
Virtual Laser Scanner for GroIMP

1 Introduction

The ”Scanner” is a module implementing a virtual laser scanning device. To
use it, first import the module :

import de.grogra.rgg.Scanner ;

and create a new instance :

Scanner ls = new Scanner() ;

Then, the process of points acquisition can be seen as follow :

1. set a ray ”length” ;

2. set an origin, and directions for the rays ;

3. shoot the rays, store the returned data ;

4. repeat until enough points are acquired.

This process can be done step-by-step, or a method implementing a scanning
according to some pre-defined schedule can be used.

2 Shooting of the rays

The rays are always shot according to two angular parameters (θrange, φrange)
defining the solid angle that will be scanned, two parameters (θstep, φstep) defin-
ing the resolution with which it will be scanned, and a direct orthonormal basis
(−→x ,−→y ,−→z) serving as reference (see below).

In the spherical coordinate system based on the reference basis (−→x ,−→y ,−→z),
rays are shot for θ ∈

[
−θrange

2 ,
θrange

2

]
with an angular resolution θstep and for

φ ∈
[
π
2 −

φrange

2 , π2 + φrange

2

]
with an angular resolution φstep (see illustration

Fig.1 p.2). Thus, the mean direction of the rays shot is −→x .

Details concerning the spherical and cylindrical coordinate system used in
this module can be found at the end of this document (resp. 4.1 p.6 and 4.2
p.6).

1

Figure 1: Directions of rays shot for the parameters θrange = π
2 , φrange = π

4 ,
θstep = π

20 and φstep = π
8 .

3 Methods available

Remark : if calling multiple scan methods (e.g. scan, scanCylinder,
scanSphere ; see below) in a row, be sure to save the returned data
after each call, as they will not be kept.

Notations : Seg(Point3d point, Vector3d vector, Double l) designates the seg-
ment which has the point point at one end, the direction vector direction, and
of length l.
Cir(Point3d center, Vector3d normal, Double r) designates the circle of center
center, of radius r and contained in a plane orthogonal to the vector normal.

setRayLength Sets the range of the rays.

void setRayLength(double desiredLength) ;

desiredLenght must be strictly positive.

2

setBasis Sets the 3-dimensional basis to be used as reference for shooting the
rays.

void setBasis(Vector3d x, Vector3d y, Vector3d y) ;

The 3 vectors must form a direct orthogonal basis.

setRange Sets the angular opening in θ and φ.

void setRange(double thetaRange,double phiRange) ;

If thetaRange ≥ 2 ·π (resp. phiRange ≥ π) , then thetaRange = 2 ·π (resp.
phiRange = π)will be used instead. thetaRange ≤ 0 (resp. phiRange ≤ 0)
sets an angular opening in theta (resp. phi) of 0 (Note : thetaRange = 0 and
phiRange = 0 corresponds at the shooting of only one ray, along the x-axis).

setSteps Sets the resolution in theta and phi.

void setSteps(double thetaStep,double phiStep) ;

If thetaStep ≥ thetaRange (resp. phiStep ≥ phiRange) , then thetaStep =
thetaRange (resp. phiStep = phiRange)will be used instead. thetaStep ≤ 0
(resp. phiRange ≤ 0) sets an angular opening in theta (resp. phi) of 0.

setpDrawRay Set the probability of drawing one ray.

void setpDrawRay(double p) ;

Each ray will be drawn with a probability p (if p ≤ 0 no rays will be drawn,
if p ≥ 1 all the rays will be drawn), thus n · p will be drawn in average (with n
the total number of rays shot).

scan Triggers the scanning with the specified options

ArrayList<Point3d> scan(Point3d center) ;

Rays will be shot from the point center, according to the angular parameters
specified. Scanned points are returned in an ArrayList.

writeDataToFile Writes the ArrayList data in a file named fileName. The
data are written according to a ”x y z” format.

void writeDataToFile(ArrayList<Point3d> data, String fileName) ;

3

scanSegment Moves the origin of the rays along the segment Seg(startingPoint,
direction, (nbSteps− 1) · stepLength). Rays are shot at each step according to
the specified parameters. Scanned points are returned in an ArrayList.

ArrayList<Point3d> scanSegment (Point3d startingPoint, Vector3d
direction, double stepLength, int nbSteps) ;

The vector direction must not be null, stepLenght and nbSteps must be
strictly positive.

Please note that for all the following methods, the angular pa-
rameters used are those fixed by the methods setRange and setSteps.
However, the basis defining the directions of the rays are defined
within the methods.

scanCircle Moves the origin of the rays along the circle Cir(center, normal,
r). Rays are shot for each angular step angleStep until a complete circle has
been covered. Directions of the rays shot are defined by the local cylindrical
basis (-u, -uθ, normal) formed at each step, with respect to the reference ba-
sis (zeroAngleVector, normal ∧zeroAngleVector, normal). Scanned points are
returned in an ArrayList.

ArrayList<Point3d> scanCircle(Point3d center, double r, Vector3d
normal,Vector3d zeroAngleVector, double angleStep) ;

ArrayList<Point3d> scanCircle(Point3d center, double r, Vector3d
normal, double angleStep) ;

The vector zeroAngleVector specifies the angle reference for the circle. It
must be orthogonal to normal. If none is specified, an arbitrary vector is used.

scanCylinder Moves the origin of the rays on the surface of the cylinder
of axis the segment Seg(startingPoint, axis, (nbSteps-1) · lengthAxisStep) and
of radius r. For each step i along the cylinder’s axis, the origin of the rays
revolves around the cylinder with an angular step angularStep. Rays are shot
at each angular step until a complete circle has been covered. Directions of
the rays shot are defined by the local cylindrical basis (-u,-uθ, axis) formed at
each angular step, with respect to the reference basis (zeroAngleVector, axis ∧
zeroAngleVector, axis). Scanned points are returned in an ArrayList.

ArrayList<Point3d> scanCylinder (Point3d startingPoint, Vector3d
axis, double radius, double angularStep, double lengthAxisStep,

int nbSteps) ;
ArrayList<Point3d> scanCylinder (Point3d startingPoint, Vector3d
axis, double radius, double angularStep, double lengthAxisStep,

int nbSteps, Vector3d zeroAngleVector) ;

The vector zeroAngleVector specifies the angle reference for each circle. It
must be orthogonal to axis. If none is specified, an arbitrary vector is used.

4

scanSphere Moves the origin of the rays on a sphere of center center and
radius r. With respect to the spherical coordinate system based on the basis
(x,y,z), the origin of the rays moves from φ = 0 to φ = π with a step phiStep,
and, for each angle φ, from θ = 0 to θ = 2π with a step thetaStep. Rays are
shot for each couple (θ, φ), their directions being defined by the local spherical
basis (−ur,−uφ, uθ). Scanned points are returned in an ArrayList.

ArrayList<Point3d> scanSphere (Point3d center, double r, double
phiStep, double thetaStep, Vector3d x, Vector3d y, Vector3d z) ;

(x, y, z) must be a direct orthogonal basis, r and phiStep must be strictly
positive. If thetaStep ≤ 0, then θ = 0 will be used at each step (thus the origin
of the rays describes an half circle).

Noise simulation A set of methods enables noise simulation. The introduc-
tion of a noise factor is triggered for the parameters θ, φ and the hit distance
by the following methods :

void setThetaNoise(boolean value) ;
void setPhiNoise(boolean value) ;

void setDistanceNoise(boolean value) ;

Each time a point is acquired, a noise factor is added to the angle θ and /
or φ and / or the hit distance when computing the point’s position. Noise on θ
and φ modifies the direction in which the point is thought to be ; noise on the
hit distance the distance (in this direction) from the scanner.

The type of noise can be set through the following methods :

void setThetaNoiseType(int type, boolean adapt, double param1,
double param2) ;

void setPhiNoiseType(int type, boolean adapt, double param1,
double param2) ;

void setDistanceNoiseType(int type, boolean adapt, double param1,
double param2) ;

type = 0 sets the noise to an uniform pertubation, type = 1 to a gaussian
one (any other value inducing no noise at all). adapt = false produces a noise
with fixed parameters, whereas adapt = true produces a noise which parameters
depends on the real value (see below).

Given the real value αr of one parameter (θ, φ or the hit distance), the
value used to compute the point’s position is αu = αr + ε, where ε is the noise.
With U(a, b) denoting the uniform density on [a, b] (a < b), and N (µ, σ) the
gaussian density of mean µ and standard deviation σ, the pertubation ε has the
corresponding density :

5


````````````adapt =
type =

0 1

false ε ∼ U(param1, param2) ε ∼ N (param1, param2)

true ε ∼ U(param1 · αr, param2 · αr) ε ∼ N (param1 · αr, param2 · αr)

4 Annexes

4.1 Spherical coordinate system

The spherical coordinate system is a 3d-coordinate system in which the position
of a point is specified by two angular parameters θ and φ and the radial distance
r. Given a direct orthonormal basis B0 = (−→x ,−→y ,−→z ), and a fixed origin point
O, these parameters, for some point M(r, θ, φ), are defined as follow (see Fig.2
p.7) :

θ = −̂→x ,
−−→
OP, θ ∈ [0; 2π]

φ = −̂→z ,
−−→
OM, φ ∈ [0;π]

r = OM

with P the orthogonal projection of M on the plane (O,−→x ,−→y ). Note that
only the two angular parameters θ and φ are needed to define a direction (see
Fig.2 p.7).

For each direction (θ, φ) a local direct orthonormal basis B(θ,φ) = (−→ur,−→uφ,−→uθ)
can be de defined, with :

−→ur =

cos(θ) · sin(φ)
sin(θ) · sin(φ)

cos(φ)


B0

−→uφ =

cos(θ) · cos(φ)
sin(θ) · cos(φ)
−sin(φ)


B0

−→uθ =

−sin(θ)
cos(θ)

0


B0

4.2 Cylindrical coordinate system

The cylindrical coordinate system is a 3d-coordinate system in which the posi-
tion of a point is specified by one angular parameter θ, one distance r and one
height z. Given a direct orthonormal basis B0 = (−→x ,−→y ,−→z ), and a fixed origin
point O, these parameters, for some point M(r, θ, z), are defined as follow (see
Fig.2 p.7) :

θ = −̂→x ,
−−→
OP, θ ∈ [0; 2π]

r = OP

z =
−−→
OM.−→z

6



Figure 2: Spherical and Cylindrical coordinate system

with P the orthogonal projection of M on the plane (O,−→x ,−→y ) (see Fig.2 p.7).

For each angle θ a local direct orthonormal basis Bθ = (−→u ,−→uθ,−→z ) can be de
defined, with :

−→u =

cos(θ)sin(θ)
0


B0

−→uθ =

−sin(θ)
cos(θ)

0


B0

7


