Grundlagen der Tierzucht Wintersemester 2001/2002 Mögliche Klausuraufgaben

 Erläutern Sie das erste und zweite Mendel'sche Gesetz (Uniformitäts- und Spatungsregel) anhand eines von Ihnen gewählten Beispiels.

Shorthornrinder reinerbig weiß

Genotyp rr

Shorthornrinder reinerbig rot

Genotyp RR

TT x RR -> 100% Rr

Uniformitätsregel, alle Nachkommen einheitlich roan

Rr x Rr -> RR : Rr : rr = 1 : 2 : 1 (= rot : roan : weiß) Aufspaltung gemäß den Mendel'schen Proportionen

2. An einem Genort liegen die drei Allele A_1 , A_2 und A_3 mit den Allelfreguenzen $p_1 = p_2 = 0.4$ und $p_3 = 0.2$ vor. Welche Genotypverteilung erwarten Sie, wenn die Populationsgröße $N = 10^{\circ}000$ beträgt und die Population im Hardy-Weinberg-Gleichgewicht ist?

Genotyp	Frequenz	Erwartete Anzahl
	$p_1^2 = 0.16$	1600
A ₁ A ₁	2 p ₁ p ₂ = 0.32	3200
A ₁ A ₂	2 p ₁ p ₃ = 0.16	1600
A ₂ A ₂	$p_2^2 = 0.16$	1600
Mark I	$2 p_2 p_3 = 0.16$	1600
A ₂ A ₃	$p_3^2 = 0.04$	400

- 3. Die phänotypische Streuung des Merkmals Milchmenge ist $\sigma_p = 750$ kg. Die Heritabilität des Merkmals sei h² = 0.3, die Wiederholbarkeit sei w² = 0.5. Berechnen Sie
 - a) die phänotypische Varianz $\sigma_{_{
 m P}}^{z}$

$$\sigma_x^2 = 750^2 = 562500 kg^2$$

b) die additiv-genetische Varianz $\,\sigma_a^2\,$

$$\sigma_a^2 = h^2 \times \sigma_y^2 = 168^{\circ}750 kg^2$$

c) die permanente, nicht additiv-genetische Varianz σ_{ip}^{i}

$$\sigma_{xy}^2 = (w^2 - h^2) \times \sigma_y^2 = 112500 kg^2$$

d) die temporäre Retvarianz $\sigma_u^{\scriptscriptstyle \parallel}$

$$\sigma_{\alpha}^{1} = (1 - w^{2}) \times \sigma_{\gamma}^{1} = 281'250kg^{2}$$

 In der Leistungsprüfung auf Station haben zwei Schweine folgende Leistung im Merkmal Prüftagszunahme:

Die Heritabilität des Merkmales ist $h^2 = 0.3$.

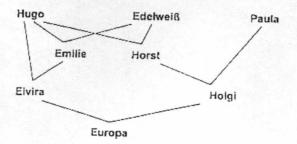
Welchen Unterschied zwischen den Zuchtwerten (ausgedrückt in Merkmalseinheiten) der beiden Tiere erwarten Sie?

$$\hat{a}_1 = h^2 (y_1 - \overline{y})$$

$$\hat{a}_2 = h^2 (y_2 - \overline{y})$$

$$\hat{a}_1 - \hat{a}_2 = h^2 (y_1 - y_2)$$

$$= 0.3(780 - 760) = 6g / d$$


5. Es liegen folgende Verwandtschaftsinformationen für eine Tiergruppe vor:

Tier	Vater	Mutter
Emilie	Hugo	Edelweiss
Horst	Hugo	Edelweiss
Elvira	Hugo	Emilie
Holgi	Horst	Paula
Europa	Holgi	Elvira

Hinweis:

Gehen Sie davon aus, dass die 'Basistiere' des Pedigrees, also Hugo, Edelweiss und Paula weder ingezüchtet noch untereinander verwandt sind.

Zeichnen Sie das Pedigree und beantworten Sie die folgenden Fragen:

- a) Wie groß ist der Verwandtschaftskoeffizient zwischen Emilie und Horst? $Vollgeschwister, R_{\rm Emille, Horst} \approx 0.5$
- b) Wie groß ist der Inzuchtkoeffizient von Horst?

- c) Wie groß ist der Inzuchtkoeffizient von Elvira?

 Nachkomme aus Vater-Tochter-Paarung, R_{Hugo,Emilie} = 0.5 -> F_{Elvira} = 0.25
- d) Sind Paula und Elvira verwandt? Nein, da keine gemeinsamen Ahnen
- e) ist Europa ingezüchtet?

 Ja, da die Eltern verwandt sind (Hugo und Edelweiß als gemeinsame Ahnen)
- f) Wäre ein Nachkomme aus der Anpaarung Elvira x Horst ingezüchtet?

 Ja, da Elvira und Horst verwandt sind (Hugo und Edelweiß als gemeinsame Ahnen)