORRECT_NUMBER_OF_EYES=$((NUMBER_OF_EYES – 1))

echo "Humans usually don't have more than

$CORRECT_NUMBER_OF_EYES eyes"

• Create a Bash script with a variable AGE and assign it your age. Print
the age you will be in one year

Conditionals

• If/else structures allow us to execute commands only in certain cases

AGE=20

if ["$AGE" -eq 20]; then

echo "Wow, you are exactly 20!"

fi

• Comparison operators:

Description Numeric String

less than -lt <

greater than -gt >

equal -eq =

not equal -ne !=

less or equal -le

greater or equal -ge

Exercise

• This simple Bash script asks the user for their name and says hi:

#!/bin/bash

echo "Enter your name and press [ENTER]: "

read NAME

echo "Hi $NAME"

• Create a script that asks for the user’s age and serves beer only if
the user is at least 18

What does this code do?

echo "Enter a directory name and press [ENTER]: "

read DIR

if [-d "$DIR"]; then

ls "$DIR"

else

mkdir "$DIR"

fi

Repetitive execution of commands

• Often we would like to perform the same thing more than once:
• Say hello to all students in the class (there 22 of you!)

• Make a copy of each file in a directory

• Refine an MMseqs2 clustering…

• Bash loops allow us to do exactly that!

For loop

#!/bin/bash

START=1

END=22

for ((i=$START; i<=$END; i++))

do

echo "$i. Hi, student!"

done

While loop

continue from last slide

i=1

while [[$i -le $END]]

do

echo "$i. Oh hi there, student!"

((i = i + 1))

done

Exercises

1. Compute the sum of the first 40 natural numbers:

1+2+…

2. Sum the numbers the user provides you until they provide a
negative number

Can you tell how many numbers you summed?

Taxonomy Bash workflow

• In the previous tutorial you saw MMseqs2 workflow to assign
taxonomic units.

• This workflow is written as a Bash script which calls Bash commands
as well as MMseqs2 native CPP modules

• Let’s have a look…

Taxonomy Bash workflow
INPUT="$1"

TARGET="$2"

RESULTS="$3"

TMP_PATH="$4"

if [! -e "${TMP_PATH}/first"]; then

"$MMSEQS" search "${INPUT}" "${TARGET}" "${TMP_PATH}/first"

"${TMP_PATH}/tmp_hsp1" ${SEARCH1_PAR} \

|| fail "First search died"

fi

if [! -e "${TMP_PATH}/top1"]; then

"$MMSEQS" filterdb "${TMP_PATH}/first" "${TMP_PATH}/top1" --extract-lines 1 \

|| fail "Filterdb died"

fi

Taxonomy Bash workflow
if [! -e "${TMP_PATH}/aligned"]; then

"$MMSEQS" extractalignedregion "${INPUT}" "${TARGET}" "${TMP_PATH}/top1"

"${TMP_PATH}/aligned" --extract-mode 2 \

|| fail "Extractalignedregion failed"

fi

if [! -e "${TMP_PATH}/round2"]; then

"$MMSEQS" search "${TMP_PATH}/aligned" "${TARGET}" "${TMP_PATH}/round2"

"${TMP_PATH}/tmp_hsp2" ${SEARCH2_PAR} \

|| fail "Second search died"

fi

Taxonomy Bash workflow
Concat top hit from 1st search with all results from 2nd search

if [! -e "${TMP_PATH}/merged"]; then

"$MMSEQS" mergedbs "${TMP_PATH}/top1" "${TMP_PATH}/merged" "${TMP_PATH}/top1"

"${TMP_PATH}/round2" \

|| fail "Mergedbs died"

fi

Filter out 2nd search entries that do not reach the evalue of the top 1 hit

if [! -e "${TMP_PATH}/2b_ali"]; then

"$MMSEQS" filterdb "${TMP_PATH}/merged" "${TMP_PATH}/2b_ali" --beats-first --

filter-column 4 --comparison-operator le \

|| fail "First filterdb died"

fi

"$MMSEQS" lca "${TARGET}" "${TMP_PATH}/2b_ali" "${RESULTS}" ${LCA_PAR} \

|| fail "Lca died"

Exercise solutions

#!/bin/bash

echo "Hello Bash"

Exercise solutions

#!/bin/bash

AGE=99

AGE_NEXT_YEAR=$((AGE + 1))

echo "Next year you will be $AGE_NEXT_YEAR"

Exercise solutions

#!/bin/bash

echo "Enter your age and press [ENTER]: "

read USER_AGE

if [$USER_AGE -ge 18]; then

echo "Here is your beer"

fi

Exercise solutions

#!/bin/bash

START=1

END=40

SUM=0

for ((i=$START; i<=$END; i++)) do

SUM=$((SUM+i))

done

echo "The result is $SUM"

Exercise solutions

#!/bin/bash

USER_NUMBER=0

NUM_NUMBERS=-1

SUM=0

while [[$USER_NUMBER -ge 0]]

do

SUM=$((SUM+USER_NUMBER))

NUM_NUMBERS=$((NUM_NUMBERS+1))

echo "Insert a new number [negative number to exit]:"

read USER_NUMBER

done

echo "Final sum is $SUM and $NUM_NUMBERS numbers were summed"

