
Prüfungsbogen: 60 B.Agr.0018 Chemie; Veranstaltungsnummer: 740593; Probeklausur 09.02.2012 - A # Electric Paper **EvaExam** Dipl.-Chem. M. Ziemba Electric Paper Probeklausur Chemie 09.02.2012 A Universität Göttingen 🔲 🔀 🔲 🔲 Bitte verwenden Sie einen Kugelschreiber oder nicht zu starken Filzstift. Dieser Fragebogen wird maschinell erfasst. Markieren Sie so: ☐ ■ ☐ Bitte beachten Sie im Interesse einer optimalen Datenerfassung die links gegebenen Hinweise beim Ausfüllen. Korrektur: Prüfungsteilnehmer-ID für den Prüfungsbogen Nr.: 60: Bitte ausfüllen (Die Angabe des Namens ist freiwillig.): 0 🗆 🗆 П П Vorname: 1 🗆 🗅 \sqcap \sqcap \sqcap 2 🗆 3 □ Nachname: 4 🗆 🗆 5 🗆 🗀 П \Box 6 □ ПП Für die eindeutige Zuordnung der Prüfung übertragen Sie bitte 7 🗆 🗆 Ihre Prüfungsteilnehmer-ID gewissenhaft in die dafür vorgesehenen Felder. Alle Seiten sind vollständig 8 🗆 🗆 9 🗆 individualisiert und nicht mit anderen Prüfungen tauschbar. 1. Konstitutionsisomere [Punkte: 1] 1.1 Konstitutionsisomere... ☐ haben unterschiedliche Summenformeln und somit auch eine unterschiedliche Verknüpfung der einzelnen Atome. werden auch als cis-trans-Isomere bezeichnet. besitzen die gleiche Summenformel, unterscheiden sich aber in der Verknüpfung der einzelnen Atome. gibt es nicht. 2. Kohlenstoff [Punkte: 1] 2.1 Das Element Kohlenstoff (C)... □ bildet hauptsächlich "lonenverbindungen" aus. √ I bildet ausschließlich "kovalente Bindungen" aus. spielt in der "Organischen Chemie" keine große Rolle. 3. Summenformel der Alkine [Punkte: 1] 3.1 Welche der unten stehenden allgemeinen Summenformeln trifft für Alkine zu? В C D П

3. Summenformel der Alkine [Punkte: 1] [Fortsetzung]

- (A) C_nH_{2n}
- (B) C_nH_{2n+2}
- (C) C_nH_{2n-2}
- (D) C_nH_{n+2}

4. Zuteilung Kohlenstoff-Atome [Punkte: 1]

- 4.1 Welche Zuteilung entspricht den in der unten stehenden Abbildung nummerierten Kohlenstoff-Atomen? (p = primär, s = sekundär, t = tertiär, q = quartär)
 - \Box (1) p, (2) s, (3) t, (4) q
 - ☐ (1) s, (2) t, (3) p, (4) q
 - ☐ (1) t, (2) s, (3) p, (4) q
 - $\sqrt{\Box}$ (1) q, (2) t, (3) s, (4) p

5. 1,3-Diethyl-5-propylcyclohexan [Punkte: 1]

- 5.1 Welche unten stehende Abbildung passt zu dem Namen 1,3-Diethyl-5-propylcyclohexan?
 - □ A
 - ____ B
 - □ c
 - √⊠ D

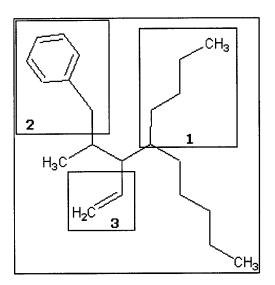
Electric Paper

5. 1,3-Diethyl-5-propylcyclohexan [Punkte: 1] [Fortsetzung]

6. Benzol [Punkte: 1]

- 6.1 Welche Aussagen treffen für den Prototyp der Aromaten, Benzol, zu?
 - √ □ reaktionsträge, lipophil, mesomeriestabilisiert.
 - reaktionsfreudig, lipophil, mesomeriestabilisiert.
 - reaktionsträge, hydrophil, mesomeriestabilisiert.
 - reaktionsfreudig, hydrophil, mesomeriestabilisiert.

7. Molekülname [Punkte: 1]


- 7.1 Welcher Name entspricht der in der unten stehenden Abbildung dargestellten Struktur?
 - √ □ 4-Ethyl-5-methyl-hept-1-en
 - ☐ (1'-Methyl)-3-propyl-hex-5-en
 - ⋈ 2,3-Diethyl-hex-5-en
 - ☐ 4-Ethyl-3-methyl-hept-6-en

7. Molekülname [Punkte: 1] [Fortsetzung]

8. Substituenten [Punkte: 1]

- 8.1 Benennen Sie die in der unten stehenden Abbildung markierten Substituenten.
 - ☐ (1) Propyl-, (2) Benzyl-, (3) Allyl-
 - ☐ (1) Butyl-, (2) Phenyl-, (3) Vinyl-
 - ☐ (1) Ethyl-, (2) Phenyl-, (3) Isopropyl-
 - √ □ (1) Butyl-, (2) Benzyl-, (3) Vinyl-

9. Die funktionelle Gruppe der Ether [Punkte: 1]

- 9.1 Welche funktionelle Gruppe entspricht der Stoffklasse der "Ether"?
 - ☐ R-OH
 - ☐ R-COOH
 - ☐ R-NH2
 - √ □ R-O-R

10. Kurzkettige Alkohole [Punkte: 1]

EvaExam	B.Agr.0018 Chemie; Veranstaltungsnummer: 740593; Probeklausur 09.02.2012 - A	Electric Paper
10 Kurzke	ettige Alkohole [Punkte: 1] [Fortsetzung]	
10.1 Welche	e Aussage trifft für kurzkettige Alkohole bezüglich	
	öslichkeit in polaren Lösungsmitteln zu? rzkettige Alkohole sind schlecht löslich in polaren Lösungsmitteln.	
√□ Kur	rzkettige Alkohole sind gut löslich in polaren Lösungsmitteln aufgrund ihrer Hydrophilie) .
☐ Kur	rzkettige Alkohole sind gut löslich in unpolaren Lösungsmitteln aufgrund ihrer Lipophilie rzkettige Alkohole sind gut löslich in polaren Lösungsmitteln aufgrund ihrer Lipophilie.	e.
□ Rui	Zkettige Alkonole sind gut loslich in polaren Eosangsmittelin adigitalia inier Eipopiilile.	
11. Carbo	nylverbindungen [Punkte: 1]	
11.1 Welche	e Aussage trifft für das Redoxverhalten von Carbonylverbindungen NICHT zu?	
	märe Alkohole können zu Aldehyden oxidiert werden. tone können zu sekundären Alkoholen reduziert werden.	
√ ☐ Ter	rtiäre Alkohole können zu Ketonen oxidiert werden.	
☐ Ca	rbonsäuren können zu Aldehyden reduziert werden.	
	tionszahl des Carbonyl-Kohlenstoff-Atoms im Propanon [Punkte: 1]	
12.1 Welche Abbildt	e Oxidationszahl trägt das Carbonyl-Kohlenstoff- Atom im Propanon (siehe unten st	ehende
	ung):	
√ □ +2 □ +5		
☐ - 8		
	<u> </u>	
	H ₃ C CH ₃	
13 Die Ei	unktionelle Gruppe der Fette [Punkte: 1]	
14 - 420 Bell out 1987 by Indianaet propriate an experience and one or when	e funktionelle Gruppe findet man in allen Fetten?	
v ′	e Fette sind Ester des dreiwertigen Alkohols Glycerin mit Fettsäuren. e Fette sind Carbonsäuren.	
	e Fette sind Carbonsauren. e Fette enthalten ein Halogen.	
☐ Alle	e Fette sind Alkohole.	
14. Verse	ifung [Punkte: 1]	
14.1 Welch	e Aussage trifft für eine "Verseifung" zu ?	
	s Produkte entstehen Fette. e Verseifung ist die irreversible Umkehrreaktion zur Veresterung.	
Ū Fü	r eine Verseifung braucht man katalytische Mengen einer starken Säure.	
☐ Die	e Verseifung ist eine Radikalreaktion.	

Prüfungsbogen: 60 B.Agr.0018 Chemie; Veranstaltungsnummer: 740593; Probeklausur 09.02.2012 - A Electric Paper **EvaExam** 15. Enantiomere [Punkte: 1] 15.1 Enantiomere sind... ☐ Konstitutionsisomere. ☐ Konfigurationsisomere, die sich nicht wie Bild und Spiegelbild verhalten. ✓☐ chirale Molekülpaare, die sich wie Bild und Spiegelbild verhalten. ☐ z.B. cis-trans-Isomere. 16. Funktionelle Gruppen von Aminosäuren [Punkte: 1] 16.1 Welche der unten stehenden Aussagen über funktionelle und zugleich namensgebende Gruppen der Aminosäuren trifft zu? √□ A □В ПС \Box D (A) Aminosäuren enthalten mindestens eine Carboxylgruppe (-COOH) und eine Aminogruppe (-NH₂). (B) Aminosäuren enthalten nur eine Aminogruppe (-NH₂). (C) Aminosäuren enthalten nur eine Carboxylgruppe (-COOH). (D) Aminosäuren sind dreiwertige Alkohole und enthalten somit drei Hydroxylgruppen. 17. Die kovalente Bindung in Proteinen [Punkte: 1] 17.1 Welchen Namen trägt die kovalente Bindung in Proteinen, die die Aminosäuren zusammenhält? ☐ Die Bindung wird als "Ionenbindung" bezeichnet. ✓⊠ Die Bindung wird als "Amid-" bzw. "Peptidbindung" bezeichnet. ☐ Die Bindung wird als "Metallbindung" bezeichnet. ☐ Die Bindung wird als "N-Terminus" bezeichnet. 18. Glucose [Punkte: 1] 18.1 Welche Aussage trifft für "Glucose" NICHT zu? ☐ Glucose ist ein Monosaccharid, das aus sechs Kohlenstoffatomen besteht. ☐ Glucose leitet sich von Glycerinaldehyd ab und gehört somit zu den Aldosen. ☐ Die ringförmige Struktur der Glucose stellt ein cyclisches Halbacetal dar. ✓ Glucose ist ein Disaccharid, das aus D-Galactose und D-Fructose besteht. 19. Ketosen 19.1 Welche der unten stehenden Eigenschaften treffen auf Ketosen zu? \square A

09.02.2012, Seite 6/13

☐ B ☐ C ☐ D

22.1	VVe	elcher	vorgan	g wira in	aer u	inten s	tenenae	en Ab	bildung	Descri	leben:
	П	Flekt	rophiler	Anariff e	ines (Carbar	nions an	ein p	artialpo	sitives ⁽	Carboxy

/I-Kohlenstoffatom.

☐ Nucleophiler Angriff eines Carbeniumions an ein partialpositives Carbonyl-Kohlenstoffatom.

Radikalischer Angriff eines Carbeniumions an ein partialpositives Carboxyl-Kohlenstoffatom.

Nucleophiler Angriff eines Carbanions an ein partialpositives Carbonyl-Kohlenstoffatom.

22. Beschreibung eines Vorgangs [Punkte: 1] [Fortsetzung]

23. Strukturformel [Punkte: 1]

- 23.1 Die unten stehende Strukturformel zeigt ...
 - ☐ ein Amid.
 - in sekundäres Thiol.
 - ☐ eine Aminosäure.
 - √ □ ein tertiäres Amin.

24. Homolytische Bindungstrennung [Punkte: 1]

- 24.1 Durch eine homolytische Bindungstrennung, z.B. durch Thermolyse, entstehen...
 - ☐ Nucleophile.
 - ☐ Elektrophile.
 - ✓ Radikale.
 - ☐ Carbenium-Ionen.

25. Einfach- und Doppelbindungen [Punkte: 1]

- 25.1 Wie unterscheiden sich C-C-Einfachbindungen von C=C-Doppelbindungen?
 - \Box A
 - **√**□ B
 - □ C
 - Πр

EvaExam

B.Agr.0018 Chemie; Veranstaltungsnummer: 740593; Probeklausur 09.02.2012 - A

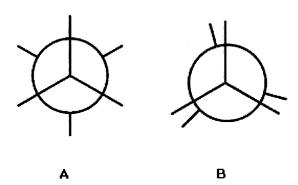
Electric Paper

25. Einfach- und Doppelbindungen [Punkte: 1] [Fortsetzung]

- (A) Die Bindung ist starr und planar!
- (B) Die C-Atome sind sp³-hybridisiert und gegeneinander frei drehbar!
- (C) Die C-Atome sind sp²-hybridisiert und nicht sp³-hybridisiert!
- (D) Beide Bindungen sind frei drehbar! Eine Einschränkung der Rotation liegt erst bei Dreifachbindungen vor!

26. Wertigkeit von Alkoholen [Punkte: 1]

- 26.1 Geben Sie die Wertigkeiten der unten stehenden Alkohole an:
 - ☐ A Dreiwertig B Sechswertig C Einwertig D Zweiwertig
 - ✓□ A Dreiwertig B Fünfwertig C Einwertig D Einwertig
 - ☐ A Einwertig B Sechswertig C Dreiwertig D Dreiwertig
 - ☐ A Dreiwertig B Sechswertig C Zweiwertig D Einwertig


27. Omega-Fettsäuren [Punkte: 1]

- 27.1 Welche Nummer trägt die unten abgebildete Omega-Fettsäure?
 - ☐ Omega-9-Fettsäure
 - ☐ Omega-12-Fetsäure
 - ☐ Omega-1-Fettsäure
 - ✓□ Omega-6-Fettsäure

28. Rotamere [Punkte: 1]

- 28.1 Welches der unten abgebildeten Rotamere ist energetisch günstiger?
 - √□ A ist energetisch günstiger, da es die gestaffelte Konformation darstellt.
 - ☐ A ist energetisch günstiger, da es die ekliptische Konformation darstellt.
 - ☐ B ist energetisch günstiger, da es die gestaffelte Konformation darstellt.
 - ☐ B ist energetisch günstiger, da es die ekliptische Konformation darstellt.

28. Rotamere [Punkte: 1] [Fortsetzung]

29. Die	Oxidation von Thiolen [Punkte: 1]
29.1 Die □ □ √ □ □	e Oxidation von Thiolen führt zum Thiolanalogon einer Carbonylverbindung. ist nicht möglich, da Thiole nicht oxidiert werden können. führt zu Disulfid-Brücken führt zu Proteinen.
arminino	-Wert von Aminosäuren [Punkte: 1]
	ninosäuren liegen beim sauren pH-Wert (pH ≈ 1) als
L.J	Zwitterionen vor (negative Ladung an der Carboxylgruppe & positive Ladung an der Amingruppe).
√⊓	Kationen vor (positive Ladung an der Amingruppe).
1 -	Anionen vor (negative Ladung an der Carboxylgruppe).
	Betaine vor (negative Ladung an der Carboxylgruppe & positive Ladung an der Amingruppe).
31. Arc	omatische organische Verbindungen [Punkte: 1]
31.1 Wa	ann ist eine organische Verbindung aromatisch?
	A
٦	В
7—	

- (A) Wenn diese cyclisch planar ist, konjugierte Doppelbindungen enthält und die Hückel-Regel erfüllt (4n π-Elektronen; n = geradzahlig).
- (B) Wenn diese cyclisch planar ist, isolierte Doppelbindungen enthält und die Hückel-Regel erfüllt (4n+2 π-Elektronen; n =geradzahlig).
- (C) Wenn diese cyclisch planar ist, konjugierte Doppelbindungen enthält und die Hückel-Regel erfüllt (4n+2 π -Elektronen; n = geradzahlig).
- (D) Wenn diese cyclisch ist, konjugierte Doppelbindungen enthält und die Hückel-Regel erfüllt (4n π-Elektronen; n =geradzahlig).

B.Agr.0018 Chemie; Veranstaltungsnummer: 740593; Probeklausur 09.02.2012 - A

Electric Paper

32. Reaktion zwischen Aldehyd und Alkohol [Punkte: 1] 32.1 Eine Reaktion zwischen einem Aldehyd und einem Alkohol im sauren Milieu führt zu… ☐ einem Hydrat. ☒ einem Ester.
√□ einem Halbacetal. □ einem Ketal.
33. Radikalische Substitution [Punkte: 1] 33.1 Welche Reihenfolge der Reaktionsschritte entspricht einer radikalischen Substitution? ☐ 1. Kettenstart 2. Kettenfortpflanzung 3. Kettenabbruch ☐ 1. Kettenabbruch 2. Kettenfortpflanzung 3. Kettenstart ☐ 1. Kettenstart 2. Kettenabbruch 3. Kettenfortpflanzung
☐ 1. Kettenfortpflanzung 2. Kettenstart 3. Kettenabbruch
34. pi-Bindung in einer Doppelbindung [Punkte: 1] 34.1 Die pi-Bindung in einer Doppelbindung wird gebildet aus
√ □ В □ С □ D
(A) den s-Orbitalen der Bindungspartner.
(B) den pz-Orbitalen der Bindungspartner.
(C) den sp³-Orbitalen der Bindungspartner.
(D) den sp²-Orbitalen der Bindungspartner.
35. Der Siedepunkt von Methanol [Punkte: 1] 35.1 Der Siedepunkt von Methanol ist im Vergleich zu Methan
36 Figenschaffen von Alkoholen [Punkte: 1]

		r ruidingsbogen. oc
EvaExam B.Agr.0018 Chemie	; Veranstaltungsnummer: 740593; Probeklausur 09.02.2012 -	A Selectric Paper
36. Eigenschaften von Alkoho 36.1 Welche Aussage trifft NICHT □ A □ B ✓□ C □ D	pien [Punkte: 1] [Fortsetzung] für Alkohole zu?	
(A) Alkohole sind Derivate des	s Wassers.	
(B) Alkohole haben höhere Sie	edepunkte als die gleichkettigen Alkane.	
(C) Alkohole können an der Hy	ydroxylgruppe protoniert werden und so ein Alkoxid-ion (R	-O ⁻) ausbilden.
(D) kurzkettige Alkohole sind g	jut löslich in polaren Lösungsmitteln.	
am unreaktivsten, weil □ sie unpolare Moleküle sind □ sie Oxidationsprodukte de □ das Carboxyl-Kohelnstoffa	äurederivaten sind die Carbonsäuren bezüglich Substit	
38. DNA [Punkte: 1] 38.1 Welche Aussage trifft für die □ A □ B □ C ✓ 🕱 D	DNA zu?	
(A) Das Rückgrat besteht aus Pl	hophat-Ribose-Einheiten.	
(B) Die Nucleobasen der DNA s	sind Adenin (A), Guanin (G), Cytosin (C), Uracil (U).	
(C) Die Nucleobase in einem Nu Zuckereinheit verbunden.	ucleotid ist am 5'-Kohlenstoffatom über eine gylcosidische E	Bindung mit der
	nt durch ausgebildete Wasserstoffbrückenbindungen zwisch FThymin (T), Guanin (G) und Cytosin (C)	en den

EvaExam	B.Agr.0018 Chemie;	Veranstaltungsnummer:	740593;	Probeklausur	09.02.2012 - A	■ Electric Paper
39.1 Alkohol □ Alka √⊠ Alka □ Alka	e werden auch als anone bezeichnet. anole bezeichnet. anale bezeichnet. anene bezeichnet.	unkte: 1] [Fortsetz	zung]			
40.1 Wenn I √□ Kol □ Alk □ Alk	rbrennung von Kohl Kohlenwasserstoffe (Alk Ilendioxid, Wasser und ene. ne. ogenalkane.	(ane) verbrannt werder				