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Abstract

The success of sequence-based protein function and structure prediction depends crucially on the sensitivity of sequence searches

and the accuracy of the resulting multiple sequence alignments. HHblits (http://hhblits.genzentrum.lmu.de) is a general-

purpose sequence search tool that represents both query and database sequences by profile hidden Markov models (HMMs). It is

faster than PSI-BLAST thanks to its discretized-profile prefilter, has 50%–100% higher sensitivity, and generates more accurate

alignments.

Building protein multiple sequence alignments (MSAs) by

iterative sequence searches is of fundamental importance in

computational biology, since MSAs are a key intermediate step

in the sequence-based prediction of evolutionarily conserved

properties, such as secondary or tertiary structure, disorder, cat-

alytic sites, post-translational modifications, short linear motifs,

or interaction interfaces. Sequence profiles and profile HMMs

are condensed representations of MSAs that contain for each

sequence position the probabilities to observe each of the 20

amino acids in related proteins. PSI-BLAST[1], the most pop-

ular iterative search tool, progressively refines a query sequence

profile by adding significant sequence matches to the profile for

the next search iteration. SAM2K[2] and HMMER3[3] work

similarly but employ profile HMMs for better sensitivity and

alignment quality. Fast heuristic prefilters in PSI-BLAST and

HMMER3 speed up the iterative searches.

Profile-profile and HMM-HMM alignment methods are the

most sensitive class of sequence search methods and are

the methods of choice for identifying and aligning templates

for 3D homology modeling[4]. Our HMM-HMM align-

ment method HHsearch[5] is used by many of the best pro-

tein structure prediction servers, among them HHpred[6],

the best-scoring server in template-based structure prediction

during the last CASP9 blind structure prediction benchmark

(http://toolkit.genzentrum.lmu.de/CASP9). However,

profile-profile alignment methods have been much too slow

for iteratively searching through large, representative sequence

databases such as UniProt or the nonredundant (nr) database

from NCBI. Here, we present HHblits (HMM-HMM-based

lightning-fast iterative sequence search), which extends HH-

search to enable fast, iterative sequence searches. Its profile-

profile alignment prefilter reduces the number of full HMM-

HMM alignments to a few thousand, making it faster than PSI-

BLAST yet as sensitive as HHsearch (Supplementary Fig. 1).

In order to perform HMM-HMM comparisons, the sequence

database is clustered into sequence sets alignable over nearly

their full length and MSAs and HMMs are generated for each.

We devised a very fast method (kClust: Hauser, Mayer, and

Söding, to be published) for clustering large sequence databases

such as UniProt down to 20-30% maximum pairwise sequence

identity ∼1000 times faster than BLAST. We use kClust to

regularly update the clustered UniProt and nr databases. The

clustered UniProt (07/2011) contains 15M sequences in 2.6M

HMMs with 5.5 sequences on average per cluster. The require-

ment of full-length alignability (> 80% of longest sequence)

ensures that clusters are mainly composed of functionally sim-

ilar, orthologous sequences[7].

HHblits first converts the query sequence (or MSA) to

an HMM. To increase sensitivity, we add sequence context-

specific pseudocounts to the observed amino acid counts[8].

HHblits then searches the HMM database and adds the se-

quences from HMMs below an E-value threshold to the query

MSA, from which the HMM for the next search iteration is

built (Fig. 1a). For speed and sensitivity, the prefilter is crit-

ical. The key idea is to effectively reduce profile-profile com-

parison to sequence-to-profile comparison by discretizing the

vectors of 20 amino acid probabilities in each HMM column

into an alphabet of 219 letters. Each letter represents a typical

profile column, shown in Supplementary Fig. 2. The database

HMMs are approximated by sequences over this extended al-

phabet (ignoring the HMMs’ insertion and deletion probabili-

ties). Prior to prefiltering, the score of each query HMM col-

umn with each of the 219 letters is calculated, resulting in a

219-row extended sequence profile. The prefiltering consists of

two steps. A very fast gap-less local alignment between the ex-

tended query profile and the extended database sequences is fol-

lowed by a gapped local alignment, for which we modified code

by Michael Farrar[9]. Each step lets 1%–5% of sequences pass.

Both filters are implemented with SSE2 (Streaming SIMD Ex-

tensions 2) instructions, available on all modern Intel and AMD

CPUs, which process 16 single-byte operations in parallel per

clock cycle[9]. The database HMMs whose extended sequences

passed the prefilter are Viterbi-aligned to the query HMM, and

E-values and probabilities are calculated (Online Methods).

Significant matches are realigned using the maximum accuracy

algorithm generalized to local HMM-HMM alignment[10].
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Figure 1: Work flow and benchmark comparison. (a) HHblits uses iterative HMM-HMM alignment to search for homologous sequences in large sequence databases

such as UniProt. The HHblits database is a clustered version in which each set of full-length alignable sequences is represented by an HMM. Sequences from matched

HMMs with significant E-value are added to the query MSA, from which a new HMM is calculated for the next search iteration. A prefilter reduces the number of

full HMM-HMM alignments ∼2500-fold. (b) Median run times for searches through the UniProt database (inset: sequence length distribution). (c) True positive

pairs (TPs, same SCOP fold) versus false positives (FPs, different fold) for 1 and 3 search iterations in an all-against-all comparison. FDR: false discovery rate. (d)

Mean fraction of correctly aligned residue pairs out of all structurally alignable pairs (sensitivity) versus the fraction of correctly aligned pairs out of aligned pairs

(precision) on a set of 4128 pairs of SCOP sequences. The mact parameter in HHblits controls alignment greediness.

An HHblits search through UniProt takes 31s (1m13s), mea-

sured as median (average) over 100 randomly selected query se-

quences on a single Xeon 2.9 GHz core (Fig. 1b). PSI-BLAST

needs 1m7s (1m26s) and HMMER3 2m57s (5m8s). Further

iterations take roughly the same time, hence HHblits is twice

(15%) faster than PSI-BLAST and 4-5 (6) times faster than

HMMER3. All three tools scale similarly well on 2 to 8 cores

(Supplementary Fig. 3, Supplementary Data 1).

In Fig. 1c we compare sensitivities to detect homologs, i.e.,

to rank homologous pairs (TP) above unrelated pairs (FP) of

proteins. We performed an all-against-all comparison of 5287

representative domain sequences from SCOP[11]. HHblits pa-

rameters were optimized on a separate set of SCOP folds (On-

line Methods). After one iteration, HHblits detects 112% (68%)

more TPs than PSI-BLAST (HMMER3) at 10% false discovery

rate, after three iterations the improvement is 90% (20%). Sim-

ilar values are obtained in a ROC5 analysis (Supplementary

Fig. 4d). On multi-domain proteins, multiple PSI-BLAST iter-

ations often lead to corrupted alignments through homologous

over-extension[12], whereas HHblits is robust against this ef-

fect (Supplementary Fig. 5).

To assess the quality of pairwise alignments (Fig. 1d), we

chose 4128 query-template pairs by randomly selecting from

each SCOP superfamily up to 10 pairs of domains with < 30%

sequence identity and TM-align score > 0.6 (Supplementary

Data 2). With each method we built MSAs for the queries using

two search iterations through UniProt and aligned the resulting

query MSAs with their corresponding templates. (For HHblits,

we selected the template HMMs from the clustered UniProt

that contained the SCOP template sequence.) We determined

correctly aligned residues by comparison with structural align-

ments from TM-align. For default parameters (mact 0.5), HH-

blits alignments have 12% higher sensitivity and 15% higher

precision per residue than those of PSI-BLAST (2% and 10%

for HMMER3, respectively). The higher precision of HHblits

alignments explains its robustness against homologous over-

extension[12].

As a further measure of MSA quality, we compared the accu-

racy of secondary structure prediction by PSIPRED[13] using

the PSIPRED procedure to generate sequence profiles (three it-

erations of PSI-BLAST on a filtered database) with the accu-

racy of PSIPRED run on profiles built from MSAs generated

by HHblits. Even though PSIPRED was trained with its own

MSAs, HHblits MSAs improved the Q3 score on proteins from

PDBselect 2007 from 80.4% to 81.3% and the SOV (segment

overlap) score from 77.5% to 78.6% (Supplementary Table

1). These results, obtained without training a large parameter

set, are among the best achieved so far[14].

To demonstrate the utility of HHblits, we sought to predict

structures for Pfam families[15] for which no homologous tem-

plate is known, and neither for any family from the same Pfam

clan (Fig. 2a). We jump-started with the Pfam seed alignment

two HHblits iterations through UniProt and then searched HH-

pred’s PDB70 database (ftp://toolkit.genzentrum.lmu.

de/HHsearch/databases). HHblits assigns templates to 620

families with E-value < 10−3, only 226 of which can be as-
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Figure 2: Structure predictions for Pfam families and modeling of human Pip49/FAM69B. (a) Pfam families to which only HHblits and both HHblits and HMMER3

assign a structural template below a given E-value. (b) Homology model of hPip49 kinase domain (blue) with inserted EF hand (green). (c) Catalytic center showing

conserved residues (red) for protein kinase activity. (d) EF hand insertion with conserved residues (magenta) for predicted Ca2+-dependent activation.

signed by HMMER3 (41 are found only by HMMER3). For a

complete list of HHblits-detected templates for Pfam, see Sup-

plementary Table 2.

We illustrate the practical relevance of these predictions at

the example of Pip49 C, the “Pancreatitis induced protein 49

C-terminal”, a domain of unknown structure and function with

an N-terminal transmembrane helix. The 100 best HHblits

matches in PDB70 are all with protein kinases (best E-value

2 × 10−20), even though the Pfam MSA is missing the N-

terminal part. An HHblits search started with full-length hu-

man Pip49/FAM69B (2 iterations through UniProt, 1 through

PDB70) detected many protein kinase domains, and, interest-

ingly, a tandem Ca2+-binding EF hand (E-value 0.09) inserted

after the small N-terminal β sheet of the kinase domain. Al-

though many protein kinases contain EF hands downstream of

their kinase domains [15], Pip49 is the first case where an EF

hand is inserted within the kinase domain. The kinase domain

is framed by two short domains with four or more highly con-

served cysteines each that are likely to form disulfide bonds.

Based on our homology models (Fig. 2b-d, Supplementary

Data 3) and the conservation of critical residues, we predict that

Pip49/FAM69B and FAM69A are ER membrane bound pro-

tein kinases in the ER lumen that are activated by Ca2+ through

structural rearrangement of their EF hand. Residue conserva-

tion suggests that metazoan FAM69C will also possess protein

kinase activity.

In conclusion, HHblits is a robust, general-purpose protein

sequence search tool based on HMM-HMM alignment that is

faster than PSI-BLAST, gives more reliable E-value estimates

(Supplementary Fig. 6), is considerably more sensitive, and

produces alignments of much better quality.
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ONLINE METHODS

Discretized profile-column alphabet. We discretize profile

columns into an alphabet of 219 states (number of printable ASCII

characters), where each letter represents a typical profile column. This

allows us to approximate any sequence profile by a sequence over this

219-letter, extended alphabet. To compare two profiles, we first calcu-

late the score of each query profile column with each of the 219 let-

ters, using the formula log2

∑20
a=1 qi(a)pk(a)/ f (a), where qi(a) denotes

the query profile at position i, pk(a) is the profile column represented

by letter k ∈ {1, . . . , 219}, and f (a) is the background frequency of

residue a. We thus obtain a 219-row extended sequence profile, which

can be aligned to extended sequences representing the other profile us-

ing fast, standard dynamic programming techniques. We generate the

219-letter alphabet using the same method employed for learning an

optimal set of sequence context profiles[8], but we set the window size

from 13 to 1 residues. We also set the window weights w j to 100 in or-

der to obtain a hard clustering. We initialized the 219 states randomly

and maximized the likelihood that the 10M training sequence profile

columns were generated by the 219 profile columns. The best of sev-

eral trials was used. The 10M profile columns were randomly sampled

from MSAs in our clustered nr database.

Prefiltering. In the three prefilter steps, the extended query se-

quence profile is aligned to the extended database sequences. The

first step calculates the score of the largest ungapped alignment. To

pass this filter, the score has to be larger than 2.5 + log2(LQLT ) bits,

where LQ and LT are the lengths of the query profile and database

sequence. The log term is a standard length correction. The second

step calculates a Smith-Waterman alignment with affine gap penalties

(gap open: 5 bits, gap extend: 1 bit). From the bit score S , an ap-

proximate E-value is calculated: E = NdbLQLT 2−S , where Ndb is the

number of sequences/HMMs in the database, and sequences pass if

E < Epre = 1000. Each filter step leads to a ∼50-fold reduction of

database sequences.

Both filters are implemented with SSE2 (Streaming SIMD exten-

sion 2) instructions that process 16 single bytes in parallel on 128-bit

SIMD units present on each CPU core. Each byte holds the score in

units of 1/4 bits plus an offset of 50, allowing to represent a score

range between -12.5 and +51.5 bits. The algorithms are programmed

such that the scores will saturate at 255 upon overflow. Since any

score larger than 51 bits will pass the filter anyway, this range is suf-

ficient for prefiltering. The first step processes 4 to 5 cells of the dy-

namic programming matrix per CPU clock cycle, the second step ∼1.3

cells per clock cycle. The clustered UniProt database (07/2011) con-

tains 2.6M sequences of average length 320, hence the first prefilter

search with a query profile of length 300 through UniProt takes about

300 × 320 × 2.6 × 106/(4.5 × 2.9GHz) = 18s, which is about 25% of

the average time needed for the entire HHblits search.

Sequences that pass the first two steps are aligned in a third step

using SSE2 instructions to determine the region likely to contain the

true alignments. For back-tracing the alignments, we need to prevent

the score from saturating. Therefore, each score is held in 2 bytes in

this step (again in units of 1/4 bits), yielding a score range of -12.5 to

16371.5 bits. Up to 10 suboptimal alignments are extracted by setting

all cells at a distance of < 150 residues from the previously extracted

alignments to 0 until the prefilter E-value rises above Epre.

Viterbi alignment and E-value calculation. To speed up the time-

consuming HMM-HMM alignment steps, all cells with a distance of

> 200 to all alignment identified in the previous step are flagged as

inactivated. An HMM-HMM alignment is performed on the active

cells using the Viterbi algorithm of HHsearch. From the Viterbi score

S , a P-value is calculated using an extreme value distribution (EVD):

P = 1 − exp(− exp[−λ(S − µ)]). The EVD parameters µ and λ are

estimated from the four features (LQ, LT ,N
e f f

Q
,N

e f f

T
) using two stan-

dard, two-layer neural networks with four hidden nodes each. Here,

N
e f f

Q
and N

e f f

T
are the numbers of effective sequences in the query

and template HMMs, respectively, defined in[5]. The Viterbi E-value

is calculated from the P-value using E = NdbP × (Epre/Ndb)α, where

α = 0.4+0.02×(N
e f f

T
−1)×(1−0.1×(N

e f f

Q
−1)). The term (Epre/Ndb)α

is an empirical correction for the correlation between the prefiltering

and Viterbi scores (α=0: perfect correlation, α=1: no correlation). The

three coefficients were optimized to yield accurate E-values (Supple-

mentary Fig. 6).

Further speed-ups. Viterbi alignments are performed in the order

of decreasing prefilter E-value. We stop the time-consuming HMM-

HMM comparisons in cases when very few homologs are likely to

have been observed among the last 200 HMM-HMM alignments. A

coarse estimate for the probability for a match to be a true homolog is

1/(1 + E) for Viterbi E-value E. We average 1/(1 + E) over the last

200 processed Viterbi alignments and skip all further database HMMs

when this average drops below 0.01.

Maximum accuracy alignment. Whereas the Viterbi algo-

rithm calculates the alignment with the best score, the maxi-

mum accuracy alignment, proposed in[16], yields the global align-

ment with the maximum possible accuracy defined by the sum

of probabilities for each residue pair to be correctly aligned:
∑

(i, j)∈alignment P(i aligned to j) → max. We extended this algo-

rithm to the case of local HMM-HMM comparison[10], which pro-

duces the local alignment that maximizes the sum of probabilities

for each residue pair to be correctly aligned minus a penalty (mact):
∑

(i, j)∈alignment[P(i aligned to j) − mact] → max. With the mact

parameter, the alignment greediness can be controlled, from nearly

global, long, greedy alignments (mact near 0) to very precise and short

(mact near 1).

Adding sequences from significant matches to query HMM. Se-

quences from all HMMs below the Viterbi E-value inclusion thresh-

old (default 10−3) are read from the alignment files of the clustered

database and are aligned to the query MSA according to the HMM-

HMM maximum accuracy alignment. The query HMM is calculated

from the query MSA.

Parameter optimization. We optimized parameters (filter thresh-

olds, gap costs, amino acid and transition pseudocount strengths, E-

value inclusion threshold) on a optimization set which has no member

from the same fold as sequences in the test set (see next paragraph).

We varied parameters in discrete steps one after the other, performed

an all-against-all search on the optimization set and tried to maximize

the mean ROC5 value (see next paragraph). For prefilter settings, we

chose the best trade-off between efficiency and sensitivity.

Sensitivity benchmarks. We filtered the sequences from SCOP

1.73 [17] to a maximum pairwise sequence identity of 20%. We as-

signed every fifth fold to the optimization set (1329 sequences in 215

folds) and the others to the test set (5287 sequences in 862 folds, Sup-

plementary Data 4). SCOP is a hierarchically ordered database of

protein domain sequences with known structure. We consider domains

from the same fold as TP, domains from different folds as FP, i.e., non-

homologous. Exceptions are members of Rossman-like folds (c.2-c.5,

c.27 and 28, c.30 and 31) and the four- to eight-bladed β-propellers

(b.66-b.70), which are probably related and treated as “unknown”. To

prevent a few large folds from dominating the benchmark, we weight

each hit with one over the number of members in the query SCOP fold

(“fold-weighted TPs and FPs”). All but the last search iteration are

performed against the UniProt database. The final iteration of PSI-

BLAST and HMMER searches are performed against all UniProt and
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SCOP sequences. For HHblits, the final iteration is against the clus-

tered UniProt. Each SCOP sequence from the test set was mapped to

its UniProt cluster containing the test sequence or added as singleton

cluster to UniProt if no matching cluster was found. All pairs of do-

mains were ranked by E-value for each of the tools, and TPs versus FPs

below a given E-value were plotted. The ROC5 plots in Supplemen-

tary Figs. 4d and 5b assess how well a method ranks the matched

proteins within each search. They show the fraction of queries with

ROC5 scores above the threshold on the x-axis. The ROC5 score is

the area under the TP-versus-FP ROC (receiver operating characteris-

tic) curve up to the 5’th FP, divided by the area under the optimal ROC

curve.

Sensitivity benchmark for multi-domain proteins. Since multi-

domain protein sequences present particular challenges such as ho-

mologous over-extension [12] to iterative sequence search methods,

we tested the tools on a benchmark set of multi-domain proteins. For

each of the 5287 sequences in our test set, we searched for a sequence

in the non-redundant (nr) database that has a BLAST match to the

SCOP sequence with an E-value < 10−40, a sequence coverage > 95%,

a sequence identity > 60% and whose full-length sequence contains

at least 100 additional residues. This procedure lead to 2343 multi-

domain proteins. For all extracted multi-domain proteins we pro-

ceeded as described in the previous paragraph (2 iterations through

UniProt, 1 iteration through UniProt/SCOP). We counted TPs and FPs

only if the alignment covers at least 50 residues of the SCOP domain

in the nr query sequence.

Improving PSIPRED secondary structure prediction. For the

secondary structure prediction by PSIPRED we used PDBselect 2007,

which contains 3649 sequences ranging from 30 to 1040 amino acids

length. We built MSAs for each sequence using 2 and 3 iterations of

PSI-BLAST and 1, 2, and 3 iterations of HHblits. HHblits alignments

with diversity 7 were generated by applying hhfilter from the HHblits

package with option -neff 7. For all MSAs we performed PSIPRED

with the default parameters and calculated the Q3 and SOV score based

on the known DSSP sequences (mapping E and B to strand, H, G, and

I to helix, S, T, and C to coil states).

Fold prediction for Pfam. For nearly half of all Pfam families in

version 24.0 (5716 out of 11913), no structure is known and neither for

any of the remotely related families in their Pfam clan. We generated

MSAs for the 5716 Pfam families by using their seed alignments as

input and performing two iterations with HHblits through the UniProt

database. The PDB70 database of HHpred is searched with the re-

sulting MSAs. For HMMER3, we scan the PDB70 sequence database

with the HMMER3 models provided by Pfam.

Pip49/FAM69B modeling. We built an MSA for human

Pip49/FAM69B (UniProt-ID: Q5VUD6) by running two iterations of

HHblits through the clustered UniProt database and adding the sec-

ondary structure prediction from PSIPRED to this MSA (Supplemen-

tary Data 5). To identify structural homologs, the PDB database was

scanned by HHblits with this MSA with a mact-value of 0.2. From the

list of PDB matches we chose a protein kinase with bound ATP (PDB-

ID: 1RDQ) and a Ca2+-bound EF hand (PDB-ID: 3C1V) as templates

and use the corresponding HHblits alignments to create a homology

model with MODELLER[18] (Supplementary Data 3). We con-

firmed the presence of the EF hand insertion by building an MSA with

two iterations of HHblits starting from the presumed inserted sequence

and searched the PDB70. This yielded very significant matches with

EF hands (best E-value 4 × 10−5). The previously reported transmem-

brane helix from position 31 to 51 could be confirmed by HMMTOP,

MEMSAT-SVM and PHOBIUS.
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Figure S1: Sensitivity / selectivity comparison between HHblits and HHsearch on the SCOP test set for a single
search. The prefiltering in HHblits leads only to a very slight performance decrease with respect to HHsearch, even
though the run time of HHblits is decreased dramatically.
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Figure S2: Histogram representation of the amino acid distributions in the 219 profile columns of the extended
profile column alphabet. The column vectors are ordered by entropy, starting with the almost pure states and
ending with near-random background distributions.
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Figure S3: Average run times on 100 randomly selected sequences from the nr database, measured on an Intel
Xeon X5570 at 2.93 GHz (a) Average run times for 1 to 4 iterations. (b)-(d) Run times for various bins of query
length for (b) one, (c) two, and (d) three search iterations. HHblits has a very good run time for queries with a
sequence length below 400 residues and clearly outperforms PSI-BLAST in this range of query lengths. In the range
of 400 to 800 residues both methods have a similar run time and only for proteins with a length > 800 residues the
run time of HHblits is slightly worse to that of PSI-BLAST. HMMER3 scales in a similar way as HHblits with the
query length, always by a factor 3 to 5 slower. (e), (f) Run time for two search iterations on 1 to 8 CPU cores.
(e) shows the wall time, whereas (f) gives the total CPU time, equal to the wall time times the number of CPUs.
All three tools scale well with an increasing number of CPUs.
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Figure S4: Sensitivity and selectivity of homology detection. (a)-(c) ROC (receiver operating characteristic)
plots for (a) one, (b) two, and (C) three iterations on the test set (5287 sequences from the SCOP 1.73 database).
All but the last search iteration are performed against the UniProt. The last search iteration is done through a
combined database containing the UniProt and the SCOP sequences (See Online Methods). TPs are defined as
pairs from the same SCOP folds, FPs as pairs from different folds, with the exception of Rossman folds and β

propellers. At a false discovery rate (FDR) of 10% HHblits detects in the first iteration twice as many TPs as
PSI-BLAST and 68% more than HMMER3. In (c), the light red curve (two iterations of HHblits) shows a clear
improvement over three iterations of PSI-BLAST and HMMER3. (d) Fraction of queries with ROC5 value above
the threshold on the x-axis. The ROC5 value is the area under the ROC curve up to the 5’th FP, normalized to
yield a theoretical maximum of 1. The ROC5 plot is more robust to overfitting than the ROC curves in (a-c). (see
Söding & Remmert, Curr. Opin. Struct. Biol. 2011).
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Figure S5: Sensitivity and selectivity of homology detection for multi-domain proteins. True positive pairs (TPs)
and false positive pairs (FPs ) are counted only if the alignment covers at least 50 residues of the SCOP domain
in the query NR protein. (a) ROC (receiver operating characteristic) plot showing TPs versus FPs detected at
the same E-value thresholds, for 1, 2 and 3 search iterations. After three iterations, HHblits has significantly fewer
FPs at high confidence (false discovery rate FDR < 1%) than PSI-BLAST and HMMER3. (b) Fraction of queries
with ROC5 value above the threshold on the x-axis. The ROC5 value is the area under the ROC curve up to the
5’th FP, normalized to yield a theoretical maximum of 1.

Figure S6: Accuracy of E-value estimation by HHblits and PSI-BLAST. We generated a version of UniProt (and
the clustered UniProt) with randomly shuffled residues (MSA columns) and randomly selected 20 000 proteins from
the nr database to search through the scrambled database. Any match is therefore a false positive. We counted the
number of matches below a given reported E-value. Dividing this number through the number of total searches (20
000) yields the empirical, observed E-value. Reported and observed E-values should be similar. Both PSI-BLAST
(light blue) and HHblits (red) report reliable E-values when started with a single sequence. When searches are
jump-started with a MSAs (obtained from one iteration of HHblits), PSI-BLAST produces a great excess of false
positive matches at E-values below 1 (dark blue).
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Figure S7: Relationship between HHblits/HHsearch confidence estimates from the maximum accuracy algorithm
and the probability for a residue pair to be correctly aligned. The confidence values have an excellent correlation
with the fraction of correctly aligned columns, and are nearl independent of the sequence identity between query
and template sequences.

Table S1: Improvement of PSIPRED secondary structure prediction accuracy through HHblits multiple sequence
alignments (MSAs). Performance is measured on the sequences from the PDBselect 2007 data set by Segment
Overlap score (SOV) and 3-state accuracy (Q3). For each sequence in this set, MSAs are generated by 2 and 3
iterations of PSI-BLAST and 1, 2 and 3 iterations HHblits. Even 1 iteration of HHblits yield better performance
than the standard PSIPRED, which uses 3 iterations of PSI-BLAST. The best results with an improvement of
more than 1% are achieved by performing up to 3 iterations of HHblits and filtering the generated MSAs to a
diversity of Neff = 7.

input alignments SOV Q3

2 iterations PSI-BLAST 74.64% 77.31%

3 iterations PSI-BLAST 77.52% 80.38%

1 iteration HHblits 77.87% 80.71%

2 iterations HHblits 78.31% 80.99%

3 iterations HHblits 78.12% 80.83%

HHblits diversity 7 78.62% 81.31%
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Table S2: List of 394 PFAM families for which no homologous template is known, HMMER3 has no match in the
PDB below an E-value of < 10−3 and for which HHblits has a match in the PDB database with E-value < 10−3.
In each row, the best HHblits match is given with its E-value and the coverage of the PFAM query. The last
column specifies the HMMER3 E-value for the best match, an ’-’ indicates that HMMER3 has no matches up to
the default reporting E-value threshold of 10.

PFAM-ID HHblits HMMER
hit E-value cov(%) E-value

PF03115 3hag 2e-101 53.24 -

PF11838 2xdt 1.1e-55 99.77 1

PF09562 2oa9 1.2e-54 98.85 -

PF10991 1je5 4e-54 96.02 -

PF04412 1c96 2.6e-53 83.81 0.006

PF09863 3iv3 1.2e-50 95.77 0.0048

PF12043 3c5n 1.9e-49 98.81 0.26

PF11047 3cxb 2e-49 73.10 0.049

PF07718 1r4x 3.8e-49 86.38 0.051

PF07632 2mas 2.1e-47 95.94 -

PF08010 2b3w 4.2e-45 96.58 0.14

PF11329 3eu8 9.5e-44 98.64 0.31

PF03813 1q79 1e-43 47.19 0.017

PF05316 3bbn 3.4e-41 90.71 -

PF09520 1wte 5.9e-40 97.33 -

PF12264 1qqp 7.5e-38 90.26 0.043

PF11161 2ra9 7.2e-37 77.46 -

PF09739 3f8t 2.8e-36 70.51 -

PF10963 3fgx 4.5e-36 100.00 0.0027

PF05864 2waq 5.8e-36 87.30 0.022

PF04486 1tuw 8.2e-36 77.39 -

PF05714 1w33 1e-35 86.26 0.078

PF05428 3kq4 1e-34 92.90 0.06

PF07588 1koe 2.1e-34 95.83 0.059

PF09536 2kii 1.1e-33 95.60 -

PF03662 1qw9 1.5e-33 99.38 -

PF11443 2nvo 1.6e-33 92.88 -

PF05538 2odj 1.7e-33 95.05 -

PF07520 1yuw 2.9e-33 58.91 -

PF06124 2r41 4.1e-33 100.00 -

PF05291 2ilr 4.7e-33 60.86 0.073

PF06045 1nkg 2.3e-31 92.65 -

PF06787 2a9s 4.6e-31 99.38 -

PF10023 1z5h 8.3e-31 93.51 0.061

PF05986 3ghm 1.4e-30 100.00 -

PF05482 1tr2 4e-30 85.30 -

PF11686 1se7 1.6e-29 100.00 -

PF07307 3nf2 1.8e-29 80.95 0.027

PF07528 1px5 2e-29 94.19 0.46

PF03254 2de0 2.4e-29 74.48 0.5

PF07395 1lrz 5.9e-29 98.86 -

PF10287 3iln 6.3e-29 91.81 -

PF01531 2hhc 7.1e-29 92.88 0.12

PF06074 3kdr 1.8e-28 56.66 0.14

PF06128 1yyh 2e-28 99.65 0.17

PF02088 1dec 1.2e-27 100.00 0.011

PF05136 3kdr 1.2e-27 90.17 -

PF07756 2qc0 1.5e-27 97.69 -

PF04681 1z3q 1.8e-27 86.45 -

PF09865 2w7q 1.8e-27 96.79 -

PF08189 2b5b 3e-27 94.87 0.031

PF10770 2plg 5.3e-27 82.88 0.014

PF11841 3dad 6e-27 99.36 -

PF06245 1vk1 6.1e-27 52.51 0.78

PF05060 1fo8 7.7e-27 75.42 0.062

PFAM-ID HHblits HMMER
hit E-value cov(%) E-value

PF12243 3d9j 1.1e-26 99.27 -

PF09960 2w3z 1.6e-26 43.59 1.2

PF10962 1v9m 2.1e-26 87.63 -

PF07014 2nw8 2.3e-26 95.20 -

PF10100 3c7a 2.7e-26 92.56 0.25

PF04841 1got 7.2e-26 70.80 -

PF07608 2yzy 1e-25 96.71 -

PF07379 3ci0 1.3e-25 79.43 -

PF03687 3bry 3.2e-25 87.35 0.11

PF07592 3hot 3.6e-25 93.57 -

PF05651 2a2l 7.2e-25 82.22 0.0057

PF12260 2acx 1.1e-24 89.76 -

PF06230 1zcz 1.5e-24 69.67 -

PF05213 1vgj 3.9e-24 66.67 0.0084

PF11768 1vyh 4.8e-24 61.72 0.097

PF04551 1tx2 4.9e-24 71.68 0.07

PF05550 2wur 5.5e-24 74.40 -

PF03290 1th0 7.4e-24 53.85 1.5

PF09927 2jxp 8.9e-24 99.15 6.2

PF09807 3bs4 9.5e-24 97.60 0.087

PF06199 2k4q 1.1e-23 100.00 0.013

PF08472 1tp6 1.2e-23 84.21 -

PF08553 1got 1.7e-23 42.52 0.15

PF11340 3cz8 1.8e-23 86.14 0.17

PF09892 3na6 2.3e-23 84.54 0.091

PF09674 1kea 5.4e-23 81.06 0.012

PF05551 1a73 5.6e-23 52.24 0.91

PF08695 2ciu 7.4e-23 76.56 0.053

PF04405 2k5e 7.9e-23 98.21 0.0013

PF10179 1fnh 8.7e-23 95.62 0.66

PF02677 1wy5 9.2e-23 94.12 9.9

PF04708 3guv 1e-22 62.02 -

PF07006 2k3d 1.2e-22 66.40 -

PF10250 2hhc 1.8e-22 94.17 0.099

PF11813 3h2d 1.9e-22 71.67 -

PF08928 2fef 2.3e-22 100.00 0.029

PF09859 3itq 2.5e-22 83.73 -

PF10107 3fov 8.5e-22 48.75 0.89

PF09843 2zws 8.6e-22 73.60 -

PF08470 2vxr 1.2e-21 59.88 -

PF11017 2hcy 2.4e-21 98.75 0.061

PF04937 2bw3 2.6e-21 99.35 0.21

PF10222 1h54 2.7e-21 56.50 -

PF03336 2jig 2.9e-21 46.15 0.23

PF10677 2f1c 3.4e-21 97.85 0.48

PF06420 1h2i 3.9e-21 56.50 -

PF06674 3dtd 4.7e-21 46.13 3

PF09796 2fyu 7.8e-21 87.10 0.33

PF06951 1lwb 1e-20 50.56 -

PF06437 2fue 1.2e-20 64.90 -

PF10748 2ivw 2.2e-20 72.39 -

PF07894 1byr 2.7e-20 58.80 0.0045

PF00609 2bon 4e-20 100.00 -

PF09517 1yd6 5.6e-20 69.01 0.77

PF11039 2vzy 5.9e-20 98.01 0.11
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Table S2 continue

PFAM-ID HHblits HMMER
hit E-value cov(%) E-value

PF03351 1d7b 9.8e-20 96.80 0.0047

PF12541 1ogo 1e-19 79.50 -

PF11680 3k44 1.2e-19 63.64 0.9

PF12439 1v7w 1.5e-19 99.55 -

PF05176 3gkn 2e-19 62.70 -

PF09810 3l0a 2.1e-19 54.39 0.011

PF10738 3lyd 2.3e-19 55.51 0.0022

PF05046 2ogh 2.7e-19 88.89 0.043

PF05342 3n6z 3.4e-19 48.98 -

PF10288 1ni5 3.4e-19 98.95 0.14

PF09778 3erv 4.4e-19 99.12 0.0024

PF04788 3bk5 5.1e-19 84.50 -

PF03214 1qg8 6.2e-19 34.00 -

PF06544 2iyg 6.3e-19 93.42 0.39

PF11854 2guf 7.5e-19 82.01 -

PF01973 2p2v 1e-18 85.88 0.0029

PF07845 1m2d 1e-18 78.95 0.012

PF08885 1ivn 1.1e-18 79.34 0.051

PF08642 1jbi 1.4e-18 85.27 3.5

PF07607 1z5h 1.4e-18 96.00 0.39

PF06241 1lnq 1.4e-18 78.16 -

PF07076 2qcp 1.4e-18 83.54 0.26

PF10365 3km5 1.5e-18 89.51 0.49

PF07959 1yp2 1.5e-18 65.83 0.38

PF10934 2ia7 1.7e-18 89.32 -

PF02411 2h3o 3.5e-18 54.78 -

PF10012 3h96 3.7e-18 80.00 0.028

PF07115 2ia7 4.1e-18 90.09 0.0018

PF07293 3i9v 6.3e-18 97.44 -

PF06477 2ag4 7.4e-18 97.32 -

PF06021 1sqh 1.1e-17 99.51 -

PF03018 2brj 1.2e-17 77.78 0.0043

PF04114 3k9t 1.3e-17 44.98 -

PF05565 2p2u 1.3e-17 74.84 0.016

PF07905 2ioj 1.3e-17 91.06 0.012

PF11751 3bry 1.4e-17 89.78 -

PF09565 2c1l 1.5e-17 61.20 -

PF08734 2zbc 1.8e-17 82.42 0.0045

PF11019 3mc1 3.2e-17 75.37 0.0029

PF06044 2jne 3.4e-17 18.43 -

PF04865 3h2t 5e-17 74.60 -

PF12362 2aya 5.2e-17 84.62 -

PF05991 1exn 6.8e-17 98.14 -

PF06622 1o9y 7.3e-17 24.59 -

PF08521 2kse 1.3e-16 97.95 0.05

PF08480 1ru4 1.4e-16 99.46 -

PF03302 1yy9 1.8e-16 77.92 -

PF07506 1zx4 2.1e-16 98.83 0.0047

PF01185 2fmc 5.1e-16 79.63 3.1

PF10087 2iw1 6.2e-16 95.65 0.057

PF11814 3erv 6.2e-16 90.00 0.15

PF03452 1xhb 7.3e-16 93.31 -

PF10703 2p8g 8.9e-16 30.65 0.12

PF02413 2kz6 1.2e-15 57.14 0.71

PF07327 1wqj 1.3e-15 55.14 0.35

PF11356 2ivw 1.5e-15 54.17 0.22

PF12055 1k1x 2.3e-15 58.25 -

PFAM-ID HHblits HMMER
hit E-value cov(%) E-value

PF09337 3nnq 5.1e-15 100.00 0.022

PF08424 3dss 5.1e-15 90.61 0.031

PF08170 3gir 8.5e-15 88.78 0.046

PF08379 3isr 1.1e-14 100.00 -

PF06805 3dwg 1.3e-14 42.70 -

PF09363 1umd 2.4e-14 72.41 -

PF10826 2fe3 2.7e-14 85.19 0.46

PF07611 3bma 3.4e-14 80.00 0.021

PF08757 3dnu 3.5e-14 58.54 -

PF07461 1tvg 4.2e-14 31.39 0.029

PF09941 1vet 7.7e-14 91.67 -

PF10141 2zxr 8.4e-14 75.13 0.11

PF09366 2pcs 9.6e-14 93.71 -

PF05272 2dhr 1e-13 64.00 1.2

PF07618 1y6u 1.2e-13 98.25 0.46

PF11824 2okx 1.3e-13 77.90 0.038

PF10483 3bs4 3.4e-13 79.18 -

PF10029 3c12 3.5e-13 81.51 0.095

PF11863 3hxl 4e-13 95.55 0.016

PF06147 3g27 4.2e-13 42.93 0.1

PF10743 1y6u 4.2e-13 70.93 0.047

PF10246 1k0r 4.3e-13 82.86 -

PF11288 3fak 5.7e-13 66.99 0.0043

PF05227 1vls 8.2e-13 97.10 0.17

PF11845 3b42 8.3e-13 59.88 2.2

PF10302 2bps 8.8e-13 34.29 0.019

PF11312 3mgg 9.4e-13 55.44 -

PF11071 1s2d 1.8e-12 99.29 0.3

PF10037 1xi4 2.3e-12 75.06 -

PF04781 1elw 2.9e-12 96.72 0.27

PF09530 2i71 4.1e-12 74.59 0.023

PF07800 3knv 4.9e-12 80.62 0.1

PF08156 3id6 6.1e-12 100.00 2.8

PF06381 3kdr 8.8e-12 95.51 0.05

PF04244 2wq7 9.2e-12 69.78 -

PF10127 3c18 1.2e-11 79.20 -

PF08130 1w9n 1.2e-11 51.79 -

PF11959 3hft 1.4e-11 84.09 0.27

PF02066 1m0j 1.5e-11 51.85 3.2

PF04986 1omh 1.6e-11 33.68 -

PF04082 2veq 1.6e-11 29.30 -

PF10138 3ibz 1.6e-11 78.49 0.14

PF06075 2b29 2.1e-11 20.55 -

PF03490 2plc 2.5e-11 72.55 -

PF01927 3ga8 2.9e-11 37.58 0.035

PF09345 1h4x 2.9e-11 84.00 0.13

PF11761 3eeq 2.9e-11 100.00 0.1

PF06881 2e31 3.4e-11 70.09 0.011

PF04492 3e6c 3.5e-11 82.00 0.02

PF06890 2p5z 4.2e-11 46.03 -

PF08303 1yj5 4.7e-11 98.82 0.011

PF03281 1px5 6.3e-11 97.49 0.12

PF08497 2yxb 1.5e-10 47.75 -

PF10030 2jyx 1.5e-10 63.83 -

PF11997 3c48 1.7e-10 99.64 -

PF02697 3fmt 1.7e-10 86.67 0.0022

PF02474 1m4i 2.1e-10 73.10 -
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Table S2 continue

PFAM-ID HHblits HMMER
hit E-value cov(%) E-value

PF12226 3iyo 2.5e-10 43.04 -

PF10567 1l3k 2.7e-10 69.36 -

PF09826 1fwx 4.3e-10 81.37 0.014

PF03158 2xeh 5.9e-10 75.65 -

PF08371 3hsi 6.6e-10 86.42 -

PF02666 2gpr 9.4e-10 90.23 -

PF06676 2waq 1.4e-09 37.86 0.59

PF06322 3e7l 1.5e-09 67.19 0.09

PF08685 1z3u 1.9e-09 24.00 -

PF07508 2r0q 1.9e-09 56.14 -

PF09317 2z1q 2e-09 48.75 -

PF07328 2ba3 2.2e-09 27.89 -

PF10908 1zat 2.9e-09 75.70 -

PF10474 2fji 3e-09 96.58 -

PF02521 3jty 3.5e-09 57.42 -

PF08499 3g4g 3.7e-09 88.52 0.025

PF06669 3d9x 3.8e-09 97.14 -

PF11954 1ei5 4e-09 63.87 0.028

PF07202 1h3i 4.5e-09 71.98 0.22

PF12010 1j1n 5.1e-09 94.20 0.12

PF04936 3hot 7.7e-09 78.49 8.1

PF08116 1c6w 7.8e-09 87.10 0.017

PF12000 3fro 8.5e-09 69.59 -

PF11766 1n67 8.6e-09 97.18 -

PF11711 2qv7 1.2e-08 32.09 -

PF06883 1twf 1.7e-08 100.00 2

PF08074 1ofc 1.7e-08 41.07 1.3

PF08465 1p6x 2.1e-08 96.97 -

PF05263 2o8x 2.5e-08 48.89 0.095

PF12128 1w1w 3.2e-08 6.19 0.0075

PF09889 1lv3 3.3e-08 46.55 0.059

PF04450 1z5h 4.3e-08 86.00 0.023

PF11308 2zxq 4.5e-08 49.71 -

PF09597 2e8n 4.7e-08 98.25 2.3

PF09824 2p4w 5.3e-08 78.75 0.0017

PF10780 1s3a 5.3e-08 100.00 -

PF11658 3lxq 6.1e-08 58.70 -

PF06011 1nep 7.2e-08 22.92 -

PF04407 3dcm 8.4e-08 95.43 0.0061

PF11853 2odj 8.5e-08 69.22 0.049

PF09582 1p90 9.6e-08 50.46 -

PF07610 2qsv 1e-07 100.00 0.015

PF11325 2vw9 1.2e-07 98.85 -

PF10686 2nx2 1.2e-07 88.73 0.017

PF01439 2kak 1.3e-07 93.67 0.34

PF08737 2fau 1.3e-07 77.88 -

PF05380 1rw3 1.7e-07 86.67 -

PF07699 2hey 1.9e-07 100.00 0.0045

PF06378 1h2i 2.5e-07 80.50 6.1

PF05610 2apn 3.6e-07 89.47 0.19

PF10758 3hxl 4.1e-07 99.45 -

PF04189 1yb2 4.4e-07 77.70 -

PF09855 2k4x 5.5e-07 82.81 0.22

PF06355 1gwy 6.1e-07 76.52 -

PF05895 2fl8 6.6e-07 28.31 -

PF04917 1oqw 6.8e-07 15.71 0.0036

PF04572 2vk9 7e-07 80.00 0.087

PFAM-ID HHblits HMMER
hit E-value cov(%) E-value

PF10144 3b42 7.5e-07 54.29 0.061

PF08405 3i86 8.4e-07 12.01 -

PF07087 1lwb 9.7e-07 77.17 -

PF09970 2fcl 9.7e-07 77.30 -

PF06977 1npe 1e-06 89.81 0.0024

PF07429 2gek 1.1e-06 80.06 -

PF10349 2hth 1.3e-06 32.41 -

PF10116 3e20 1.3e-06 98.57 -

PF08417 3gke 1.3e-06 59.43 -

PF10711 2vxz 1.9e-06 82.65 0.014

PF12303 2wg3 2.1e-06 61.70 0.0061

PF07813 3epv 2.2e-06 88.46 0.0022

PF10373 1ya0 3.5e-06 72.60 -

PF02681 2ipb 4.2e-06 90.54 0.27

PF11897 2gj4 4.2e-06 42.86 0.008

PF10987 3h35 4.5e-06 72.65 0.1

PF07617 3ia8 4.7e-06 98.18 -

PF03345 2gk3 4.9e-06 54.17 -

PF03850 3ibs 5.2e-06 80.92 0.011

PF07919 2icn 5.3e-06 62.70 0.069

PF10781 1whg 5.3e-06 98.39 -

PF07107 3ec9 5.5e-06 69.39 0.0012

PF05782 1kxp 5.5e-06 52.22 -

PF12578 1lw3 6.2e-06 66.29 0.29

PF04377 3gkr 6.4e-06 95.35 -

PF11903 1baz 6.6e-06 47.95 -

PF12073 1pjr 6.8e-06 94.23 0.26

PF04312 1hjr 8.3e-06 76.98 0.025

PF07480 3epv 8.6e-06 94.74 0.58

PF12525 1v9n 8.7e-06 86.67 0.28

PF04413 1vgv 8.8e-06 86.34 -

PF05091 3fqi 9.4e-06 53.89 0.39

PF10367 1chc 9.7e-06 29.36 6.2

PF06353 2fph 1e-05 36.81 -

PF06239 1xi4 1e-05 65.67 -

PF08192 1hpg 1.1e-05 13.75 -

PF08579 1xi4 1.2e-05 82.50 -

PF05510 1u2c 1.3e-05 39.78 -

PF11833 1faf 1.3e-05 22.06 3.9

PF06823 2l1s 1.4e-05 80.33 -

PF09984 3b42 1.5e-05 93.29 -

PF09352 2qgp 1.6e-05 43.68 -

PF06375 2g30 1.9e-05 34.78 -

PF03406 1h6w 2.1e-05 90.70 -

PF12340 3ly5 2.1e-05 77.73 0.036

PF10952 2fbn 2.2e-05 88.03 -

PF10240 2qp2 2.2e-05 37.80 -

PF02754 3cf4 2.5e-05 80.95 0.91

PF10941 1uf3 2.5e-05 55.08 0.054

PF05689 1f00 2.5e-05 99.45 -

PF01941 2p02 2.6e-05 91.86 0.62

PF11839 1jcd 2.7e-05 39.76 -

PF06956 1xmx 2.7e-05 75.94 -

PF07585 2x55 2.8e-05 62.71 -

PF06448 1lsh 3.2e-05 39.33 -

PF10865 1ilo 3.2e-05 51.28 1

PF10505 3fqi 3.5e-05 72.90 -
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Table S2 continue

PFAM-ID HHblits HMMER
hit E-value cov(%) E-value

PF11865 2qk1 3.9e-05 96.89 0.65

PF12222 1pgs 4e-05 69.09 0.21

PF00746 2ww8 4.1e-05 92.50 0.36

PF09759 1xqr 4.9e-05 72.63 1.2

PF11834 2dnf 5.1e-05 98.48 5.4

PF10126 3dfe 5.5e-05 92.86 0.068

PF07878 1nla 5.7e-05 92.00 -

PF07505 3c8f 7.2e-05 81.89 0.1

PF04155 1yo3 7.6e-05 72.97 -

PF10904 1j8b 7.6e-05 63.37 -

PF10706 2fcl 8.7e-05 88.51 -

PF01963 2g5g 8.9e-05 97.76 0.32

PF11336 2o4v 9.3e-05 77.48 0.014

PF03249 1p4t 9.4e-05 17.98 -

PF04599 1rxw 9.8e-05 65.00 -

PF01696 1pcl 0.0001 49.61 -

PF06702 1cja 0.00011 54.02 -

PF10122 2jr6 0.00013 80.39 10

PF11112 1z4h 0.00015 86.84 -

PF11849 3e0y 0.00016 94.77 -

PF06904 1lbu 0.00018 54.82 0.015

PF05918 1b3u 0.00019 60.90 0.0019

PF09854 2qgp 0.00019 23.82 0.021

PF10497 1wil 0.00025 61.76 0.71

PF07802 2k3j 0.00028 81.43 0.64

PF04305 3chh 0.00028 73.09 0.092

PF08736 2i1j 0.00028 51.06 -

PF06974 2jgp 0.0003 98.04 -

PF08288 3fro 0.0003 82.22 -

PF00242 1wz4 0.00031 7.33 -

PF09538 1vd4 0.00036 23.02 2.9

PF10673 3lub 0.00037 66.21 -

PF12215 2cqs 0.00038 63.13 -

PF11379 2cqy 0.00038 22.10 -

PF03258 2w7a 0.00045 46.67 0.094

PF10115 2kon 0.00046 76.34 -

PF08498 1wg8 0.00049 76.12 -

PF05444 3laq 0.00049 87.82 2.9

PF05869 3lkd 0.00055 81.40 0.06

PF11001 1wij 0.00058 65.61 0.0013

PF10309 3d45 0.00063 96.67 0.036

PF04049 3kae 0.00065 86.05 -

PF11006 2pxg 0.00067 87.21 1.6

PF07295 1lko 0.00068 25.85 0.096

PF10407 2ns5 0.00069 94.67 2.9

PF10165 1xm9 0.00073 77.28 -

PF08749 2plg 0.00074 92.41 -

PF04904 1rg6 0.00076 78.05 0.13

PF07409 2ia7 0.00078 63.25 0.049

PF12416 2dmh 0.00085 97.09 -

PF09576 1v54 0.00086 91.23 -

PF08004 2cob 0.00086 44.27 -

PF09415 1b67 0.00087 91.78 0.028

PF09894 1iru 0.0009 92.23 4.3

PF07855 2vfx 0.00091 95.73 0.16

PF10790 2al3 0.00095 92.11 0.019
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