
proteins
STRUCTURE O FUNCTION O BIOINFORMATICS

PREDICTION REPORT

Fast and accurate automatic structure
prediction with HHpred
Andrea Hildebrand, Michael Remmert, Andreas Biegert, and Johannes Söding*
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INTRODUCTION

The potential for automated homology-based protein structure prediction is great

and largely underexploited. We estimate that structural models for hundreds of uniden-

tified domains in human proteins could be reliably modeled by state-of-the-art meth-

ods with an expected TM-score1 greater than 0.5 (J. Söding et al., unpublished data).

This accuracy would be sufficient, for instance, to predict molecular functions and to

guide site-directed mutagenesis experiments. We developed the HHpred server to fill

the gap between the fast and widely used homology search programs, such as BLAST,

PSI-BLAST,2 or HMMer/Pfam,3 and the very sensitive and accurate but rather inflexi-

ble and slow automated protein structure prediction servers (see, e.g., 4–8). HHpred is

therefore mainly meant to be used as an interactive function and structure prediction

server, allowing, for example, to search various databases, to select templates manually,

or to correct errors in the proposed target–template alignment. To test the accuracy of

HHpred, we participated in CASP8 with three fully automated versions (available at

http://toolkit.lmb.uni-muenchen.de/casp/hhpred5). The same protocols as used by these

automatic versions are available on the interactive server at http://toolkit.lmb.

uni-muenchen.de/hhpred (see the HHpred help pages). All HHpred Perl scripts are

freely available upon request. HHsearch can be downloaded at ftp://toolkit.lmb.

uni-muenchen.de/HHsearch/.

METHODS

Three HHpred servers participated in CASP8: two single-template versions

(HHpred2, HHpred4) and a multiple-template version (HHpred5). They follow a simi-

lar protocol:

1. Build a multiple sequence alignment for the target sequence: To build the

target alignment, HHpred2 runs the buildali.pl script from the HHsearch 1.5.0 soft-

ware package.9 This script performs up to eight iterative PSI-BLAST searches
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ABSTRACT

Automated protein structure

prediction is becoming a

mainstream tool for biological

research. This has been fueled

by steady improvements of

publicly available automated

servers over the last decade, in

particular their ability to

build good homology models

for an increasing number of

targets by reliably detecting

and aligning more and more

remotely homologous tem-

plates. Here, we describe the

three fully automated versions

of the HHpred server that par-

ticipated in the community-

wide blind protein structure

prediction competition

CASP8. What makes HHpred

unique is the combination of

usability, short response times

(typically under 15 min) and a

model accuracy that is com-

petitive with those of the best

servers in CASP8.
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through filtered versions of the nonredundant (nr)

database from the NCBI, each time jump-starting PSI-

BLAST with the alignment extracted from the search

results of the previous iteration. Since the most com-

mon source for corrupted PSI-BLAST alignments is

the inclusion of nonhomologous segments at the ends

of local sequence matches, buildali.pl prunes the ends

of each sequence separately if the similarity with the

profile extracted after the first search iteration falls

below 1/6 bit per column. HHpred4 and HHpred5

build their target alignment by a maximum of five

iterated HMM searches through a filtered version of

the nr database with a maximum of 30% pairwise

sequence identity (M. Remmert and J. Söding, manu-

script in preparation). In addition, they employ a pre-

liminary version of context-specific pseudocounts to

increase the sensitivity of these searches.10

2. Search for homologous templates: A profile hidden Mar-

kov model (HMM) is calculated from the

target alignment using the hhmake executable with

default parameters. Homologous templates are identi-

fied by searching through HHpred’s weekly updated

PDB70 database using HHsearch, a method for pair-

wise comparison of HMMs.9 The PDB70 database

contains HMMs for a representative subset of PDB

sequences. These HMMs are built in the same way as

the target alignments in HHpred2. HHsearch employs

the Viterbi algorithm for ranking the database

matches but realigns the best matches with a local

HMM-HMM alignment version of the more accurate

Maximum Accuracy (MAC) algorithm,11,12 which

maximizes the expected number of correctly aligned

residues. This algorithm improved the model quality

in our unpublished benchmarks by several percent.

3. Re-rank the potential templates with a neural network:

HHsearch ranks database matches by the probability

of the match to be homologous to the target

sequence. This is useful to distinguish homologous

from nonhomologous matches, but it is not most

appropriate for ranking homologous templates accord-

ing to the expected quality of the homology models

they would yield. We therefore train a neural network

to predict the TM-score of the homology model.

Based on this prediction we re-rank the database

matches. The following three features proved to be

most informative: the raw HHsearch score, HHsearch’s

secondary structure similarity score divided by target

length, and the expected number of correctly aligned

target residues divided by target length. The expected

number of correctly aligned residues is calculated by

the MAC algorithm and is part of the output of

HHsearch version 1.5 and above (‘‘Sum_probs’’). We

used the Stuttgart Neural Network Simulator (http://

www.ra.cs.uni-tuebingen.de/SNNS/) to train a feed-

forward neural network with a single hidden layer of

three nodes and a single linear output node. As train-

ing set we picked 4293 target–template alignments

constructed by HHsearch for 507 targets. For each tar-

get–template alignment, we built a homology model

using the MODELLER software package13 and calcu-

lated the TM-score of the model with respect to the

actual target structure. The neural network was then

trained to predict these TM-scores.

4. Generate sets of multiple alignments with successively

lower sequence diversities for the target sequence and the

templates: Often, several templates can be detected

with high probabilities. If these templates are more

closely related with each other than with some of the

sequences contained in the multiple alignments from

which their HMMs are calculated, their HMMs will

all be very similar to each other (Fig. 1, top). Hence

HHpred’s probabilities will not reflect the true degree

of relatedness to the target sequence. To decide which

of them is in fact most closely related to the target,

we need to narrow down the diversity of the target

and template alignments. HHpred generates 10 sets of

alignments with successively lower diversity for the

target sequence and for all database matches with at

least 80% probability. For this purpose, we employ

hhfilter from the HHsearch package with option –qsc.

We remove all sequences from the multiple sequence

alignments which have a Gonnet matrix score per col-

umn with the target or template sequence of less than

the given threshold. The similarity threshold is

increased in 10 steps from 0.1 to 1.0 bits per column.

At each threshold value, target and template align-

ments are filtered and the filtered target is used to

search with HHsearch through an HMM database

built from the filtered template alignments.

5. Rank target-template alignments of various alignment

diversities with neural network: All in all, one unfil-

tered set (down to a probability of 10%) and 10 fil-

tered sets (down to a probability of 80%) of target–

template alignments are generated by HHpred in this

way. For each of these alignments, we predict the

expected TM-score of the resulting structural model

with the neural network and rank the templates

according to this score. This procedure has two advan-

tages: First, it allows to pick the template most closely

related to the target (see Fig. 1). Second, it allows to

choose the alignment diversity that maximizes the

expected number of correctly aligned residues. For

example, sequences in the template multiple alignment

that are more distantly related to the template than to

the target will in general impair the target–template

alignment quality and will be filtered out.

6. Choose template(s): HHpred2 and HHpred4 pick only

a single template per domain. They always pick the

top-ranked target–template alignment from the list

containing all 11 sets of target–template alignments.

They then move down the list to find templates for

potential further domains not covered by the top-
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ranked alignment. They select an additional alignment

if it does not overlap more than 20 residues with any

of the already selected alignments and if it covers at

least 40 target residues not already covered. All target–

template alignments thus selected are combined into a

target–template multiple alignment. HHpred5 models

each domain with multiple templates if possible.

However, we want to avoid including too remote tem-

plates that could negatively affect the model through

alignment errors or strong structural divergence.

Therefore, after selecting the top-ranked target–tem-

plate alignment from the list, HHpred5 goes down

this list and selects only those target–template align-

ments whose templates are more similar to the top

template (up to 0.1 bits per column) than this top

template is to the target sequence. Similarity is again

calculated as sequence–sequence similarity using the

Gonnet matrix with gap open and extend scores of 6

and 1 bits, respectively. As HHpred2 and HHpred4,

HHpred5 also selects target–template alignments that

cover at least 40 target residues not already covered in

the selected alignments (regardless of overlaps with al-

ready selected alignments).

7. Run MODELLER:13 The standard automodel script is

run with the target–template multiple alignment from

Step 6. In CASP8, we calculated three models and sub-

mitted the model with the highest MODELLER score.

RESULTS AND DISCUSSION

Figure 2(A) shows the performance of automatic terti-

ary structure prediction servers that participated in

Figure 1
Narrowing down the diversity of target and template alignments

facilitates finding the most closely related template. The idealized

phylogenetic tree shows a target and four possible templates T1-T4. The

sequences contained in the alignments of the target and of templates T2

and T4 are shown in red, blue, and yellow, respectively. Without

filtering (top), the sequences of the target and template alignments

largely overlap, making it impossible to discern the most closely related

template T2. At the optimal filter threshold (bottom), the HMM of

template T2 will be most similar to the target HMM.

Figure 2
Model accuracy versus response time for all 72 servers that participated

in the tertiary structure prediction category of CASP8 (A) on all 164

target domains and (B) on the 85 single-domain targets. The servers

with better Z-score than HHpred5 are shown in blue (I-TASSER is the

Zhang server). The improvements of the HHpred servers from A to B

indicate that the domain parsing severely limited their performance in

CASP8.
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CASP8, measured by the sum of positive Z-scoresP
t maxfZt ; 0g for all 164 target domains t. The scores

were downloaded from the CASP8 web site (http://

www.predictioncenter.org/casp8/groups_analysis.cgi) and

are based on domain-specific GDT-TS scores. On the

x-axis, the median response time of the servers in CASP8

is shown. At around 10 min, the three HHpred servers

(red) provide an excellent combination of accuracy and

speed. The six servers that score better than HHpred5 all

took more than 50 times longer to respond (blue dots).

Except for the best-scoring server (I-TASSER), their accu-

racies are comparable to HHpred5. In practice, response

times may differ considerably from the times recorded

for CASP8. According to our own recent tests on the six

best-performing servers, either most have queuing times

much in excess of these times or were not yet publicly

available at the time of writing.

The ranking and domain parsing procedures in the

HHpred servers possess two shortcomings: First, longer

target–template alignments obtain higher sum_probs

scores and are therefore ranked better by the neural net-

work. This makes sense in single-domain proteins, since

unaligned target residues cannot be reasonably modeled

in our approach. In multidomain proteins, however, this

is problematic. Consider the example of a two-domain

target, for which both domains can be modeled inde-

pendently with two closely related templates. If a

remotely related template exists, which covers both

domains, we risk ranking this template higher because it

covers more target residues than any of the two more

closely related templates. Second, the present domain

parsing (Step 6) can fail when the target–template align-

ment of one target domain is extended too much and

overlaps a neighboring domain by more than 20 residues.

In this case, we would reject alignments covering the

neighboring domain.

To check if the domain parsing procedure was impair-

ing prediction results on multidomain proteins, we calcu-

lated the cumulative positive Z-scores for all servers on

the subset of the 85 single-domain proteins in CASP8

[Fig. 2(B)]. Indeed, on this target subset, the HHpred

servers perform better, improving their ranks from 7th to

2nd (HHpred5), 9th to 4th (HHpred4), and 14th to 12th

(HHpred2).

We measured the modeling accuracy on 507 targets

from the PDB database to test the effect of the various

changes. Relative to the old HHpred2 server, which

ranked second in CASP7,14 the improvements are split

up as follows: (1) The removal of bugs in the old server

led to an increase in the cumulative GDT_TS score of

0.5%; (2) the neural network-based re-ranking yielded

another 1.3%; (3) filtering the target and template align-

ments and picking the alignments with optimal diversity

resulted in a gain of an additional 0.9%. Finally, using

multiple templates improved the cumulative score by

another 2.1%. In total, the improvement over the old

HHpred2 of CASP7 was 4.9%. The preliminary HMM-

based procedure for generating the target alignments had

not been evaluated but seemed to be of minor effect in

CASP8. The improvement of 4.9% from the old

HHpred2 to HHpred5 is in accord with the performance

of servers that ran unchanged in CASP7 and CASP8,

such as SAM-T2K.

It is remarkable that HHpred is competitive in model

accuracy with servers that need many times more CPU

time. To keep it fast, no alternative alignments are exp-

lored,4–7,15 no side chain optimization performed,4–7

no contacts predicted,4–7 no loops modeled,4–7 and no

model quality assessment or structural clustering

employed to pick the best of several models.4–8 Our phi-

losophy has been to dispense off everything that needs

computational resources of more than a few minutes. At

the moment, HHpred executes around 200 jobs per day,

each on a single CPU, with negligible queuing time and

typical response times of a few minutes. This is in con-

trast to most other highly ranked servers in CASP7/

CASP8, which in practice take days to months to return

a 3D model.

For the future, we are working on improving homol-

ogy detection and alignment methods, which are both

crucial and accuracy-limiting steps in homology model-

ing.15 We plan to make better use of the information

from multiple templates, which will also help to resolve

the current problems with multidomain proteins. Fur-

thermore, we would like to correct alignment errors dur-

ing the homology modeling stage and to include local

structural preferences as additional modeling restraints.
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