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Summary 

In the early embryos of Drosophila, the nuclei proliferate by invariantly 13 

synchronous nuclear divisions. After nuclear divisions, the cell cycle stops, the 

zygotic gene is activated, maternal transcripts are degraded and cellularization starts. 

The transition is commonly referred to as mid-blastula transition (MBT). Previously, 

evidences have been showed that the following factors were involved in controlling 

MBT: (1) the extension of interphases and the cell cycle regulators such as grapes. (2) 

the degradation of maternal RNAs, such as string mRNA, and (3) the expression of 

zygotic mitotic inhibitors, such as frühstart. However, the molecular mechanism for 

controlling number of nuclear divisions remains unclear. 

In order to investigate the role of the zygotic gene expression in regulating the 

onset of MBT, I used two approaches: (1) the dissection of genomic regulatory 

elements of frühstart. (2) the phenotypic analysis of a novel RNA polymerase II allele, 

RPII215X
161

. Via a reporter assay, we identified two motifs at the frs promoter region 

which prevent the premature expression of frühstart. By EMSA, we identified 

anonther motif which show protein binding and is required for the strong frs 

expression. By analysis of a novel RNA polymerase II allele, RPII215
X161

, we 

identified a single nucleotide exchange in the 3‟-untranslated region of RPII215
X161

, 

which leaded to higher level of protein and transcrips in early embryo. Half of the 

mutant embryos (independent of the zygotic genotype) undergo only 12 nuclear 

divisions and start cellulariztion precociously. In addition, zygotic genes slam and 

fühstart are expressed earlier and maternal transcripts of CDC 25 homologs, string 

and twine are degraded earlier than normal in all embryos. Our data demonstrated 

zygotic gene activation paly an essential role regulating the timing and coordination 

of MBT.
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Zusammenfassun 

Im frühen Embryo vermehren sich die Kerne zunächst durch 13 synchrone 

Kernteilungen. Nach den Kernteilungen stoppt der Zellzyklus, die zygotische 

Transkription wird aktiviert, maternale RNAs werden abgebaut und die Zellularisation 

beginnt. Dieser Ü bergang wird allgemein als mid-blastula transition (MBT) 

bezeichnet. Es konnte gezeigt werden, dass (1) die Verlängerung der Interphasen und 

Regulatoren des Zellzyklus wie z.B. grapes, (2) der Abbau maternaler RNAs wie z.B. 

string mRNA und (3) die Expression zygotischer Mitoseinhibitoren wie z.B. frühstart 

an der zeitlichen Koordination des Ü bergangs beteiligt sind. Trotzdem ist der 

molekulare Mechanismus zur Kontrolle der Kernteilungszahl immer noch unbekannt. 

Um die Rolle der zygotischen Genexpression bei der Regulation des MBT-Starts zu 

erforschen, wurden zwei Ansätze gewählt: (1) Die Analyse genomischer 

Regulationselemente von frühstart. (2) Die phänotypische Analyse eines neuen RNA 

Polymerase II Alleles, RPII215X
161

. Mittels Reporterassay wurden zwei Motive in der 

Promoterregion von frühstart identifiziert die eine verfrühte Expression von frühstart 

verhindern. Mittels EMSA wurde ein weiteres Motiv identifiziert, an das Proteine 

binden und das für eine starke frühstart Expression notwendig ist. Die Analyse des 

neuen RNA Polymerase II Allels RPII215X
161 

ergab einen Einzelbasenaustausch 

innerhalb der 3„-untranslatierten Region der RNA Polymerase II, der zu erhöhten 

Protein- und Transkriptmengen im Embryo führt. Die Hälfte der mutierten 

Embryonen (unabhängig vom zygotischen Genotyp) durchlaufen nur 12 

Kernteilungszyklen und beginnen dann verfrüht mit der Zellularisation. Zusätzlich 

werden in allen Embryonen die zygotischen Gene slam und frühstart verfrüht 

exprimiert sowie die maternalen Transkripte der string und twine früher abgebaut als 

im Wildtyp. Die Daten zeigen, dass die Aktivierung zygotischer Gene eine essentielle 

Rolle bei der zeitlichen Regulation und Koordination der MBT spielt. 
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Abbreviations  

3‟UTR three prime untranslated region 

5‟UTR five prime untranslated region 

aa  amino acid (s)  

ATP adenosine triphosphate 

bcd bicoid gene 

bp  base pairs  

cDNA  complementary DNA  

cv crossveinless gene 

D. Drosophila 

DAPI  4‟,6‟-Diamidino-2-phenylindole  

ddH2O  double distilled water  

DNA  deoxyribonucleic acid  

DTT  1,4-dithiothreitol  
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E.coli  Escherichia coli  

EDTA  ethylenediaminetetraacetic acid  

EGTA  ethyleneglycol-bis(β-aminoethyl)-N,N,N‟,N‟-tetraacetic acid  

EMSA Electrophoretic Mobility Shift Assay  

frs frühstart gene 

g  gram (s)  

GFP  green fluorescent protein  

GLC germline clone 

grp grapes gene 

hr  hour (s)  

HEPES  N-(2-Hydroxyethyl)piperazine-N‟(2-ethanesulfonic acid)  

HSP70 heat shock protein 70 

Ig  immunoglobulin  

in situ in situ hybridization 

IPTG  isopropyl-β-D-thiogalactopyranoside  

kb  kilobases  

kDa  kilo Dalton  

kuk  kugelkern gene  

l  liter (s)  

MBT mid-blastula transition 

MNK MAP kinase signal integrating kinase 1 

N/A not available, 
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nos nanos gene 

Nr. number 

Pol II RNA polymerase II 215 subunit protein 

PMSF phenylmethanesulfonylfluoride  

pn prune gene 

RPII215 RNA polymerase II 215 subunit gene 

SDS Sodium dodecyl sulfate 

Slam slow as molasses protein 

slam slow as molasses gene 

sn singed gene 

SNP Single Nucleotide Polymorphism 

stg  string gene 

twn twine gene 

v vermilion gene 

w white gene 

WT Wild type 

y yellow gene 

zld zelda gene 

ZGA zygotic gene activation 
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1. Introduction 

1.1. The Mid-blastula transition 

The cleavage stage is the first development process after fertilization in 

development of animals with big eggs. During the cleavage stage, the large fertilized 

egg is split into increasingly smaller cells by rapid and synchronized cell divisions. 

The cleavage cycles are specialized cell cycles, which contain only the S phase and M 

phase, but lacking the gap phase. The length of cleavage divisions is very short, for 

example, the average length of the first 8 cycles is 8 min in Drosophila. In most 

animals, these divisions are supported by maternal transcripts and proteins.  

The cleavage cycles gradually slow down, eventually stop, and lose synchronicity. 

This transition is described as “transition blastuleenne” first by Jacques Signoret and 

Jacques Lefresne (KORZH 2009; SIGNORET J. 1971) and Gerhart referred to it as the 

mid-blastula transition (MBT, Figure 1.) (GERHART 1980). 

The further investigation by J. Newport and M. Kirschner revealed that there are 

other events occurred at mid-blastula transition, includes the onset of zygotic 

expression, degradation of maternal transcripts and morphological changes (NEWPORT 

and KIRSCHNER 1982a; NEWPORT and KIRSCHNER 1982b). Mid-blastula transition has 

been characterized in various model animals (e.g. Xenopus, Danio, and Drosophila) 

(EDGAR et al. 1986; KANE and KIMMEL 1993). Because cleavage cycles is relative 

simple and the clear cut of proliferation and morphological change, mid-blastula 

transition can be regarded as a simple model of a switch between cell proliferation 

and morphogenesis in development. 
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Figure 1: Summary of the events during mid-blastula transition. (a) the rapid nuclear 

divisions slow down and pause. (b) the maternal transcripts aredegraded. (c)Zygotic genes are 

transcripted (d) cellularization starts 

 

The onset of MBT and the number of cleavage cycles is very precise and robust. 

The number of cleavage cycles is precisely regulated in the given species, for example, 

there are 13 cleavage cycles in Drosophila, 12 in Xenopus and 11 in Zebra fish (KANE 

and KIMMEL 1993; YASUDA and SCHUBIGER 1992). Even when the embryos develop 

at various harsh environments; the number of cleavage cycles remains constant and 

the all the events still occur at the time. For example, the embryogenesis of 

Drosophila take almost two times longer at 18°C than at 25°C, however, the number of 

cleavage cycles is still 13. Cleavage cycles also have high resistance against UV 

radiation (YASUDA et al. 1991). 

 

1.2. The Cell Cycle during early development of Drosophila 

In insects, the cleavage stage is slightly different compared to other organisms. The 

embryo undergoes thirteen rapid and synchronous mitosis without cytokinesis 
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therefore generate a syncytial blastoderm that contains six thousand nuclei within a 

bulk cytoplasm (Figure 2B). Some nuclei fall into the yolk and undergo endocycles 

while other nuclei migrate to the periphery (Figure 2D). Since cycle 8, the degradation 

of Cyclins could be observed at mitosis (EDGAR et al. 1994b). The cell cycles 

gradually slow down from cycle 8. At cycle 14, the cell cycle pauses and the 

membrane invaginates from the surface and encloses the nuclei and form individual 

cells by a specific process called cellularization. After cellularization, the embryo goes 

into gastrulation and cell cycle is no longer synchronous. The transition is similar to 

mid-blastula transition in other metazoan.  

 

Figure 2: The models of cell cycle during early Drosophila development. (A) The general 

cell cycles contain G1, S, G2 and M phases. (B) the cleavage cycles contain only S and M 

phases without cytokinesis. (C) After cycle 8, G2 phase presents and interphase is prolonged. 

(D) the yolk nuclei undergo endocycles, which contain rounds of DNA replication without 

an intervening mitosis 

 

One factor involved in controlling the timing of MBT is the nucleocytoplasmic 

ratio (N/C) (NEWPORT and KIRSCHNER 1982a; NEWPORT and KIRSCHNER 1982b). 

When observing the ligated embryos or the embryos with different ploidy (Figure 3), 

the cleavage cell cycle pauses when the ratio of DNA to cytoplasm reaches a specific 

threshold (EDGAR et al. 1986; ROTT and SHEVELEVA 1968). In haploid embryo, there 

is one extra cleavage division compared with diploids; in contrast there is one 

cleavage less in the tetraploid embryo.  
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Figure 3: N/C ratio controls number of cleavage cycles in embryos. The wild type (2N) 

undergoes 12 cleavage cycles. The haploid embryo undergoes one extra cycles while the 

tetraploid undergoes one cycle less. 

 

In 1984, Newport and Kirschner proposed the titration model. In this model, 

chromosomes titrate certain unknown cytoplasmic factors repress the transition until 

its level reaches a critical value. The rate-limiting cytoplasmic factors apparently 

control DNA replication (NEWPORT and KIRSCHNER 1984; POURQUIE 1998). During 

the early cleavage cycles, N/C ratio is low and cell cycles proceed. Since there is no 

cell growth during cleavage stage, N/C ratio became higher and when it reaches a 

certain threshold, cell cycle stops. It is proposed that there may be a cytosolic factor 

which would be gradually depleted during DNA duplication, and eventually the 

amount of this factor is lower than a threshold, the cell cycle stop.  

By manipulating chromosomal aberration in Drosophila, Lu and colleagues found 

that the DNA content threshold is required for mitosis stop the cleavage cycle is about 

70% of the amount normally present at cycle 14. This threshold between the DNA 

present at cycle 13 and cycle 14 may ensure the robust decision-making to define the 
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onset of MBT and tolerate the fluctuations of cytoplasmic volume(LU et al. 2009). 

The injection of lamda plasmid DNA at level of 2.5ng/embryo is sufficient to 

severely slow down the cleavage cycle and activates the checkpoint kinase 1 pathway 

in early Xenopus embryo. This level is equivalent to the DNA content of MBT (CONN 

et al. 2004; PENG et al. 2007). This result suggests that the sensor for the N/C ratio 

must sense the amount of DNA directly, but not other chromosome structure or 

nuclear materials. However, this extact factor remains illusive. 

Another specific issue concerning the N/C ratio in Drosophila is how individual 

nucleus responds to N/C ratio. Although all the synctial nuclei are in the same 

cytoplasm, there may still be local difference for the composition of cytoplasm. It is 

possible that the embryo decides to stop the cell cycle as a whole, but it is not true 

since the patchy embryos containing patches of different nuclear density were 

observed (Figure 4). This observation also rejects the idea that individual nuclei 

responds to its surrounding and makes the decision individually. If it were this case, 

the embryo would show salt and pepper pattern. Therefore the most likely model is 

that there would be some local communication between neighboring nuclei to decide 

when to stop the cell cycle collectively (LU et al. 2010). 

 

Figure 4: the decision making of cell cycle stop is regional (adapted from Lu 2009). The 

patchy embryo is the only intermediate phenotype observed when the cell cycle control is 

altered.  
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The CDC25 protein phosphatases play an important role in controlling the cell 

cycle. The Cyclin-dependent kinase is inactive when being phosphorylated on 

Threonine 14 and Tyrosine 15 by the inhibitory kinases Wee1 and Myt1 (RUSSELL and 

NURSE 1987a; RUSSELL and NURSE 1987b). CDC25 protein phosphatasez 

dephosphorylate T14 and Y15 of Cdk and promotes cells ito motosis (Figure 5)  

(EDGAR et al. 1994a; EDGAR and O'FARRELL 1990; RUSSELL et al. 1989; RUSSELL and 

NURSE 1986; STRAUSFELD et al. 1991). 

In Drosophila, there are two CDC 25 homologs, string and twine. Both of them are 

present maternally in early embryo, and are degraded at cycle 14. 5% of twn- 

overexpressd (6 copies) embryos undergo an extra mitosis, while 10% of the 

heterozygous twn with homozygous stg have only 12 mitoses. Therefore, the dose and 

degradation of CDC25 homologous is required for proper stop of cell cycle at MBT. 

The degradation of stg and twn requires the zygotic activation (EDGAR and DATAR 

1996; EDGAR et al. 1994b). 

 

Figure 5: CDC 25 phosphatase activates the cyclin-CDK complex by removing the inhibitory 

phosphate. The cyclin-CDK is phosphorylated by CAK which activated it, however, 

cyclin-CDK is also phosphorylated by Wee1/Myt 1 which inhibits cell cycle. The removal of 

this in inhibitory phosphate by CDC25 is essential for cell cycle progression. 
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Another zygotic contribution to stop the cell cycle is the expression of zygotic 

inhibitors of cell cycle. The cell cycle inhibitors frühstarts and tribbles express at 

early cycle 14 and are sufficient to stop the cell cycle (GROSSHANS et al. 2003; 

GROSSHANS et al. 2005). 

During the cleavage stage, the DNA damage checkpoint pathway is not activated. 

The DNA damaging agents UV radiation or injection of DNA double-strand breaks 

(DSB) fails to activate the checkpoint pathway and prevent the cell cycle progression 

before MBT. But the experiment show that checkpoint kinase can be activated prior 

the MBT if the DSBs are co-injected with the sufficient amount of uncut plasmid 

DNA (roughly equivalent to the DNA content at 10th embryonic division). This result 

suggests that actually all the components of the DNA checkpoint pathway are 

supplemented maternally into the embryos but are inactivated by an unknown 

mechanism and only activated at MBT. Also, the result suggests the activation of 

DNA checkpoint pathway is controlled by the nuclear-cytoplasmic ratio and the 

activation of checkpoint pathway is slightly prior MBT. The lack of DNA checkpoint 

ensures the rapid and synchronous cycles to produce large amount of cells in very 

short period. 

However, the activation of DNA checkpoint pathway is not just the consequence of 

MBT, but also plays an important role in prolonging the interphase and stop the 

cleavage cycle. In Drosophila, the mutations in checkpoint kinase 1 homologue, 

grapes (grp) block the cellularization and repress the gradual increase of interphase in 

division 11-13.  

It is proposed that the function of grapes in increase in cell cycle time is via the 

phosphorylation on CDC25 phosphatase and leading it to degradation. CDC25 

phosphatase dephosphorylates and activates CDKs, therefore, promotes the cell cycle. 

The removal of CDC25 protein and transcripts is required for the proper stop of cell 
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cycle at MBT. Therefore, String and Twin, the CDC25 homologous, seems to be good 

candidate targets for chk 1. However, checkpoint kinase 2, mnk, suppresses the 

cellularizarion and zygotic activation defects in grp, but does not restore cell cycle 

timing or replication-checkpoint function. This leads to the hypothesis that the lack of 

grp induces the DNA damage, which activates a Chk2-dependent block to 

developmental progression.  

1.3. Degradation of Maternal Transcripts 

Prior to the MBT, the early developmental events are driven exclusively by the 

maternal transcripts and proteims. It is estimated that there are about 6500 to 7700 

distinct mRNAs loaded into the eggs (DE RENZIS et al. 2007; TADROS et al. 2007a; 

TADROS et al. 2007b). Many of these maternal transcripts are degraded at MBT. 

Among these transcripts, about 1600 distinct mRNAs (20%) would be in unfertilized 

eggs, indicated a MBT-independent degradation pathway. However, in fertilized and 

activated embryos, about 33% of maternal transcripts would be degraded 

dependenting on MBT (Figure 6). The level of the other maternal transcripts is not 

obviously changed, which means either they are immediately replaced by zygotic 

transcripts or they are very stable and not degraded at MBT (DE RENZIS et al. 2007; 

TADROS et al. 2007a; TADROS et al. 2007b).  

Therefore, the degradation of maternal transcripts is mediated by two distinct 

pathways. The first one is driven by the maternally loaded protein/transcripts, which 

function even without fertilization or egg activation; the second pathway is dependent 

on zygotic activation (BASHIRULLAH et al. 1999).  
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Figure 6: Degradation profiles of maternal transcripts during MZT (adapted from Tadros, 

2009). There are different types of maternal transcripts: stable mRNA, like rpA1; degraded 

mainly by maternal pathway, like nos, or mainly zygotically, like bcd; or by both maternal 

and zygotic pathways, like hsp83. 

 

Bashirullah also identified two loci, cortex and grauzone, which are required for the 

maternal degradation pathway. Another RNA binding protein, Smaug (SMG) is 

identified as a key factor mediating the maternal transcript destabilization and 

translation repression in early embryos (DAHANUKAR et al. 1999; TADROS et al. 

2007a). SMG can bind to a specific RNA motif, SMG recognition elements (AVIV et 

al. 2003; SMIBERT et al. 1996). SMG recruits the CCR4/POP2/NOT-deadenylase 

complex to the target mRNA, then mediates the deadenylation to remove the poly-A 

tail of mRNA and leads to degradation (SEMOTOK et al. 2008). Piwi-associated RNAs 

(piRNAs) also involved in CCR4-mediated deadenylation and translation repression 

(ROUGET et al. 2010).  

The small non-coding RNA plays an important role in the zygotic degradation 

pathway. In zebra fish, the zygotic-expressed miR430 is required and sufficient to 

promote the degradation of more than 750 maternal transcripts(GIRALDEZ et al. 2006). 

In Drosophila, the miR-309 family of miRNAs also target the maternal transcripts for 

degradation in a similar manner as the miR430 in zebrafish (BUSHATI et al. 2008).  
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1.4. Zygotic Gene Activation (ZGA) 

Although the major activation of zygotic gene expression is at cycle 14, some 

zygotic genes, like the sex-determination gene, can be detected as early as in cycle 8 

(ERICKSON and CLINE 1993).  

Zygotic activation is required for the final pause of the cell cycle, part of the 

maternal degradation, cellularization and gastrulation (EDGAR and DATAR 1996; 

EDGAR and SCHUBIGER 1986; NEWPORT and KIRSCHNER 1982b). When α-amanitin, 

inhibitor of RNA polymerase II, is injected into the early embryo, the cell cycle 

continues for one additional nuclear division.  

Combining the genetics with large chromosome deletion and genome-wide analysis, 

De Renzis and his colleagues have identified the relative maternal and zygotic 

contribution for the expression of each individual gene during MBT(DE RENZIS et al. 

2007). It is estimated that there are 1158 genes which expressed zygotically. Among 

them, 334 genes can be considered pure zygotic. It means they are not only expressed 

zygotically but also are absent or at very low level in unfertilized or 0 to 1 hr 

embryos(DE RENZIS et al. 2007). The remaining 824 zygotic genes replace the 

corresponding maternal transcripts. 

Further genome-wide analysis between the haploid and wild-type embryos revealed 

that there were two subsets of pure zygotic genes. One is N/C dependent, which only 

contains minority of genes (88 out of 290). The remaining are N/C independent. 

However, within these two groups, the function of genes is heterogeneous, and the 

function of genes in these two groups are overlapping(LU et al. 2009). 

Frühstart (frs) is one of the known zygotic gene responding to N/C ratio. It was 

reported to involve in the mesoderm invagination (mitotic domain 10) by delaying the 
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entry into mitosis (GROSSHANS and WIESCHAUS 2000). Further examination showed 

that frühstart was also involved in the pause of the cleavage cell cycle after 13 nuclear 

divisions, ensuring a proper cell number and timed onset of cellularisation 

(GROSSHANS et al. 2003). Frs encode a 90 amino-acids peptide which competes the 

hydrophobic patch of cyclin E with the subtracts of cyclin/CDK complex(GAWLINSKI 

et al. 2007). 

Frs has a narrow expression peak starting only at the early cycle 14, correlates the 

pause of the cleavage cycles and MBT. The expression of frs is delayed to the extra 

division in haploid embryos (Figure 7), while other zygotic gene, like nullo, is still 

expressed at cycle 14. The expression of frs responds to N/C ratio and may serve a 

curial link between the pause of cell cycle and nucleocytoplasmic ratio. In order to 

reveal the mechanism how the MBT is initiated and how the number of nuclear 

division cycles is determined by the N/C ratio, I propose to investigate the 

transcriptional regulation of frs. 

 

Figure 7: The expression of frs as a readout of N/C ratio. (A)the expression profile of 

frs. Blue: diploid, red: haploid. (B)in situ hybridization of frs in diploid and haploid 

embryos (adapted from Grosshans, 2003). 
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Many zygotic genes share a common motif at their upstream region. This motif is 

called TAGteam (CAGGTAG) (DE RENZIS et al. 2007; ERICKSON and CLINE 1998; 

TEN BOSCH et al. 2006). Through the yeast one -hybrid analysis, Liang and her 

colleagues identified the zinc-finger transcription factor, Zelda (LIANG et al. 2008). 

Zelda specifically binds to the TAGteam motifs and is required for the expression of 

early zygotic genes before cellularization. Although Zelda is one of the key activator, 

zld mRNA already presents maternally. Zelda may need to be activated by other 

factors at MBT, or there may be some other transcription factors involved to give a 

fine regulation. Since Zelda is required for the expression of N/C dependent and N/C 

independent zygotic genes, the later idea for the contribution of other factors seems 

reasonable.  

Although the earliest zygotic transcript can be detected at cleavage cycle 8, the 

majority of the zygotic genes starts at early cycle 14. It is quite reasonable to assume 

that there is the global inactivation mediated by an epigenetic mechanism. In Xenopus, 

it is showed that the DNA methylation is required for the overall transcriptional 

silencing before MBT. When the DNA methyltransferase 1 (xDnmt1) is depleted, the 

zygotic transcription activates approximately two cell cycles earlier then normal in 

Xenopus (STANCHEVA and MEEHAN 2000). However, the RNA interference against 

Dnmt2, the only DNA methyltransferase in Drosophila genome, causes no obvious 

effect in early Drosophila embryogenesis (KUNERT et al. 2003). It remains uncertain 

whether there is a transcriptional repressor or general silencing mechanism preventing 

the early zygotic activation before MBT in Drosophila. However, SMG is also 

required for the zygotic gene activation, which can be explained by the degradation of 

maternal transcript of transcriptional repressor by SMG (Figure 8) (BENOIT et al. 2009; 

TADROS and LIPSHITZ 2009). 
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Figure 8: SMG may affect the ZGA by remove transcription repressor (adapted from Tadros, 

2009). The maternal expressed transcription repressor like TxnR inhibits the transcription 

before MBT; when SMG is gradually translated and promotes the degradation of the 

transcript of transcription repressor therefore reduces the repressor protein and the zygotic 

gene can be transcripted 

 

1.5. The coordination of events at MBT 

Although the features of MBT: the cell cycle pause, the maternal-zygotic transition 

and cellulatization, occur roughly simultaneously. Experiments show that there may 

not be one single mechanism controlling all events at MBT. Instead, different 

transitions control different events (YASUDA and SCHUBIGER 1992). Even the single 

event may be controlled by combination of distinct pathways. For example, the 

degradation of maternal transcripts is mediated by both maternal and zygotic 

degradation pathways. Another example is the zygotic genome activation. Two 

distinct categories of zygotic genes, N/C dependent and N/C independent, are 

observed. Instead of find a single mechanism controlling the whole MBT, the current 

challenge is understand how different events coordinate each other at MBT to 

continue the developmental process smoothly and thoroughly. 
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Aim of the studies 

To further investigating the mechanism how the timing of MBT is controlled, I 

used two approaches. First, I investigated the regulatory elements controlling frühstart 

(frs), whose expression responds to the N/C ratio. Secondly, I investigated the mutant 

X161, which showed premature pause of cell cycle, and caused the embryos 

underwent only 12 nuclear divisions. 
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2. Materials and Methods 

2.1 Materials 

2.1.1 Regents 

All standard chemicals were purchased from Sigma-Aldrich (Steinheim, Germany), 

AppliChem GmbH (Darmstadt, Germany), Serva (Heidelberg, Germany), Merck 

(Darmstadt, Germany) or Gibco BRL (Eggenstein, Germany) unless otherwise 

mentioned 

2.1.2 Radioactivity  

- Adenosine 5'-[γ-
32

P]-triphosphate (6000Ci/mmol, 220TBq/mmol), Hartmann 

Analytic GmbH 

- Deoxycytidine 5‟-[α-
32

P]-triphosphate (6000Ci/mmol, 220TBq/mmol), Hartmann 

Analytic GmbH 

2.1.3 Antibiotics 

-Ampicillin, stock (1000X): 100mg/ml, used in a final concentration: 50-200μg/ml. 

- Chloramphenicol: stock (1000x) 34 mg/ml, used in a final concentration of 34 μg/ml 

- Geneticin (G418): stock (1000X) 75 mg/ml, used in a final concentration of 75 

μg/ml 

2.1.4 Enzymes 

Restrict enzymes: all enzymes were purchased from Fermentas, New England 

Biolabs (Ipswich, USA) or Roche Diagnostics GmbH (Penzberg, Germany) and used 

according to the instructions delivered by the producers unless otherwise mentioned.  

The other enzymes used in this study is: Pfu DNA polymerase (prepared in the lab), 

Protease K (Roche), RNase A (Qiagen), SP6 RNA polymerase (Promega), Taq 

polymerase (prepared in the lab), T4 DNA ligase (Fermentas), T3 RNA polymerase 

(Roche), T7 RNA polymerase (prepared in the lab) 
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2.1.5 RNA probe for in situ hybridization 

All the RNA probes were labeled with digoxigenin-UTP (DIG-UTP), the RNA probe 

used in this study as followed: Dig αEGFP, Dig α slam, Dig α twin, Dig α string, Dig 

α bottleneck, Dig α nullo, Dig α hairy, Dig α frühstart. 

 

2.1.6 Primary antibodies 

Protein Against Animal 
Concentration 

Origin 
staining western 

-CID rabbit 1:1000  Stefan Heidmann, Bayreuth 

-Dig(Alkaline 

phophatase) 

sheep 1:2000  Roche 

-EGFP rabbit 1:1000  Torrey-Pines Biolabs 

-Frühstart rabbit 1:1000  Princeton 

-Frühstart guinea pig 1:1000  Charles River 

-β-galactosidase mouse 1:1000  Boehringer 

-p-Histone H3(S10) mouse 1:500  Millipore 

-kugelkern rabbit 1:1000  (BRANDT et al. 2006) 

-kugelkern guinea pig 1:1000  Charles River 

-Lamin Dmo mouse 1:1000  By H. Saumweber 

-Lamin Dmo guinea pig 1:1000  By G. Krohne 

-Pol II active form, H5 mouse 1:100 1:500 Millipore 

-Pol II, Ana 3 mouse  1:1000 Millipore 

-Pol II, CTD4H8 mouse  1:250 Millipore 

-Pol II, 8WG16 mouse  1:1000 Millipore 

-Slam rabbit 1:5000  Charles River 

-Slam guinea pig 1:5000  Charles River 

-α-Tublin mouse  1:5×10
6
 Sigma 

-γ-Tublin mouse 1:1000  Sigma 
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2.1.7 Secondary Antibodies 

All the secondary antibodies used in this study were obtained from Invitrogen. 

 

2.1.8 Other reagents used in immunostainings  

- DAPI (4‟,6‟-Diamino-2-phenylindole): DNA staining, in a final concentration of 0.4 

μg/ml (Sigma-Aldrich)  

-oligreen (Molecular Probes, desicate at -20ºC): dilute 1:500 (stock, store at 4°C), 

stain at further 1:100 (strong) with 50 µg/ml RNaseA for at least 30 min. 

- Phalloidin-Alex 488: used for actin staining, in a final concentration of 6 nM (Molecular 

Probes)  

- Mounting medium: Aquapolymount (Polysciences, Eppelheim) 

 

2.1.9 Buffer  

- Genomic DNA extraction buffer: 

 

 

 

- DEPC water: 

 

 

- PBS:  

 

 

 

 

- PBST: 

 

 

- Fixation solution: 

 

 

 

30 mM  

100 mM 

19 mM  

 

2ml 

1 l 

 

130 mM 

7 mM 

3 mM 

 

 

 

 

 

5ml  

0,5 ml 

5ml 

 

Tris/HCl (pH 8) 

NaCl 

EDTA 

 

diethyl pyrocarbonate 

water 

 

NaCl 

Na2HPO4 

NaH2PO4 

adjust to pH 7.4 

 

0,2 % Tween 20 

PBS 

 

PBS 

Formaldehyde (37%) 

Heptane 
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-TAE: 

 

 

- TE: 

 

 

- 6xLadderbuffer: 

 

 

 

 

 

For in situ Hybridisation 

- NTP+Dig labeling mix (10x): 

 

 

 

 

 

- Transcription buffer (10x): 

 

 

 

 

 

- NBT/BCIP: 

 

 

- Hybridisation solution: 

 

 

 

 

- AP buffer: 

 

 

 

 

40mM 

1mM 

 

10mM 

1 mM 

 

10 mM 

0,03 % 

0,03 % 

60% 

60 mM 

 

 

10 mM  

10 mM 

10 mM 

6,5 mM 

3,5 mM 

 

400mM 

60mM 

100 mM 

20 mM 

100 mM 

 

75 mg/ml 

50 mg/ml 

 

50 % 

5x 

50 μg/ml 

100 μg/ml 

 

100mM 

50 mM 

100 mM 

0,2 % 

 

Tris-Ac 

EDTA 

 

Tris/HCl (pH8,0) 

EDTA 

 

Tris/HCl (pH 7,6) 

Bromophenol blue 

Xylenocyanol FF 

Glycerine 

EDTA 

 

 

ATP 

GTP 

CTP 

UTP 

Dig-11-UTP (Roche) 

 

Tris/HCl, pH 8,0 

MgCl2 

DTT 

Spermidine 

NaCl 

 

Nitrobluetetrazolium 

BCIP (X-phosphate, Sigma) 

 

formamide 

SSC 

heparin 

tRNA 

 

NaCl 

MgCl2 

Tris pH 9,5 

Tween 20 
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Fur medi plasmid DNA purification 

- Resuspension Buffer S1 

 

 

 

- Lysis Buffer S2: 

 

 

- Neutralization Buffer S3: 

 

 

- Equilibration Buffer N2: 

 

 

 

 

 

 

- Wash Buffer N3: 

 

 

 

 

- Elution Buffer N5: 

 

 

 

 

For min prep of plasmid-DNA 

- Solution I: 

 

 

- Solution II: 

 

 

- Solution III:  

 

 

50 mM 

10 mM 

100 μg/ml 

 

 

200 mM 

1 % 

 

2.8 M 

 

 

100 mM 

15 % 

900 mM 

0.15 % 

 

 

 

100mM 

15 % 

1.15 M 

 

 

100 mM 

15 % 

1 M 

 

 

 

50 mM 

10 mM 

 

1 % 

0.2 M 

 

3 M 

 

 

Tris/HCl 

EDTA 

RNase A 

adjusted to pH 8,0 

 

NaOH 

SDS 

 

potassium acetate  

adjutsted to pH 5,1 

 

Tris 

ethanol 

KCl 

Triton X-100 

adjusted to pH 6,3 with H2PO4 

 

 

Tris 

ethanol 

KCl 

adjusted to pH 6.3 with H2PO4 

 

Tris 

ethanol 

KCl 

adjusted to pH 8.5 with H2PO4 

 

 

Tris/HCl, pH 8 

EDTA 

 

SDS 

NaOH 

 

potassium acetate 

adjusted to pH 5.4 
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For isolation and fractionation of 

nuclei 

-Buffer A 

 

 

 

 

 

 

-Buffer B 

 

 

 

 

 

 

-Buffer C 

 

 

 

 

-High salt buffer 

 

 

 

For EMSA 

-5X Tris-glycine buffer: 

 

 

-2X binding buffer: 

 

 

 

 

 

-6X loading buffer: 

 

250mM 

 

 

350mM 

15mM 

10mM 

5mM 

500mM 

1mM 

 

800mM 

15mM 

10mM 

5mM 

500mM 

1mM 

 

15mM 

10mM 

3mM 

1mM 

 

15mM 

1M 

1mM 

 

 

12.5mM 

2M 

 

20mM 

20% 

0.2mM 

1mM 

0.5mM 

 

0.25% 

 

Tris 

 

 

sucrose 

Hepes/KOH pH7.5 

KCl 

MgCl2 

EGTA 

DTT 

 

sucrose 

Hepes/KOH pH7.5 

KCl 

MgCl2 

EGTA 

DTT 

 

Hepes/KOH pH7.5 

KCl 

MgCl2 

DTT 

 

Hepes/KOH pH7.5 

NaCl 

DTT 

 

 

EDTA 

glycine 

 

HEPES pH7.9 

glycerol 

EDTA 

tetrasodium pyrophosphate 

PMSF 

 

bromophenol blue 
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For western blot  

-Wet transfer buffer  

 

0.25% 

40% 

 

 

25mM 

175mM 

20% 

  

xylene cyanol 

sucrose 

 

 

Tris 

Glycine 

Methanol 

2.1.10 Media for bacterial culture 

- LB: 10 g bactotryptone, 5 g yeast extract, 10 g NaCl in 1l water, autoclaved. 

-LB plate: 10 g bactotryptone, 5 g yeast extract, 10 g NaCl, 15g agar in 1l water, 

autoclaved, then add required antibiotic at 55℃ 

 

 

2.1.11 Fly food 

10 l water together with 128 g thread agar was cooked for 2 h, till the agar is 

completely dissolved400 g fresh baker yeast, 160 g soja bean meal and 1,28 kg maize 

meal was suspended in 4 l water ,  mixed and was added to the agar and cooked 

another 2 h. 1,28 kg malt extract and 350 g sugar beet molasses was suspended  in 2 

l water and was added to the mixture. The food was cooked for 30 min and afterwards 

it will be cool down below 60°C. 24 g Nipagin (solved in ethanol) and 150 ml 

propionic acid was added, mixed and the fly food was filled up in vials. The vials 

were closed with plags and stored at 18°C. 

2.1.12 Apple juice plates 

70 g agar was dissolved in 3 l of water. In 1 l apple juice was dissolved 100 g of 

sugar in a 60 °C water bath. 40 ml Nipagin-solution (15 % Nipagin in ethanol) was 

added to the apple juice. The sweetened apple juice was added to the agar, mixed and 

cool down to 60°C. The apple juice agar was poured in Petri dishes and stored at 4°C. 
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2.1.13 Oligonucleotides 

Molecular Cloning 

Nr. Sequence 

SV1 ggc tcg agt aca tgg tgg tgg gga gat g 

SV5 gga tcg ata ata act gct agg ctg gc 

SV6 ggc tcg agc gaa ttc ctt tct aat tta ttg c 

SV7 ggc tcg agg cga gaa ttt tct gcg gaa at 

HS1 gtc gac ctg cgg aaa ttt taa tta tga gc 

HS2 gtc gac agt aat ggg ttt tag tct acc gc 

HS3 gtc gac agt gga tat aaa gaa ggc cgt g 

HS4 gtc gac aat atc tgc gcg gaa aat aca g 

HS5 gtc gac agt gac aga tgt gga aaa cgg ata ag 

HS6 gtc gac cta atc cct ttt taa tgc gtt cag 

HS7 gtc gac agt gac aga tgt gga aaa cgg 

HS8 gtc gac taa tgg gtt tta gtc tac cgc 

HS9 gtc gac gca cca taa aag tga cag atg tg 

HS10 gtc gac ctc ata att aaa att tcc gca g 

HS11 gaa ttc atg gtg agc aag ggc 

HS12 gaa ttc cta ctt gta cag ctc gtc c 

HS13 cgc ctc gag ggc agt gat tcc gat tta gca 

HS14 cgc ctc gag aga gac acc cgc aaa gag 

HS15 cgc ctc gag agt ggg ttc ttt cac ctg 

HS16 cgc gaa ttc atg gtg agc aag ggc 

HS17 cgc gaa ttc ctt gta cag ctc gtc c 

HS18 cta taa gtc gac agt gga tat aaa gaa ggc cgt g 

HS19 tcc act gtc gac aat atc tgc gcg gaa aat aca g 

HS20 tat gac gtc gac gca cca taa aag tga cag atg tg 

HS21 tgg tgc gtc gac ctc ata att aaa att tcc gca g 

HS22 gga aat ttt aat tat gag gtc gac gca cca taa aag tg 

HS23 gta gac taa aac cca tta gga gtc gac gtc gta att ctg aac gca 

HS24 tgc gtt cag aat tac gac gtc gac tcc taa tgg gtt tta gtc tac 

HS25 ctc gcg taa ttc tga acg gga gtc gac gtc att ag cga gaa ttt tct gcg  

HS26 c gca gaa aat tct cgc t aat gac gtc gac tcc cgt tca gaa tta cgc gag 

HS27 agg gat tag cga gaa tt gga gtc gac gtc ttt aat tat gag cag gta g 

HS28 c tac ctg ctc ata att aaa gac gtc gac tcc aa ttc tcg cta atc cct 

HS29 cag gta gca cca taa aag gtc gac aca tg gga aaa cgg ata agc tg 

HS30 ca gct tat ccg ttt tcc ca tgt gtc gac ctt tta tgg tgc tac ctg 

HS31 ctg tat ttt ccg cgc a gga gtc gac gtc agt cct gaa att gca cac 

HS32 gtg tgc aat ttc agg act gac gtc gac tcc t gcg cgg aaa ata cag 

HS33 g atg tgg aaa acg gat a gga gtc gac gtc att gca gat att tat ggc ag 

HS34 ct gcc ata aat atc tgc aat gac gtc gac tcc t atc cgt ttt cca cat c 

HS35 ctg cgg aaa ttt taa tta tga g gtc gac gca cca taa aag tga cag atg  
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HS36 cat ctg tca ctt tta tgg tgc gtc gac ctc ata att aaa att tcc gca g 

HS37 gcg aagctt tggag aacgt tgtta gcggtg 

HS40 cgc atc gat tgg aga acg ttg tta gcg gtg 

HS41 cgc ctc gag tgt gga aaa cgg ata agc 

HS42 cgc ctc gag gat tgg att att gaa agc 

HS43 cgc ctc gag ctt taa gga att att atc 

HS44 cgcatcgatggagaacgttgttagcggtg 

HS45 cgcggtaccccaacccgctcatctcgc 

HS46 ccggtcgaccatgcagccgccgcactg 

HS47 cgcctcgaggatgttgagacatatcctg 

HS48 ccgatcgat cga gcg gcg ggc ata tat ac 

HS49 ccg ggtacccatgcagccgccgcactg 

HS50 gca gga att cga tat caa gc 

HS51 ccg atc gat tgt gca att tca gga ctg c 

HS129 cgc ctc gag gac ttt atg gcg gta gac 

HS130 cgc ctc gag ccc att act acc tgc tcg 

HS351 cgctctagaccactgcatccgcgctggtg 

HS352 gccgcggccgcgagtggccgcactggctctc 

HS357 ctcccccagcacgtcccgaactccggggcggtcaag 

HS358 cttgaccgccccggagttcgggacgtgctgggggag 

HS363 agcctgagaaacggctacca 

HS364 agctgggagtgggtaatttacg 

HS365 ctagctcagtcggtagagcatga 

HS366 ccaacgtggggctcgaac 

 

Oligos for the EMSA 

Nr. Sequence 

HS52 agc ttg cat ctt cag tta tcg gtt atg cgg cgt tta ag 

HS53 tcg act taa acg ccg cat aac cga taa ctg aag atg ca 

HS54 cgg agt act gtc ctc cgc gga gta ctg tcc tcc gcg gag tac tgt cct cc 

HS55 gga gga cag tac tcc gcg gag gac agt act ccg cgg agg aca gta ctc cg 

HS56 att ctg aac gca tta aaa agg gat tag cga gaa tt 

HS57 aat tct cgc taa tcc ctt ttt aat gcg ttc aga at 

HS58 ttt ccg cgc aga tat tta tgg cag tcc tga aa 

HS59 ttt cag gac tgc cat aaa tat ctg cgc gga aa 

HS52 agc ttg cat ctt cag tta tcg gtt atg cgg cgt tta ag 
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HS53 tcg act taa acg ccg cat aac cga taa ctg aag atg ca 

HS54 cgg agt act gtc ctc cgc gga gta ctg tcc tcc gcg gag tac tgt cct cc 

HS55 gga gga cag tac tcc gcg gag gac agt act ccg cgg agg aca gta ctc cg 

HS56 att ctg aac gca tta aaa agg gat tag cga gaa tt 

HS57 aat tct cgc taa tcc ctt ttt aat gcg ttc aga at 

HS58 ttt ccg cgc aga tat tta tgg cag tcc tga aa 

HS59 ttt cag gac tgc cat aaa tat ctg cgc gga aa 

HS63 cag tcc tga aat tgc ac 

HS64 gtg caa ttt cag gac tg 

HS65 gga aaa cgg ata agc tgt att ttc cgc gca 

HS66 tgc gcg gaa aat aca gct tat ccg ttt tcc 

HS67 acc ata aaa gtg aca gat gtg gaa aac gga 

HS68 tcc gtt ttc cac atc tgt cac ttt tat ggt 

HS69 ttt aat tat gag cag gta gca cca taa aag 

HS70 ctt tta tgg tgc tac ctg ctc ata att aaa 

HS71 gcg aga att ttc tgc gga aat ttt aat tat g 

HS72 cat aat taa aat ttc cgc aga aaa ttc tcg c 

HS73 Cattactacctgctcgcgtaattctgaacg 

HS74 Cgttcagaattacgcgagcaggtagtaatg 

HS75 gac taa aac cca tta cta cct gct cgc gta 

HS76 tac gcg agc agg tag taa tgg gtt tta gtc 

HS77 agg cgg act tta tgg cgg tag act aaa acc 

HS78 ggt ttt agt cta ccg cca taa agt ccg cct 

HS79 aat tta ttg cga ttt gta aaa ggc gga ctt 

HS80 aag tcc gcc ttt tac aaa tcg caa taa att 

HS81 ctc gag cga att cct ttc taa ttt att gcg 

HS82 cgc aat aaa tta gaa agg aat tcg ctc gag 

HS83 tta tgg tgc tac ctg ctc 

HS84 att atg agc agg tag cac cat a 

HS85 tat ggt gct acc tgc tca taa t 

HS86 aat tta ttg c 

HS87 gca ata aat t 

HS88 gat ttg taa a 

HS89 ttt aca aat c 

HS90 agg cgg act t 

HS91 aag tcc gcc t 

HS92 tat ggc ggt a 
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HS93 tac cgc cat a 

HS94 gac taa aac c 

HS95 ggt ttt agt c 

HS96 Atttgtaaaaggcggactttatggcggtag 

HS97 Ctaccgccataaagtccgccttttacaaat 

HS98 Ttgcgatttgtaaaaggcggactttatggcggtagactaa 

HS99 Ttagtctaccgccataaagtccgccttttacaaatcgcaa 

HS100 Cgaattcctttctaatttattgcgatttgtaaa 

HS101 Tttacaaatcgcaataaattagaaaggaattcg 

HS102 Tttctaatttattgcgatttgtaaaaggcg 

HS103 Cgccttttacaaatcgcaataaattagaaa 

HS104 Attgcgatttgtaaaaggcggactttatgg 

HS105 Ccataaagtccgccttttacaaatcgcaat 

HS106 Gatttgtaaaaggcggactttatggcggta 

HS107 Taccgccataaagtccgccttttacaaatc 

HS108 Gtaaaaggcggactttatggcggtagacta 

HS109 Tagtctaccgccataaagtccgccttttac 

HS110 Gactttatggcggtagactaaaacccatta 

HS111 Taatgggttttagtctaccgccataaagtc 

HS112 Tatggcggtagactaaaacccattactacc 

HS113 Ggtagtaatgggttttagtctaccgccata 

HS114 Cggtagactaaaacccattactacctgctc 

HS115 Gagcaggtagtaatgggttttagtctaccg 

HS116 aatttattgcgatttgtaaaaggcggactttatggcggtagactaaaacc 

HS117 gaaattgttacgaattcc ga gtc gac gtc att a gatttgtaaaaggcggac 

HS118 gtccgccttttacaaatctaatgacgtcgactcggaattcgtaacaatttc 

HS119 cctttctaatttattgc ga gtc gac gtc att a gactttatggcggtagac 

HS120 gtctaccgccataaagtctaatgacgtcgactcgcaataaattagaaagg 

HS121 ctaatttattgcgatttgtaaa ga gtc gac gtc att a cggtagactaaaaccc 

HS122 gggttttagtctaccgtaatgacgtcgactctttacaaatcgcaataaattag 

HS123 gtaaaaggcggactttatgg ga gtc gac gtc att a cattactacctgctcgcg 

HS124  cgcgagcaggtagtaatgtaatgacgtcgactcccataaagtccgccttttac 

HS127-bio bio-ccc tgg aca gca aga agt att c 

SV5-biotin bio-cct cga gcg aat tcc ttt cta att tat tgc 

 

SNP mapping 
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Nr. Sequence 

HS131 tcc tcg cat tca ttt ctc gca ca 

HS132 acg gct ctc gct ttc tcc ttc ca 

HS133 ctt gtg tgc gtg cgt gtg tgt gt 

HS134 cct gct gcg gtt tca gtt gtc att tt 

HS135 tcg gtg tgc gtt ttg ttc tgg ttt t 

HS136 tgg aca cag cag gag cag agt agg tg 

HS137 cac agt ccg cgt caa gag caa ca 

HS138 agc cac atc ttc atc gtc ttc agc atc 

HS139 ttt ttg cca ttt ctg ctg ta 

HS140 gaa cat ttg tag cgt gca gat 

HS155 Gacaaaggcttcggcgatct 

HS156 tga aga ttc ttg gcg agc cg 

HS157 ttt tct tga ggg gcc tgg ga 

HS158 ggg aca ctg aag cgc taa gg 

HS159 cca ttc agc aag ccc ctg tt 

HS160 tgg gta tcg ggt agt cga gc 

HS161 cct cgt gtg gca agc gaa ta 

HS162 tct tgg cac gtt gtt gtc gt 

HS164 acg agt gtt ggc ctg tcg gg 

HS165 ggc cca gga gca agg caa ga 

HS166 ggc aca tgc cac acg cac aa 

HS167 gcc act gcc ttt tgc acc cc 

HS176 tcttggggtgatcacgcagc 

HS177 cat ggg tcc gca gaa cac g 

HS178 tcc tcg cat tca ttt ctc gc 

HS179 ggc tct cgc ttt ctc ctt c 

HS180 cat cca tcc aac cat cca tcc 

HS181 cga atg cca aga gcc aaa cac 

HS182 tgc ttc ctt gca ccc tta att tg 

HS183 cga ttt tcc gtc ccg tct gat 

HS184 cag cca gga tta cat ggg tgt c 

HS185 gtt ttt cgg cat ttc ggg ttt c 

HS186 gtc gac cgc cca aat gtc gc 

HS187 gcc ctc ccc cac ctt tcc ac 

HS188 agt ggt ggg gcg gaa atg gg 

HS189 cgg aaa cgg aag cgg aag cg 
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HS190 cga aca aat ggg cgg ggt gc 

HS191 ggg acg gca gaa acg ggg aa 

HS192 ctc tgg gct ccc cta tcc cc 

HS193 ctg cag aag gac gac ccc ac 

HS194 cac gat caa gcc cgc gtt tc 

HS195 agc atc ccc aac gaa cga cc 

HS196 cgg gga aga cca cgc atc tc 

HS197 cgg ctc tcg cca tct ctg tc 

HS198 agt caa gag cgg tga gtg cg 

HS199 tgg cag gag gtg cgg ttt tt 

HS200 aaa aac gcc gac tgc aca gc 

HS201 gat gga gaa ggg ttg ggc cg 

HS202 gtc gca ggc ccc ttt tcg ta 

HS203 agc ggg atg gca tca agg tg 

HS204 gtt tgc ggg tgc ggc ttt gg 

HS205 att ggc ctt ggg tca gcc gc 

HS206 cag cgc tcc tgg gaa cca gc 

HS207 act ccg cag gct ttt ccg cc 

HS215 gcc agc aaa ctg acc aca ga 

HS216 aat gca act gca gcg aaa gc 

HS217 ggt gga ggg agg aac gta ca 

HS218 aca ggc gtt gtt gct gtc at 

HS219 cca aaa gaa acg cac gcg aa 

HS230 aat tcg gag agc gga agt gc 

HS231 ata ttt cgc cct gca tgc gt 

HS232 tcg cgg gaa cgt ttc ttc tc 

HS233 tgc agc agc ggt act gaa tc 

HS234 agc gtt ttg ggt ctg gga ac 

HS235 gaa ggg cag taa ctc gct gg 

HS236 ggc ggc ttc ttc ttc gct ta 

HS237 cgg tgt atc atg tgg cag ca 

HS238 cgg aat gcc tca ctc act gg 

HS239 gtg gcc caa aaa gcg cca gc 

HS240 ctg tct gcc agc aac ccc cg 

HS241 gcg gga aac act gct ccg ct 

HS242 ctg gtc ctt ggc cgc cct tg 

HS243 cct cca tag ccc cca ccc cc 
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HS244 agt ttc agc ttc gcc ccg cc 

HS245 gtc cgt gtc ctt gcc cct gc 

HS246 gac tgc cgc aca gcc gga at 

HS247 atc gcc tgg cgt ggc caa aa 

HS248 cgt tgc gat gcg tta gcg gc 

HS249 gcc cca aag ctg ctc cgg tt 

HS250 ttc tgc tcg ctt ggg tgg cg 

HS251 ggg aag ggc acg cac aga cc 

HS252 ttg cca att gcc cac ccg ca 

HS253 ttc agc atg ccg ccg ttg at 

HS254 cgc ctc ccc tct ctc gct ca 

HS255 tca ccg gcg tat cgg agg ga 

HS256 tcg ata gga acc tgc gcg gc 

HS257 gcg atc ggt ggg tgc tgc ta 

HS258 tcc ctc cga tac gcc ggt ga 

HS259 cat ccg gca gct ggc cac aa 

HS260 aat gcg acg tga gcg gag gc 

HS261 ggc agc acg cga ttc cga gt 

HS262 ttg tgg cca gct gcc gga tg 

HS263 ctg ttc gtt ttc cct ttg gtg 

HS264 cgt cat cgt cat cct cgt cct 

HS265 cgt tcc cca tct acc ttc att tc 

HS266 act gtt cct ctc act tgg aca cct 

 

Oligos for sequencing 

Nr. Sequence 

HS279 gtcaaagttcagagctttc 

HS280 cagaggacgaatcctaac 

HS281 ctaaccttaccgcaataaag 

HS282 ggatttggacttttctaccc 

HS283 agaagaagaaccggagccgg 

HS284 agccgccaatgttaagctcg 

HS285 agactggtaggcgaatgtac 

HS286 caaggagttcaagctgccgc 

HS287 gatttcggcagcaacagctc 

HS288 aaagtccaaatccactcacc 



_______________________________________________________________Materials and Methods 

40 

 

HS290 gtgttgtgatgttggtacag 

HS291 gcaacatctagctgctctag 

HS292 acgtcttaaactgaatttgc 

HS293 aagagcctctgcacccagtg 

HS294 cacccaaaactcaggctgtc 

HS295 acatgcacaacgatccgaat 

HS296 tagaagagcgaattgatgaa 

HS297 cagtggaagtgcgagcagtg 

HS298 aaaggtgacctgctgctcgacgtc 

HS299 tcagcatcgtccaggcacag 

HS307 gcacttctgatgatggctgcc 

HS308 cgaccgaaaagtgtgactgc 

HS309 tgagaaggatgagcgaggcc 

HS310 gcggcaaggcatgatcctga 

HS311 aaatcggcctggaaggcttc 

HS312 acagccaagtaccgagaattcc 

HS313 caccagcaaatttgttggc 

HS314 cacaattaaagcatgccgac 

HS315 ggctatctgaagactttccc 

HS316 gacgatctatgtgagtataatc 

HS317 gcggcatttaagcactaaag 

HS320 gaacagagcggacaccccg 

HS321 atccatgtcctcgccgccc 

HS322 gcgtaagcgcctggcctacg 

HS323 tccacgaaaccgcgcgactc 

HS324 tgacaagactggtggttcggcc 

HS325 cgtccgtctcgagcagccac 

HS326 ggacgaagacgaggccgtc 

HS327 gggacgtgctgggggagc 

HS328 cttttcggtcggcgttgtcc 

HS329 tccagtaacgcgagcaggac 

HS330 agcttcgcaagaacgaggcc 

HS331 tgaacctgtcgtgtacatcgcc 

HS332 tcgtcttataaaggctatggagtcg 

HS333 gcgtttgagtggttggtcgg 

HS334 cggctgctttgaccttctgc 

HS335 tgcaagtccacgttacgcatc 
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HS336 tgctggccatagaagtatctgtgg 

HS337 gtcggcatgcgagccttc 

HS338 caggcacccacccatacac 

HS339 tatggccattgggctggtgc 

HS340 acatgcccaacatctccgatag 

HS341 tttttccgctgactgcacacag 

HS342 tttttgtttagccgatgcaagc 

HS343 cgtaacaccctcatactcgccg 

HS344 cggtgcccacacctatggatac 

HS345 gagcgaagactgaggaagggag 

HS346 gccaacgtcagacactatttgtagc 

HS347 tggcgagtacatcggtgacg 

HS348 cgcgagcaggacaacaaataac 

HS349 cgggcatatcgttgtccactag 

HS350 cgtccagtttgcggagacaatg 

 

Oligos for QPCR 

Nr. Sequence 

HS353 tatcccaggttattgcttgtgtggg 

HS354 gcagtatcgataagaccttcacgacc 

HS355 atcgagcacggcatcatcac 

HS356 cacgcgcagctcgttgta 

HS363 agcctgagaaacggctacca 

HS364 agctgggagtgggtaatttacg 

HS365 ctagctcagtcggtagagcatga 

HS366 ccaacgtggggctcgaac 

 

2.1.14 vectors 

The following vectors were used in this study: 

 pBS-KS(+)  (Stratagene, Waldbronn) 

pCasper 4         (Lab J. Grosshans) 

pATTB           (Lab Basler) 
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2.1.15 EST clones & BAC clones 

RE30267 

136G02 

161G23 

2.1.16. Column 

PD-10 desalting column    GE Healthcare Life Science, Uppsala, Sweden  

G-25 Sephadex column     GE Healthcare Life Science, Uppsala, Sweden 

 

2.1.17. Kits 

- MiniElute Gel extraction Kit   Quiagen, Hilden 

- Plasmid Midi Kit Nucleobond AX   Macherey-Nagel, Düren 

-Expand High Fidely PCR System Roche, Mannheim 

 

2.1.18. Bacterial cell lines 

- E.coli DH5-α F-, ø80dlacZΔM15, Δ(lacZYA-argF)U169, deoR, recA1, endA1, 

hsdR17(rK–, mK+), phoA, supE44, λ–, thi-1, gyrA96, relA1 

 

2.1.19. Fly stocks 

Most fly stocks were obtained from the Bloomington Drosophila Stock Center at 

Indiana University (http://flystocks.bio.indiana.edu/) unless otherwise mentioned 

-x9                          from Vogt EMS collection (VOGT et al. 2006) 

-X161                          from Vogt EMS collection (VOGT et al. 2006) 

-y, pn, cv, v, FRT
18E

                prepared by Grosshans 

-OvoD, FRT
18E 

 

-histone::GFP (3rd)                     prepared by Grosshans 
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-nullo/FM7; Cad::GFP, histone::RFP       prepared by Grosshans 

-nullo/FM7; sqh-meo::GFP               prepared by Grosshans 

-C(1)A, y1/Y/FM0 

- P{w[+mC]=ovoD1-18}P4.1, P{ry[+t7.2]=hsp70-flp}1, y[1] w[1118] sn(SHIBUTANI 

et al.) P{ry[+t7.2]=neoFRT}19A/C(1)DX, y[1] w[1] f[1] 

-w[1118] sn(SHIBUTANI et al.) P{neoFRT}19A 

-y1 arm1/FM7c 

-Df(1)BSC351, w[1118]/FM7h 

-Df(1)svr, N ras fw / Dp(1;Y)y 67g19.1 / C(1)DX, y f 

-Dp(1;f)R, y[+]/y dor[8] 

-Df(1)w258-45, y /Y/C(1)DX, y w f; Dp(1;3)w[vco] 

-Df(1)64c18, g sd /Dp(1;2;Y)w[+] /C(1)DX, y w f 

-Dp(1;2)w-ec, ec cm ct sn/C(1)DX, y w f 

-Df(1)dhd81, w/C(1)DX, y f; Dp(1;2)4FRDup /+ 

-Df(1)JC70/Dp(1;Y)dx[+]5, y[+]/C(1)M5 

-Df(1)ct-J4, In(1)dl-49, f/C(1)DX, y w f; Dp(1;3)sn[13a1]/+ 

-Df(1)GE202/Y & C(1)A, y/Y; Dp(1;2)sn[+]72d/Dp(?;2)bw[D] 

-Dp(1;Y)619, y[+] B[S]/w oc/C(1)DX, y fy nej v f/Dp(1;Y)FF1, y[+]/C(1)DX, y w f 

-Df(1)v-L15, y/C(1)DX, y w f; Dp(1;2)v[+]7 

-Dp(1;Y)BSC1, y[+]/w P{w[+mC]=lacW}l(1)G0060/C(1)RA, y 

-Df(1)v-N48, f[*]/Dp(1;Y)y[+]v[+]#3/C(1)DX, y f 

-C(1;Y)6, y w P{w[+*]=white-un4} BE1305 mew[023] / C(1)RM, y pn v;Dp(1;f)y[+] 

-C(1;Y)1, Df(1)g, y f B/C(1)A, y/Dp(1;f)LJ9, y[+] g[+] na[+] Ste[+] 

-Df(1)19, f/C(1)DX, y w f; Dp(1;4)r[+] 

-Dp(1;Y)W73, y B, f[+], B[S]/C(1)DX, y f/y baz[EH171] 

-Df(1)os[UE69]/C(1)DX, y f/Dp(1;Y)W39, y[+] 
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-Df(1)R20, y/C(1)DX, y w f/Dp(1;Y)y[+]mal[+] 

-Df(1)A113/C(1)DX, y w f; Dp(1;2)w[+]64b/+ 

-Df(1)dx81, w[*]/Dp(1;Y)dx[+]1/C(1)M5 

-Df(1)w258-45, y/Y/C(1)DX, y w f; Dp(1;3)w[vco], Pr 

Dp(1;Y)BSC47 

Dp(1;Y)BSC49 

Dp(1;Y)BSC50 

Dp(1;Y)BSC52 

Dp(1;Y)BSC54 

Dp(1;Y)BSC56 

Dp(1;3)DC233 

Dp(1;3)DC234 

Dp(1;3)DC235 

Dp(1;3)DC237 

Dp(1;3)DC238 

Dp(1;3)DC239 

Dp(1;3)DC240 

Dp(1;3)DC241 

Dp(1;3)DC243 

Dp(1;3)DC246 

RPII2151 

RPII215G0040 

Df(1)BSC287 

Df(1)BSC288 

Df(1)BSC541 

Df(1)BSC544 
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Df(1)BSC658 

Df(1)BSC722 

 

Generated in this work 

-w, X161, f, FRT18
E
 /FM7h 

-y, pn, cv, v, X161
m10+m12

, f, FRT
18E

/FM7h  

- y, pn, cv, v, X161
m12

, f, FRT
18E

/FM7h 

- y, pn, cv, v, RPII215
X161

, FRT
18E

/FM7h 

-X161; Tft/CyO 

-X161; △7/TM3 

-X161; Cad&his 

-X161; sqh-meoGFP 

-OVO; △19/TM3 

-OVO; Cad&his 

-OVO; sqh-meoGFP 

-OVO; histoneGFP 

 

2.1.20. Agarose gel electrophoresis 

- Gel electrophoresis chamber 

- Voltage source 

ZMBH fine mechanics workshop 

ThermoEC 135-90 

 

2.1.21. Microscopy 

- Injection-microscope 

- Leica MZ125 

- Zeiss Axioplan 2 Fluorescence microscope 

Carl Zeiss 

Leica 

Carl Zeiss 
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- Zeiss Axiovert 200 M Ultra-View Spinning 

Dsisc confocal microscope 

 

- Zeiss Stemi 2000 

 

Carl Zeiss 

 

 

Carl Zeiss 

 

2.1.22. Other materials 

- Coverslips 

-Electrophoresis cuvett 

- Fly vials 

- Glass pipetts (20 ml, 10 ml, 5 ml, 2 ml) 

- Pasteur pipetts  

- Petri dishes 

- Pipetboy 

- Pipettes (1000 μl, 200 μl, 20 μl, 2 μl) 

- Pipett tips (1000 μl, 200 μl, 2 μl)  

- Reaction tubes (50 ml, 30 ml, 15 ml, 1,5 ml) 

- Teaction tubes (2 ml, 1,5 ml) 

- Transfer pipetts 

- SperFrost Plus Slides  

- 10S VoltaLef Halocarbon Oil 

- 3S VoltaLef Halocarbon Oil 

Menzel 

peqLab 

Greiner 

Silber Brandt 

Brandt 

Greiner 

IBS Integra Biosciences 

Gilson 

Eppendorf, Hamburg 

Sarstedt, Nürnber 

Eppendorf 

Sarstedt, Nürnberg 

Menzel 

Lehmann & Voss & Co. 

Lehmann & Voss & Co. 

 

 

2.1.23. OtherEquipments 
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- Agarose gel rigistrator 

- Cetrifuge 5415D 

- Centrifuge 5417R 

- Electroporator 

- Glass needle maker 

- Heating block 

- IDA Gel Documentation System 

- Microinjection  

Multi Cycler PTC-200  

- NanoDrop-2000 spectrophotometer  

- Rotator Wheel 

- Speed Vac Concentratrator 5301  

- Thermomixer confort 

- Vortexer  

- Waterbath 

Paytest IDA 

Eppendorf, Hamburg 

Eppendorf, Hamburg 

Gene Pulser
TM

, BIO-RAD 

Narishige PN-30 

Techne Dri-Block 

Raytest 

FemtoJet, Eppendorf 

MJ Research 

peqLab, Erlangen 

neoLab Rotomix 

Eppendorf, Hamburg 

Eppendorf, Hamburg 

Scientific Industries 

Julabo 

 

21.24. Software 

- Adobe Design Premium CS2 

- Axio Vision Rel. 4.8 

- ImageJ 1.38x 

-LSM Image 

- Lasergene 

-Vector NTI 9.0 

-EndNote X4 

Adobe 

Carl Zeiss 

NIH 

Carl Zeiss 

GATC biotech 

Invitrogen 

Thomson Reuters 
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2.2 Methods 

2.2.1 DNA sequencing  

DNA sequencing was done either in cooperation with the sequencing service of the 

department of developmental biochemistry, GZMB, University of Göttingen or the 

sequencing serve from SeqLab, Göttingen. 

 

2.2.2 Extraction of Genomic DNA from a single fly 

The single fly was grinded in 30μl of buffer B with 200μg/ml proteinase K, then 

adding 2μl 10% SDS. The homogenized fly was incubated 1 to 4 hours at 37℃. After 

incubation, 3μl 3M NaCl was added, then the phenol/chloroform extraction was 

preformed with 1:1 volume. The aqua phase was transferred to new tube, and 50μl 

EtOH was added, and incubated on ice for 20min. The DNA was precipitated by 

centrifuging for 10 min at 14,000 rpm. The DNA was dissolved into 30μl TE buffer 

after washing with 70% EtOH. 

2.2.3 PCR 

PCR reactions were performed using Taq or Pfu DNA polymerase. For standard PCR 

reactions the following reagents were mixed: 50-200 ng DNA template, 0,4 μM forward 

and reverse primers, 50 μM dNTP (each), 10x PCR buffer (polymerase dependent), 1-2 

units (per 50 μl of reaction) Taq or Pfu polymerase. The reactions were performed under 

the following conditions:  

Step 1 (initial denaturation): 95°C for 1 min  

Step 2 (denaturation): 95°C for 30 sec  

Step 3 (annealing): 50-60°C (depending on the annealing temperature of the 

respective oligos) for 1min  
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Step 4 (elongation): 72°C for 1min per kb to be amplified  

Step 5: repetition of steps 2-4 for 30 times  

Step 6 (final elongation): 72°C for 7 min 

2.2.4. Quantitative real time polymerase chain reaction (QPCR) 

The quantitative real time polymerase chain reaction (QPCR) was performed with 

oligreen fluorescence. The primers against actin were used as internal control. 

2.2.5. Molecular Cloning 

The general method for molecular cloning was followed Sambrook, 2001 

(SAMBROOK and RUSSELL 2001) and the website of Grosshans‟ lab 

(http://wwwuser.gwdg.de/~jgrossh/method.html) 

 

2.2.6. Motif predication by MEME program 

The motif predication was performed on the MEME website (BUSKE et al. 2010) 

(http://meme.sdsc.edu/meme4_6_1/intro.html). The maximum number of motifs to 

find was set to 10, the length of motifs was from 6bp to 25bp. Other setting was as 

default.  

 

2.2.7. Antibody Staining 

Dechorionate embryos with 50-100% Clorox for 90 sec, then fix the embryos with 

the mix of 5ml 4% formaldehyde in PBS and 5ml heptanes for 30 min on the shaker 

(100-200 rpm). After fixation, remove the fix-reactant and add 5ml methanol. 

Devitellinize the embryos by shocking vigorously for 30 sec. The embryos without 

vitelline membranes would fall down. Suck the embryos and store in methanol at -20

℃. When doing the staining, rinse once with fresh methanol and wash with 50% 

methanol/PBST for 5 min. Rinse 3X PBST then wash 2X 5 min with PBST. Block 
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with 5% BSA, then add 1
st
 antibody and incubate overnight at 4℃. Rinse 4 times and 

wash 4 times of 15 min. Then Add 2
nd

 antibody and incubate for 1 hour at room 

temperature. After incubation, rinse 4 times and wash 4 times with PBST for 15 min. 

The embryos may be stained with DAPI (8mg/ml) for 2min. Wash 2 times with PBST 

for 5 min. Then lineup and mount on the cover slips with aqua-polymount. 

2.2.8 Preparation of antisense Dig-labeling RNA probe  

The plasmid containing the proper cDNA was linearized at the 5‟ end of the cDNA 

by a proper restriction enzyme. Setup the transcription reaction as following:  

-1μl DNA (linearised 1μg) 

- 2μl 10x NTP+Dig labeling mix 

- 2μl 10x transcription buffer 

- 2μl RNA polymerase (40U of SP6) 

- 1μl RNase inhibitor (20U) 

- 12μl DEPC-treated water 

Incubated at 37℃ for two hours, then, the DNA was removed by 15min DNase I 

treatment. The RNA is precipitated by adding 0.8 µl 0,5M EDTA, 2 µl 5M LiCl, 75 

µl ethanol (-20°C) and incubated at 4°C for longer than 30min , then the RNA is spun 

for 10min at 14,000 RPM and washed with 70% ethanol for 5min. The RNA is 

dissolved in 20μl DEPC-treated water and adjusted to 1mg/ml.  

 

2.2.9. In situ hybridization with alkaline phosphatase  

Dechorionate embryos with 50-100% Clorox for 90 sec, then fix the embryos with 

the mix of 5ml 4% formaldehyde in PBS and 5ml heptanes for 30 min on the shaker 

(100-200 rpm). After fixation, remove the fix-reactant and add 5ml methanol. 
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Devitellinize the embryos by shocking vigorously for 30 sec. The embryos without 

vitelline membranes would fall down. Suck the embryos and store in methanol at -20

℃. When doing the staining, rinse once with fresh methanol and wash with 50% 

methanol/PBST for 5 min. Rinse 3X PBST then wash 2X 5 min with PBST. Wash 

with 50% hybridization solution (hyb sol) in PBST for 10 min at room temperature. 

Then wash with 100% hyb sol for 10 min at RT. Prehybridization with 100% hyb sol 

for 1hr at 55°C or higher temperature. Meanwhile, prepare the probe. Add 2ul 

dig-labeled probe and 1ul tRNA into 20ul water boil for 5min then chill on ice, then 

add 200ul ice-cold hyb sol. Incubate the embryos in the hyb sol with probe at selected 

temperature overnight. Rinse 3 times with pre-warned hyb sol and wash 3 times for 

30min. Then rehydrate with series of pre-warmed hyb sol and PBST mixture: 80%, 

60%, 40% and 20%. Afterward, block for 30min with 5% BSA in PBST. Then 

incubate with Dig antibody at 1 to 1000 dilutions for 1hr. Rinse 3 times and wash 

4times for 15min with PBST. Wash 3 times for 5min with AP buffer. Incubate the 

embryos in 1ml AP buffer with 4.5 ul NBT and 3.5 ul BCIP until the signal becomes 

visible. Terminate the reaction with PBST and dehydrate with ethanol and incubate in 

100% ethanol for 20min to remove the non-specific staining. Then rehydrate with 

series of ethanol/PBST mixture with gradually increased concentration of PBST. The 

embryos are visualized together with DAPI for marking the nuclei. 

2.2.10. Isolation and fractionation of nuclei for EMSA 

1g embryos were collected, dechorionated and frozen in liquid nitrogen. 

Homogenize the embryos with buffer A. Spin the lysate for 10 min at 4,000 rpm, 

discard the supernatant and suspend the pellet gently in 1ml buffer A. Then put the 

nuclear fraction carefully on 2ml of buffer B in a 15ml tube. Spin for 10 min at 4,600 

rpm with swing-out rotor. Suspend the pellet in 200 μl, transfer to a new tube. Spin 
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and wash with buffer C twice. Spin and suspend the pellet in 500 μl high salt buffer, 

incubate for 1 min. Spin for 10min at 13,000 rpm at 4°C. Save the supernatant (high 

salt extract), and suspend the pellet in 500μl high salt buffer, and spin again 10min at 

13,000 rpm and collect the supernatant (high salt extract II). The nuclear protein 

extract was transferred to 2X binding buffer with buffer exchange column (PG-10) 

2.2.11. Prepare the radio-labelled DNA probe  

The probes were prepared with either T4 polynucleotide kinase or PCR (LANIEL et 

al. 2001). For end-labeling with T4 polyncleotide kinase, the complementary strands 

of oligos were mixed, heated 5°C above the melting temperature for 5 min, and let 

cool to room temperature. Place the double-stranded oligos at 4°C for 2 hr.  

Setup the phosphorylation reaction as below: 

ds-oligos                   5 μl (250ng) 

10X kinase buffer            5 μl 

[γ
32

]ATP                  3 μl (30 μCi) 

T4 polynucleotide kinase      2 μl 

Add ddH2O                 50 μl 

Incubate at 37°C for 2 hr 

The DNA probe was purified by the G-25 Sephadex column (GE Healthcare, 

Uppsala, Sweden) and adjust the concentration to 30,000 cpm/μl. 

For the PCR method, it was followed the common PCR protocol with 5 μl 6000 

Ci/mmol [α
32

]dCTP. The DNA probe was purified by the G-25 Sephadex column (GE 

Healthcare, Uppsala, Sweden) and adjust the concentration to 30,000 cpm/μl. 
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2.2.12. Electrophoretic Mobility Shift Assay (EMSA)  

The basic protocol is performed according to the common protocol with few 

modification (LANIEL et al. 2001). The nuclear protein extract was transfer to 2X 

binding buffer  

Nuclear extract        10.0 ul (in 2X binding buffer) 

DTT (20mM)          1.2ul 

ZnOAC (50um)        1.2ul 

Poly(dI:dC) (1mg/ml)   1.0ul 

KCl (1M)             2.4ul final:200mM 

MgCl2 (100mM)       0.6ul final: 2mM 

Probe                2.0ul 

Cold Oligos           3.6ul 

The DNA-protein interacting reaction was set up at 25 °C for 15min. The 

electrophoresis was performed with 6% polyacrylamide gel and 0.5X tris-glycine 

buffer at 10mA for 2.5hr. The gel is dried and illuminated with Imaging plate 

BAS-MS 2040 (Fujifilm) and FUJIFILM FLA-3000 Image Reader. 

2.2.13. Western Blotting 

The staged embryos were collected on the apple juice plate, and dechorionated with 

bleach, then weighted and frozen in liquid nitrogen. The embryo were homogenized 

in 2X Lämmli buffer with the volume to make the final concentration 20embryos/μl 

(100embryos=1mg). Boil for 5 min 

The protein extracts were loaded on the SDS page. Run the page at 15 to 25mA for 

1hr. The protein was transferred to the membrane with wet transfer method for 3 hr at 

110V. Use 5% milk for blocking for 30min. Then incubate the membrane with first 

antibody at 4°C overnight. Wash the membrane 6 times with PBT for 7min each, then 

incubate it with 2nd antibody at RT for 2hr. Then wash 6 times with PBT for 7min each. 
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Soak the membrane with the reagent for peroxidase for 1min. then illuminate the film in 

the dark room. 

2.2.14. Isolation of total RNA and cDNA synthesis   

Total RNA was isolated from 10mg staged Drosophila embryos using 500μl 

TRIzol reagent. Homogenize the sample, then incubate at RT for 5 minutes. Add 

100μl chloroform and shake for 15 sec, incubate for 2-3 min at RT. Centrifuge at 

12000g for 15 min at 4°C. Transfer the aqueous phase to a new tube. Add 250μl 100% 

isopropanol and incubate at RT for 10min. Centrifuge at 12000g for 10 min at 4°C. 

Wash with 75% ethanol and dry the RNA pellet. Dissolve the RNA in DEPC-treated 

water and adjust the concentration to 1 ug/μl. 

cDNA synthesis was performed with Reverse Transcriptase, Oligo-d(T) and 1 μg of 

RNA as template in a final volume of 20 μl. The cDNA was subsequently used as 

template for PCR. 

2.2.15. Generation of Germline Clones 

The germline clone was performed following the instruction by Chou and Perrimon 

(CHOU and PERRIMON 1992) with minor modifications. The heat shock for inducing 

flippase was performed at 37°C for 90min per day for two days after hatching.  

2.2.16. Injection of α-amanitin into embryos 

The injection of α-amanitin, RNA polymerase II inhibitor, was performed 

following the instruction by Schubiger and Edgar (SCHUBIGER and EDGAR 1994). The 

concentration used was 500μg/ml. The injection was performed in embryos of 0 to 30 
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minutes. The embryos were placed in S10 hydrocarbon oil for one hour, then recorded 

under spinning disc microscope. 

2.2.17. Generating Transgenic flies 

The transgenic flies were generated with either P-element transposon system and a 

φC31-based integration system (ASHBURNER 1989; BISCHOF et al. 2007).  

For the P-element transposon system, mix 3μg DNA of target genes on pCasper4 

vector with 1μg of pDelta2-3 turbo vector and perform the ethanol precipitation and 

dissolve in ddH2O to the concentration of 0.8 μg/μl.  

The embryos of w or yw were collected from the apple-juice plates, lined up on agar 

plate and transferred to a glass slide, dried for 10 min, then covered by hydrocarbon oil 

(Voltalef H3S, ARKEMA, France). The DNA was injected with a glass needle at the 

posterior end of the embryos. Then leave the injected embryos at 18ºC for 48 hr. 

Transfer the larvae to a new food vial with the needle. After eclosion, collect the adult 

flies and cross them with the double balancers. Select the F1 flies with eye color and 

cross them with double balancers. Decide which chromosome the transgene is by 

linkage with the dominate markers of F2 and setup stocks. 

ForφC31-based integration system, the transgenes were inserted into the attB 

vectors. The embryos of attP-zh86Fb/nos-φ-zh102D (integrated at 3rd chromosome) 

were used for injection. The transgenetic flies were selected by eye color and setup 

stocks as the P-element inserted transgenetic flies. 

 

2.2.18. Mapping with duplication and deficiency 

All the genomic and sequence data of Drosohpila melanogaster is from the Fly 

Base (http://flybase.org/) (TWEEDIE et al. 2009). 
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For the complement test with duplications, the mutant females were collected and 

crossed with the males containing the molecular defined duplication either attached 

on 3rd chromosome (POPODI et al. 2010) or attached on Y chromosome (COOK et al. 

2010). The male progeny was collected. If the mutant male progeny with duplication 

is viable, it means the duplication line can complement the mutation, and the mutation 

is located within the region of duplication.  

For the complement test with deficiencies, the mutant females were first crossed 

with the males with complemented-duplication on Y chromosome. Then the viable 

mutant male progeny was collected and crossed with the females from deficiency 

lines. If the mutant/deficiency females are lethal and can not be found, the deficiency 

can not complement the mutation. It means the mutation is located within the region 

of the deficiency. 

 

 

2.2.19. Mapping with Single-Nucleotide Polymorphism (SNP)  

The general procedure and strategy followed the instruction from Berger, et al 

(2001) and Chen, et al(2007) and is illustrated in figure (BERGER et al. 2001; CHEN et 

al. 2008). The SNP were obtained by the direct sequencing of specific region on X 

chromosome between stocks w X161 f FRT
18E

/FM7, FM7c/FM7c, FM7h/FM7h, y pn 

cv v FRT
18E

(B437) and w sn neoFRT
19A

(Table). The genomic DNA of single 

recombinant fly was extracted and used as the template for PCR and sequencing 
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Table 1 : The Summary of SNP used in this study. The primers in bold are using as primers for sequencing 

Number Cyto resion position X161 B437 FRT19 FM0 FM7h Left flank Right flank PCR primers  

1 9F 10816046 A G G G G CAATCATCCCATACCACCCA TCATCTCACCTAGTCGATAG HS196/HS197 

2 9F 10816060-1 CT TC TC TC TC CACCCAGTCATCTCACCTAG GATAGAGTTACCATTTAAAT HS196/HS197 

3 11A 12373767-8 -- CT CT CT CT GATTACCATCTTATACTACT ACACATACCGTTTTTAGTCA HS194/HS195 

4 12A 13444753 A T A A A TATTAAAACGCCCATTTAAG CCATTTCTTTCAGTGCTCCC HS179/HS178 

5 12A 13444671 A C A A A ACATACCTACCCACATCTCA ATATACCCTTCTATGCTAAG HS179/HS178 

6 12A 13444662 C C C C C AGCTGTTACATACCTACCCA ATCTCAGATATACCCTTCTA HS179/HS178 

7 12A 13444641 T G T T T TTTTTTATAAATGCCACACC AGCTGTTACATACCTACCCA HS179/HS178 

8 12D 13801573 A G G G G TGCCACCTACAATATGTATG CTTAGGTGTCGCCTTTGTGG HS161/HS162 

9 12D 13801916 C T C C C TTAAATTAGATGCCCATACA ACAAAACAAAACGAGATCAG HS161/HS162 

10 12D 13801921  G A G G G TTAGATGCCCATACACACAA ACAAAACGAGATCAGCCGCC HS161/HS162 

11 13A 14862598 T G G G G ATCACCATCTCCGCATCTCC CATCTCCTCATCTGCGGACG HS165/HS164 

12 13A 14862463 A T T T T TTAATTATATGCATTAAAGG ACTGGGCAGAGAGGCAGCAG HS165/HS164 

13 13A 14862200 G A A A G TCGGGTAATACGACTTTAAA CGTTACAATAAGCTCGTTTA HS165/HS164 

14 13F 15755025 G A A A A TTCCTCTTTTTTTTTAGTAT CCATCCCATCCGCGAGATAA HS183/HS182 

15 14B 16048476 A C A A A GCCGCTTTAATTACAAAACG AAGAAGTCAAATTACTAGCC HS202/HS203 
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3. Results 

3.1 The genomic regulatory elements of frs  

3.1.1 The conservation of the promoter region of frs 

The N/C ratio is the key measurement for the size of cells amd paly an important 

role controlling the number of cleavage cycles (UMEN 2005). N/C ratio is also a factor 

controlling the expression of some zygotic genes. However, how cell senses the N/C 

ratio and hoe N/C ratio mediates the transcription remains unknown. To fullfall this 

gap, we investigated the genomic regulatory elements of frs, one of the known genes 

whose expression was respond to N/C ratio (GROSSHANS et al. 2003). 

We first used the bioinformatic approach to predict the possible genomic regulatory 

elements. Based on the blast of frs protein sequence against the translated nucleotide 

database, frs orthologs can be found only in Drosophila genus, but not in the genome 

of two mosquitoes, Anopheles gambiae and Aedes aegypti. The sequence comparison 

of frs genomic region revealed that -500 to 0 bp upstream of the frs transcription start 

site showed a high similarity (75%, figure 9A), even higher than the coding region of 

frs. This high conservation suggested that the regulatory elements of frs may locate in 

this region. 

 

3.1.2 The frs promoter-driven GFP reporter construct  

In order to investigate the genomic regulatory elements, we generated the EGFP 

reporter construct driven by the 1.3kb genomic sequence between frs and the 

upstream gene, cg7841 (frs1.3::GFP). The transgene containing the genomic fragment 

including this 1.3 kb region and frs gene can fully rescue the frs mutant, therefore it is 

considered to contain full genomic regulatory modules for frs expression (GROSSHANS 

et al. 2003). In our repoter construct, we replaced the frs coding region to EGFP, and 



_____________________________________________________________________Results 

59 

 

add the 3‟UTR region from heat shock protein 70, which enhances the translation. 

The other region, including transcription start site, 5‟UTR, promoter region and 

upstream region were from frs genomic DNA and was identical as endogenous frs 

locus. 

The GFP expression of frs1.3::GFP can fully represented the endogenous frs 

expression (Figure 10 B and C). The expression started in early cycle 14 of wild type 

embryos. In maternal haploid mutant embryos, the peak of expression was in cycle 15. 

This result indicated this reporter system could reflect the expression of frs and can be 

used for the further analysis. This result also suggested that the genomic regulatory 

element located within this region. 

 

 

 
Figure 9: The summary of the motifs in 500bp upstream region of frs gene. (A) the graph of 

the sequence similarity for the sequence alignment of 500bp upstream region of 12 frs 

orthologs. The sequence conservation is 75% by Align X (Vector NTI). (B) the conserved 

motifs predicted by MEME program. The predicted motifs are mainly located with 300bp 

upstream of frs coding sequence. The arrangement of the motifs is identical in melanogaster 

and obscura group. The motif 3 and 10 represent the transcription start site (TSS). 
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Figure 9(continued): The sequence alignment of upstream region of 7 frs orthologs in 6 

species in melanogaster group(C). The violet box marks the protein-binding region found in 

EMSA. The orange boxes mark the two motifs which prevent premature expression in 

reporter assay. The blue boxes mark the predicted motifs which were substituted in the 

reporter assay and gave no change of expression. The pick and green box mark TAGteam 

motif and TATA box respectively. The transcription start site (TSS) is at the end of the 

sequence. D_m: D. melanogaster, D_s: D. simulans, D_a: D. ananassae, D_p: D persimilis, 

D_e: D. erecta, D_y: D. yakuba. There are two frs orthologs in D. yakuba due to the genome 

duplication during evolution. 
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Figure 10: The GFP reporter construct can represent the endogenous frs expression. (A) the 

diagram of the reporter construct. The full length of intergenetic region is placed upstream of 

GFP coding sequence, flanking by the 3‟UTR of HSP 70. The in situ hybridization of GFP 

starts at cycle 14 in diploid embryos (B) and at cycle 15 in haploid embryos (C). 

To narrow down the minimal regulatory region, we generated more reporter 

constructs with shorter genomic upstream sequences. The frs260::GFP with 260bp 

upstream region could fully drive the frühstart expression (Figure 11C). However, the 

expression of the frs180::GFP was greatly reduced and there was no signal in 

frs100::GFP (Figure 11B). This 260bp region is sufficient to drive frs expression and 

the region between -260bp to -180bp may be required for the expression of frs. To 

further narrow down this region, three deletion constructs, Δ(-265 to -215)::GFP, 

Δ(-216 to –q76)::GFP and Δ(-265 to -176)::GFP at this region were generated. 

However, no expression was detected in these three reporters. 

One possibility is that the enhancer which directs the frs expression is deleted in all 

of these constructs. However, it is also possible that the proper spacing between the 

promoter and the enhancer was disturbed. The deletions are at 150bp upstream of 

transcription start site, and since the average sequence to form a smoothly graded 

bend is about 200bp. The result of deletion construct may due to the shortening of the 

space but not the deletion of the enhancers.  

 



_____________________________________________________________________Results 

62 

 

 
Figure 11: The prom 260 is the minimal genomic regulatory region for frs expression. (A) the 

summary of the reporter with different length and deletion. The reporter with promoter region 

shorter than 180bp gives no expression (B). The expression of prom 260::GFP show similar 

expression profile as endogenous frs in both diploid and haploid embryos (C and D).  

 

 

 

3.1.3 The substitution constructs 

To avoid disturbing the spacing between the promoter and transcription factor 

binding site, we changed our strategy. Instead of making deletion constructs, we 

generated a new set of reporter constructs with short substitutions within frühstart 

genomic regulatory region. We used the MEME program (BAILEY and ELKAN 1995) 

to predict conserved motifs in these 330 bp region (Figure 9B and C). Based on this 

prediction, we made short substitutions (from 6 to 15bp) within this region, including 

TAGteam motif (CAGGTA) which was showed to be the enhancer for early zygotic 

activation (LIANG et al. 2008).  
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Among our 7 substitution constructs (Figure 9C and 12), two constructs 

prom(-68--57)::GFP (motif: GATATTTATGGC) and prom(-174--161)::GFP (motif: 

CATTAAAAAGGGATT ) show the premature expression at cycle 13 in wild type 

embryos (Figure 12). In haploid background, the expression could be detected as early 

in cycle 13; however, the majority signal was at cycle 14 (Figure 13). Although the 

expression of these two constructs starts prematurely, it still delays in haploid 

embryos.  

 

Figure 12: Summary of the motif-substitution reporters. The substitution of two motifs 

prom(-68--57)and prom (-174- -161) (grey box) leads the premature expression at 

cycle 13 in diploid background, however, in haploid embryos, the expression starts at 

cycle 14 in haploid, which is one cycle later than in diploid.  
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Figure 13: two motifs (-68--57) and (-174- -161) prevent the frs expression at cycle 13. 

A and B, in situ of GFP in ss(-68--57)::GFP.  

C and D. in situ of GFP in ss(-174- -161)::GFP  

E and F, in situ of GFP in ss(-127--121)::GFP.  

G and H. in situ of GFP in ss(-106--99)::GFP 
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3.1.4. The -260 to -211bp upstream region is a preotin binding motif 

In order to investigate the DNA-protein interaction in frs promoter region, the 

electrophoretic mobility shift assay was preformed. Two different p
32

-labeled PCR 

products covering -279--110bp upstream region were used as probes. The nuclear 

extract from 0.5-1.5 hr embryos were used to identify the specific DNA-protein 

interaction prior or in the early cellularization. There was a strong shift of the 

-279--110bp DNA fragment with the 0.5-1.5 hr extract and the shift pattern was 

changed to two lower shifts (Figure 14). 

 

Figure 14: One DNA-protein interacting motif locates at -279bp to 211bp upstream of frs. 

The probe (-279 to -110 bp upstrem of frs gene) wass generated by PCR. One specific shift 

was obtained with nuclear extract of 0.5 to 1 hr embryo.  
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To further narrow down the protein interacting motifs and confirm the specific 

interaction, the non-labeled double-stranded oligos were added to compete the 

interaction with probes. Two oligos -260--231 and -240--211 could compete the 

DNA-protein interaction with dose-dependent manner (Figure 15). Thus, a protein 

interacting region was mapped to -260 to -211 upstream of frs gene (Figure 9C).  

 

Figure 15: The cold oligos competed to the shift in dose-dependent manner. Two oligos -260 

to -231bp and -240 to -211bp can compete to the radio-labeled probe in dose-dependent 

manner. However, the oligos of flanking sequence did not compete to the shift. 

 

In summary, I narrowed down the functional frs regulatory region to 260bp 

upstream region. The -260bp to -180bp is required for the expression of frs and also 

showed a specific DNA-protein interacting. Secondly, I identified two motifs,  

GATATTTATGGC and CATTAAAAAGGGATT, which prevented the premature frs 

expression at cycle 13. However, I didn‟t find the elements, which responds to N/C 

ratio. 
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3.2. The Genetic Analysis of RPII215
X161

 

3.2.1 X161 germline clone undergoes only 12 nuclear divisions 

To gain further insight for Drosophila development, one EMS-inudced mutagenesis 

was performed in Tübingen (VOGT 2006; VOGT et al. 2006). Previous in our lab, a 

genetic screen with this EMS-mutant collection was perfoermed in order to identify 

the candidate maternal genes required for the early Drosophila screen. The mutants 

were seleced for the defects observed by the DIC time-lapse imaging. One mutant, 

X161, on X chromosome, showed the premature entry of the cellularization with 

lower nuclear density (Figure 16A).  

 

Figure 16: X161 GLC embryos undergo one division less. (A) Half number of cells in stage 6 

X161 GLC embryo compared to wild type. Green: Kuk, Orange: Eve. (B) Bar graph showing 

the penetrance of cell cycle phenotype in X161 GLC. 40% of X161 GLC 

 

Live imaging with differential interference contrast microscopy (DIC) and 

fluorescence imaging with histoneRFP confirmed the reduced number of nuclear 

divisions. The result showed that 40% of embryos had one division less than the wild 

type (Figure 16B and Table 2). 10% of the embryos are patched embryos with mixed 
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territories of nuclei in cycle 13 and cycle 14. The remaining 50% of embryos 

underwent the normal number of divisions. Despite the normal number of nuclear 

division in these embryos, the interpahse of cycle 13 in the X161 GLC with 13 

nuclear divisions was extended to about 20 min at 21°C, compared to 12 min in wild 

type (Figure 17 and Table 3). In patchy embryos, the interphase 13 is further 

prolonged to more than 30 min. The length of the interphase and mitosis of cycle 11 

and 12 was not different to wild type.  

Table 2: Summary of the number of cleavage cycles in different background. 

 
number of nuclear divisions 

 

Genotype/cross 12 12patchy 13 13patchy 14 

Wild type 0 0 128 0 0 

X161 FRT
18E

 /FM7 0 0 46 0 0 

X161 FRT
18E

 GLC 24 5 27 0 0 

haploid X161 GLC 16 3 11 1 5 

RPII215
X161

FRT
19A

 

GLC 
4 5 15 0 0 

2X Dp(1;3)DC241 0 0 16 0 0 

X161/X161; frs/frs 36 11 48 0 0 

WT +water 0 0 34 0 0 

WT +α-amanitin 0 0 2 0 21 

RPII215
X161 

+water 11 7 12 0 0 

RPII215
X161 

+α-amanitin 
0 0 21 0 0 

The X161 FRT
18E refers to the original X161 line which contain two mutations 

on X chromosome. The RPII215
X161

FRT
19A

 refers the “cleaned” X161 line which 

only was recombined with viable marker chromosomes distal and proximal to 

RPII215
X161

. 

 

The mutant embryos went into the normal cellularization and gastrulation, even 

with fewer cells. The seven eve stripes in the X161 GLC suggests anterior-posterior 

patterning is not affected. The proper morphology of the ventral furrow suggests that 

the dorsal-ventral patterning is correct during gastrulation (Figure 16A). Since there 

were few larvae hatched (>1%), further defects may occur during later embryonic 

stages in addition to the reduced cell number in helf if the embryos. We did not 
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investigate these potential phenotypes. 

 

Figure 17: length of interphase and mitosis in wild type and X161 GLC. The interphase 13 of 

X161 is significantly longer than in WT (P<0.05). The lines represents the length of 

interphase, the column represents mitosis. The number below the line indictes the time (min). 

WT is in blue and X161 is in red. 

 

Table 3: The time length of nuclear division after cycle 10 

  Divisions 

embryos  10I 10M 11I 11M 12I 12M 13I 13M 14I 
cellularization 

WT      (n:18)  3.4±0.9 6.5±1.1 4.5±1.0 7.7±0.9 6.5±1.1 8.3±1.0 12.8±2.3 9.1±2.5 57.1±4.4 

X161 13   ( n:8)  4.3±0.9 
6.3±0.9 

5.5±1.0 6.25±0.4 8.1±1.9 7.5±0.9 20.2*±2.3 7.78±2.25 55.4±8.7 

X161patchy (n:3)  3 6 3 6.7±0.5 10±2.0 7.0±0.8 32.6*±4.4 9.2±1.5 48.2±9.5 

X161 12   (n:3)  3 7 4±1 7.0±0.8 13±4.5 9.0±1.4 66.0±12.0   

The unit of time is minutes, the number after “±” indictes the standard deviation. 

 

 

3.2.2. X161 does not affect the cell cycle  

 The premature stop of the mitosis in X161 may be due to the complete arrest of 

cell cycle machinery. Alternatively, the mutation of X161 may only affect the timing 

and the number of the cleavage divisions. To test these two possibilities, following 

experiments were performed.  

In previous studies, it is showed that the premature arrest of nuclear divisions often 
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leads to the uncoupling of the DNA duplication and the centrosome duplication 

(MCCLELAND and O'FARRELL 2008). If this phenomenon happened in X161 mutant, 

there would be more than 2 centrosomes per nuclei. However, antibody staining for 

γ-tubulin revealed that there were two centrosomes per nuclei during interphase 14 in 

X161 (Figure 18 C). Despite the correct pairing of the centrsome cycles, we observed 

that the distance between the pairs of centrosomes was longer in X161 GLC embryos.  

The result clearly shows that there is no extra centrosome duplication in X161 GLC 

embryos.  

 

Figure 18: Centrosome cycle is not affected in X161.There is no extra centrosome duplication 

in X161 GLC after cell cycle stop (D to F) as in wild type (A to C). The embryos were in late 

cellularizaion, but X161 GLC was at cycle 13 while wild type was at cycle 14. γ-tubulin 

marks the centrosomes in green, DAPI marks DNA in blue, the scale bar: 10μm 

 

Following cellularization, the mitosis 14 occurs in an asynchronous manner in 25 

different domains. With few exceptions, cells enter mitosis according to the 
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expression of string (EDGAR et al. 1994a; FOE 1989). To test whether the timing and 

patterning of mitosis 14 is affected by X161, we preformed the in situ hybridization of 

string and the staining with the mitotic marker, pospho-Histone H3 (S10) antibody 

(HAU et al. 2006). The expression of string was generally similar to wild type. The 

mitosis always occurred in the region where string is expressed (Figure 19 B and C). 

In embryos with patches, we observed higher expression level of string in the patches 

with lower nuclear densities. This may be due to the longer period of time after exit 

from mitosis 13. We also noticed that the mitotic pattern was slightly advanced as 

compared to the gastulation movement (compare Figure 19 A and C) as it is also seen 

in trbl and frs mutants (GROSSHANS and WIESCHAUS 2000). To summary, X161 

specifically affected the counting mechanism of the nuclear divisions, but it did not 

disturb the general cell cycle mechanism. 

Figure 19: The mitosis 14 occurred according to the mitotic domains in wilde type (A, B.) 

and X161 embryo(C, patchy, D, the same stage as A). Arrowhead indicates the mitoic cells at 

cephalic furrow. Arrow indicates the ectopic mitosis at head region in X161. pHS3 (S10) 

staining marks the cells at mitosis, in situ of stg marks the mitotic domain.  
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3.2.3. The X161 mutant does not affect the ploidy of the nuclei. 

Since the number of cleavage cycles is controlled by the N/C ratio. It is possible 

that the premature stop of cell cycle in X161 mutant is due to tetraploidy of the 

embryos. To test this hyphosis, we stained for CID protein. CID is the Drosophila 

homologue of the CENP-A centromere-specific H3-like protein which localizes at 

centromeres (BLOWER and KARPEN 2001), allowing to count the number of 

chromosomes in one cucleus. There are 8 dots of CID staining in each X161 nucleus 

during interphase similar to wild type (Figure 20). It indicated that the chromosome 

number and ploidy is not affected in X161 embryos.  

 

Figure 20: X161 GLC embryos contain normal set of chromosomes in wild type (A, B, C), or 

in X161 (C, D, E). Notice that the cell density of X161 is less than in WT. Centromeres are 

marked by CID, DNA/nuclei are marked by DAPI. Green: CID, blue: DAPI, scale bar: 20μm. 

3.2.4. The X161 phenotype in haploid embryos 

Haploid embryos undergo an extra mitosis before cellularization (EDGAR et al. 

1986), which is opposite to the phenotype of X161, allowing to establish genetic 

epistesis. Such embryos were produced by crossing females bearing X161 germline 

clones with male homozygouses for ms(3)K81. Ms(3)K81 prevents the union of 

maternal and paternal prenuclei but still allows development to continue with haploid 
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maternal genome (YASUDA et al. 1995). The haploid X161 embryos undergo viable 

number of nuclear divisions. The embryos at cycle 13, cycle 14 and cycle 15 could be 

observed (Figure 21B and Table 2).. One patchy embryo even contained three 

compartments of different nuclear density (Figure 21A). This result indicated that 

X161 and haploid are not epiststic to each other, and suggests that they act in distinct 

processes to control the cell cycles. 

 

Figure 21: Epistasis of X161 and haploid mutants. X161 and N/C ratio work in in parallel to 

control the number of nuclear divisions. The haploid X161 GLC show complicated patched 

embryos (A). The number of nuclear divisions in haploid X161 embryos is summarized in (B). 

About 50% of haploid embryos undergo 12 nuclear divisions, 34% undergo 13 divisions and 

15% undergo 14 divisions.  

3.2.5. Partial rescue of the phenotype by zygotic activation 

Since only half of the embryos had a reduced number of nuclear divisions, X161 

may show a zygotic rescue. To test this hypothesis, X161 females were crossed to 

males with a marked X-chromosome (FM7c, P{ry[+t7.2]=ftz/lacZ}YH1) (KLÄ MBT et 

al. 1991). Zygotically heterozygous (female) embryos therefore could be separated 

with hemizygous males by the staining of β-galactosidase to mark the female. The 

embryos at stage 5 and 6 were collected and checked for nuclear density from both 

male and females. 87% of the male embryos showed the premature stop of nuclear 

division, compared with the female (52%) (Table 2). Although there was still 50% of 
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females show the phenotype, the male has higher portion of defect. It suggests there is 

a partial rescue for the premature stop, but not fully. This result also confirms that the 

extension of lengeh of interphase 13 in all the X161 embryos is a strictly maternal 

phenotype.  

3.2.6. Cellularization occurs immediately after cell cycle stop 

In wild type, cellularization immediately starts after exit mitosis 13. To test whether 

such a link is also observed in X161 embryos with premature stop of cell cycle, we 

used time-lapse imaging with Moesin::GFP to visualize the progression of 

cellularization. Unlike the result of cyclin RNAi treatment (MCCLELAND and 

O'FARRELL 2008), cellularization in X161 mutant started after last mitosis (Figure 22). 

The progression of cellularization in interphase 13 is 10min slower than in interphase 

14. Since the average time of cycle 13 is 36 min, it is unlikely that cellularization 

starts at an absolute time after fertilization. However, inhibition of the cell cycle was 

not sufficient to forestall cellularization, which is based on the experiment of RNAi 

against mitotic cyclins (MCCLELAND and O'FARRELL 2008). We proposed that the 

difference result of these two experiments is due to the premature activation of 

zygotic genome in X161.  

 

Figure 22: The cellularization occurred immediately after last mitosis. (A) is wild type at 

cycle 14 and (B) is X161 embryos at cycle 13. The movie was obtained with meosin::GFP to 

mark the furrow cancal. Scale bar is 20μm. 
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3.2.7. X161 causes premature degradation of cdc25 homologs 

The degradation of the maternal transcripts cdc25 homologs, string (stg) and twine 

(twn), plays an important role in proper stop of cell cycle (EDGAR and DATAR 1996). It 

is possible that the degradation of stg and twn is changed in X161 mutant. In wild 

type embryos, the maternal transcripts of stg and twn are abundant until the 

mid-cellularization in interphase 14. In the embryos with premature stop, the 

expression of stg and twn disappeared in mid-cellularization of cycle 13 (Figure 23). 

Since degradation of stg and twn followed the premature onset of cellularization in 

interphase 13, the degradation may be the consequence but not the cause of the 

premature stop of nuclear division. Althogu we did not perform a genome-wide 

analysis, it is quite likely that some other maternal transcripts, if not all, may be also 

degraded prematurely in X161 mutants.  

 

Figure 23: Expression of stg and twn. The in situ hybridization of stg (A) and twn(B) in WT 

and X161 embryos. The cycle is decided by the nuclear density. The furrow canal is marked 

by the immunostaining agains Slam. Scale bar: 10μm as all the following nuclear density 

pictures. 
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3.2.8. X161 causes premature expression of zygotic genes 

The stop of nuclear divisions and onset of cellulariztion require the zygotic gene 

expression (EDGAR and DATAR 1996). The embryos injected with the RNA 

polymerase II inhibitor, α-amanitin, do not cellularize and undergo one extra nuclear 

division. This data suggested that zygotically expressed mitotic inhibitors are 

involved in pausing the nuclear division at cycle 14. At least two mitotic inhibitor 

tribbles and frühstart have been identified (GROSSHANS et al. 2003). Expression of 

mitotic inhibitors is sufficient to pause the cell cycle. 

To test whether the premature stop of cell cycle in X161 is due to the premature 

expression of zygotic cell cycle inhibitors, the expression profile of frs was analysised 

by in situ hybridization. In wild type, the major peak of frs expression showed up at 

early interphase 14 (Figure 24A). In X161, the peak of frs expression is at interphase 

13 (Figure 24B). We concluded that the expression starts one cycle earlier, 

immediatedly following the exit of mitosis 12. 

Since cellularization starts immediately after mitosis 12 in half of X161embryos, 

the zygotic genes, which are required for cellularization, may be expressed 

prematurely as well. Therefore, we analysised expression of slow as molasses(slam). 

Slam is required for the slow phase of cellularization (LECUIT et al. 2002). In wild 

type, the expression of slam starts at late interphase 13 and has the major peak at early 

cycle 14. The expression of slam was detected as early as interphase 12 in X161 

embryos (Figure 24C and D). It may be the reason why the cellularization can occur 

prematurely in the X161 embryo but not in other mutant embryos.  
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The microarray comparison between diploid and haploid embryos revealed that 

there are two clusters of zygotic genes, N/C dependent and N/C independent (LU et al. 

2009). Frs belongs to the N/C dependent cluster and slam belongs to the N/C 

independent cluster. Both frs and slam are expressed prematurely in X161 mutant. 

This suggests that onset of zygotic gene activation is affected in X161 embryos. 

3.2.9. The X161 frs double mutant could not rescue premature cell cycle pause 

It is showed that the premature stop of cell cycle in X161 mutants requires the 

zygotic activation. frühstart is a good candidate of the zygotic gene that mediates the 

inhibition of cell cycle. Frs is the cell cycle inhibitor which blocks the subtract 

binding site (hydrophobic patch) of cyclin (GAWLINSKI et al. 2007) , and its 

expression is precisely at early interphase 14 in wild type embryos (GROSSHANS et al. 

2003). However, the expression of frs could be detected as early as in interphase 12 in 

Figure 24: Expression of frs and slam. The in situ 

hybridization of frs (A, B) and slam(C, D) in WT and 

X161 embryos. The cycle is decided by the nuclear 

density . 
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X161 mutant. It is possible that X161 pauses the cell cycle via regulating the 

expression of frs. To test this possibility, X161, frs double mutant was generated. The 

penetrance of the double mutant was as the same as X161 alone. It suggested that frs 

was not required for pause of cell cycle in X161. This is consistent with the previous 

result that frs is only one of several zygotic mitotic inhibitors (GROSSHANS et al. 

2003). In summary, frs may be involved in the premature stop of cell cycle, but there 

are redundant cell cycle inhibitors. Therefore, frs alone is not required for the 

premature entry of MBT. 

3.2.10. The premature cell cycle pause requires the expression of zygotic genes 

Since we observed the premature expression of zygotic genes, the question was 

reaised whether zygotic expression is required for the cell cycle phenotype. One 

possibility is that X161 affected the cell cyele directly, or by maternal cell cycle 

regulators, such as CycB and grapes (EDGAR 1995; SIBON et al. 1997). The other 

possibility is that X161 cause the premature stop of cell cycle via the expression of 

zygotic genes (Figure 25A). To distinguish these two hypotheses, the expression of 

zygotic genes was blocked by the injection of α-amanitin, inhibitor of RNA 

polymerase II, is performed. If the expression of zygotic genes is required, the 

injection of α-amanitin would revert the cell cycle phenotype to 13 or 14 nuclear 

divisions. The result showed that all the injected X161 germline clone embryos 

underwent at least 13 nuclear divisions, while 50% of the embryo injected with water 

still underwent 12 divisions. The result suggested the zygotic activation is required for 

the premature stop of cell cycle in X161 GLC embryos (Figure 25C). In wild type 

embryos, the injection of α-amanitin cause an extra mitosis. However in X161 embryo 

(Figure 25B), the injection of α-amanitin also caused severe nuclear fallout and 

nuclear fusion (Figure 25 E and F). Therefore, the further imaging could not be 
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recorded. 

 

Figure 25: X161 requires zygotic gene expression. (A) summary of the predicted results of 

α-amanitin injection. (B) α-amanitin caused extra cell cycle in wild type (93%). (C) 

α-amanitin rescued the premature cell cycle stop phenotype of X161 GLC. Theα-amanitin 

cuased the moderate nuclear fallout and fusion (E) and severe fallout and fusion in X161 (F), 

which was not occurred whe injected with water (D) 

3.2.11. Isolation of X161 genes 

The initial approach to map x161 was the complement test with the X-chromosome 

duplication kit. However, no duplication could complement the lethality of X161 

(table 4). There are gaps in the duplication kit, although it covers more than 90% of X 
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chromosome, It is possible that X161 is within one of these gaps. Another possible 

explanation is that there may be more than one lethal mutations on X161 X 

chromosome. 

To narrow down the position of X161, the linkage map of meiotic recombination 

was performed with a marker chromosome carrying visible markers (Figure 26). The 

lethal mutation locates between vermilion (cytomap: 33.0) and forked (cytomap: 56.7). 

With the calculation using the recombination between white and crossveinless as 

reference, the genetic distance between crossveinless and the mutant is 30.3 cM and 

between forked and the mutant is 9.5. The calculation from the proximal and distal 

markers estimated the position of the mutation at at 44 to 47 at the recombination map, 

which is roughly at 12 to 13 in the cytological map. 

Table 4: the complement test of original X161 line with duplication kit 

Number Duplication Bar male WT male 
901 1Lt--2B18 66 0 

761 1A3--3A2 173 0 

1527 2C1--3C5 121 0 

936 2D2--3D3 146 0 

1319 3C1-2;3E7-8 111 0 

5594 
3C2;3F + 3F;4E3 + 

4E3;5A1-2 
146 0 

5279 4C11;6D8 + 1A1;1B4 (Dp) 91 0 

948 6C;7C9-D1 116 0 

1879 7A8--8A5 64 0 

5678 
7D;8B3-D7 + 16A1;16A1 + 

20B;20Fh 
53 0 

5292 8C-D;9B + 1A1;1B2 122 0 

929 9A2;10C2 143 0 

5596 1A1;1B1-2 + 10C1-2;11D3-8 187 0 

3560 
9F4;10E3-4 + 1A1;1B2 + 

20B;20Fh 
114 0 

5459 11D--12B7 170 0 

3219 
12A6-10;13A2-5 + 

1A1;1B3-4 
134 0 

5273 
13F1-4;16A1 + probably X 

tip segment 1A1;1A 
98 0 

1537 15B1--16F 148 0 

1538 
16F1-4;18A5-7 + 1A1;1B2 + 

19E5-7;20Fh 
110 0 

3033 18F1;20Fh + 1A1;1B2 160 0 

940 3D6-E1;4F5, 4E3;5A1-2 178 34 

5281 5A8-9;6D8 145 0 

1527Pr 2C1;3C5 117 1 
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3.2.12. Mapping with Single nucleotide polymorphisms and chromosome 

cleaning 

To further narrow down the X161 mutation, the mapping with SNP was performed. 

X161 flies crossed with the marker line, y, pn, cv, v, f, FRT18E, and the recombinants 

were collected and checked for SNPs. 

 

Figure 26: Mapping of X161 by meiotic recombination. The summary of the meiotic 

recombination between w
-
, X161, f, FRT18E (blue) and the marker chromosome y, pn, cv, v, f, 

FRT18E (orange). The number indicated the F1 progeneies of specific genotype. The blue 

dash line illustrates the approximate region X161 mutation locates. The blue line indicates the 

region from mutant chromosome, the orange, from the marker chromosome. 

5 of 48 v
-
 f

-
 viable males show the SNP from X161 at 11A and SNP from B437 at 

9F. This result narrowed the location of the mutant down to 9F to 11A (Figure28A). 

However, the 7 of 13 lethal female recombinants (distal: marker and proximal: mutant) 

contained the marker SNP at 11. This result suggested that there was another mutation 

was proximal to 11 which was inconsistent with the result from the male 
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recombinants.  

To explain this conflict result, I assumed that there may be two mutations on the 

X161 chromosome. First mutation m
10

 is between 9 and 11 and is a true lethal 

mutation. The other mutation m
12

 located proximal to 11 and is actually a semi-lethal 

mutation because there were few escapers of male recombinants carrying this 

mutation. Since at this stage, the m
12 

mutation was isolated (Figure 27A). The 

germline clone analysis showed that m
12 

mutation didn‟t have maternal effect and 

could not generate the phenotype observed in original X161. Therefore, the m
10

 may 

be the mutation that caused the phenotype. 

Based on this assumption, another round of recombination was preformed to 

separate these two mutations and isolate the m
10

 mutation (Figure 27B). The y,pn, cv, v, 

x161
m10+m12

, f
-
, FRT

18E
 flies were crossed with the fly, w

118 
sn

3
 P{neoFRT}

19A
. The 

flies were treated with G418 to select the flies which contained P{neoFRT}
19A

 then 

progenies were crossed FM0 balancer and the recombinants with v
-
 and forked

+
 were 

picked up and setup stocks. Further SNP analysis with the SNP at 11 was preformed 

to select the stocks whose proximal mutations were removed.  

All the recombinants were tested by germline clones to check for the maternal 

effect. All the GLC embryos from the viable recombinants hatched, the GLC from all 

the recombinants containing m
10

 mutation did not hatched and showed premature 

cellularization phenotype similar to X161 (Table 2). This result indicated the 

phenotype was linked to the lethality. And the m
10

 mutation was indeed the mutation 

we were looking for. 
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Figure 27: The crossing-sheme of chromosome cleaning for X161. There two mutation, one 

at cyto 10 and one between 12 and 14 on the X chromosome of X161. The first chromosome 

cleaning (A) cleaned the X chromosome distal to v, and isolate the lines containing only m
12

 

mutation. The second chromosome cleaning (B) cleaned the proximal region and isolate the 

lines containing only m
10

, which is RPII215
X161

. 
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Table 5: the complement of the X161
m1

, FRT
9AE

 with duplication and deficiency lines.  

Duplication 

Stock Nr. Genotype Duplicated region FM0 WT 

929 Df(1)v-L15, y/C(1)DX, y w f; Dp(1;2)v[+]7 9A2;10C2 66 0 

5596 Dp(1;Y)BSC1, y[+]/w  10C1-2;11D3-8 177 30 

3560 Df(1)v-N48, f[*]/Dp(1;Y)y[+]v[+]#3/C(1)DX, y f 9F4;10E3-4 + 1A1;1B2  245 45 

29771 Dp(1;Y)BSC47 10B3;11A1 113 1 

29773 Dp(1;Y)BSC49 10B3;11A1 84 1 

29774 Dp(1;Y)BSC50  10B13-10C5;11A1 61 4 

29776 Dp(1;Y)BSC52 10C5-10C7;11A1 182 0 

29778 Dp(1;Y)BSC54 10C7-10D5;11A1 72 0 

29780 Dp(1;Y)BSC56 10D5-10E2;11A1 63 0 

30352 Dp(1;3)DC233  9F13;10A3;65B2 36 0 

30353 Dp(1;3)DC234 10A3;10A8;65B2 86 0 

30354 Dp(1;3)DC235 10A6;10B1;65B2 31 0 

30356 Dp(1;3)DC237 10B2;10B5;65B2 52 0 

30357 Dp(1;3)DC238 10B3;10B12;65B2 50 0 

30358 Dp(1;3)DC239 10B8;10B15;65B2 53 0 

30359 Dp(1;3)DC240 10B14;10C5;65B2 143 0 

30360 Dp(1;3)DC241 10C2;10D1;65B2 127 69 

30361 Dp(1;3)DC243  10D4;10E2;65B2 135 0 

30364 Dp(1;3)DC246  10F1;10F7;65B2 105 0 

Deficiency 

Stock Nr. Genotype Duplicated region Df/FM0 X161/Df 

23672 Df(1)BSC287 10A10;10B11 45 59 

23673 Df(1)BSC288 10B2;10B11 9 6 

25069 Df(1)BSC541 10E1;10F1 13 15 

25072 Df(1)BSC544 10E4;11B9 21 30 

26510 Df(1)BSC658 10B3;10C10 65 0 

26574 Df(1)BSC722 10B3;10E1 38 0 

1512 RPII215
1
 

 
193 0 

11547 RPII215
G0040

 
 

34 0 

http://flybase.org/reports/FBab0046157.html
http://flybase.org/reports/FBab0046159.html
http://flybase.org/reports/FBab0046160.html
http://flybase.org/reports/FBab0046162.html
http://flybase.org/reports/FBab0046164.html
http://flybase.org/reports/FBab0046166.html
http://flybase.org/reports/FBab0046416.html
http://flybase.org/reports/FBab0046417.html
http://flybase.org/reports/FBab0046418.html
http://flybase.org/reports/FBab0046420.html
http://flybase.org/reports/FBab0046421.html
http://flybase.org/reports/FBab0046422.html
http://flybase.org/reports/FBab0046423.html
http://flybase.org/reports/FBab0046424.html
http://flybase.org/reports/FBab0046425.html
http://flybase.org/reports/FBab0045002.html
http://flybase.org/reports/FBab0045003.html
http://flybase.org/reports/FBab0045433.html
http://flybase.org/reports/FBab0045436.html
http://flybase.org/reports/FBab0045727.html
http://flybase.org/reports/FBab0045791.html
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3.2.13. X161 is a novel allele of RNA polymerase II 215 subunit 

These new x161 recombinants are used for the complement test with duplication kit. 

Indeed, the chromosome-cleaned x161 could be complemented by two duplication 

lines 3560 and 5596, which narrowed the region of X161 as 9F to 10E. The further 

complement test with molecular-defined duplications and deficiencies was performed 

and narrowed to a 20KB region, from X: 11,446,970 to 11,466,244 (table 4, and 

figure 28A). There are 4 genes within this region, cg 1572, PGRP-SA, RNA 

polymerase II, and cg11699. The sequencing was performed for the genomic region of 

all four genes, which including the coding region, 5‟ UTR, 3‟UTR and the 1kb 

upstream. The sequencing revealed that there was a single nucleotide exchange from 

A to T at 40bp of the 3‟UTR of RNA polymerase II 215 subunit (Figure 28 C and D). 

To confirm that the X161 would be an allele of RNA polymerase II 215, the X161 

was crossed with two lethal alleles, RPII215
G0040

 and RPII215
1
 (GREENLEAF et al. 

1980). X161 failed to complement both (Table 4). Although the genomic rescue 

experiment is missing, combining the sequencing and complement test data still 

provids the convincing evidence that X161 is an allele of RPII215 (RPII215
X161

 

distinguishs from X161 in following section). 
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Figure 28: RPII215
X161

 is a novel allele of RNA polymerase II 215. The complement test with 

duplications and deficiencies narrowed down to four candidate genes (A &B). The enlarged 

illustration of the first 50bp region of 3‟UTR of RPII215 (C) The sequencing graph of the 

X161/FM7 show the double peak (T to A) at the point mutation of X161 (D), but  show only 

single peak of T in the control line X9/FM7 (E). The position of X161 mutation is indicated 

by the arrow.  

 

 



_____________________________________________________________________Results 

87 

 

 

Figure 29: Motif prediction of X161 mutation site. (A) The weight matrix of the predicted 

motif locates the X161 mutation site at 3‟UTR of RPII 215. (B) the sequence of this motif 

from 8 Drosophila species. (C) the location of this motif at 3‟UTR of the RPII in different 

species. (D) the sequence aligment of the first 50bp of 3‟UTR of RPII 215. The red box 

indicates the prediceted motif by MEME program. 

3.2.14. The prediction of X161 mutation site 

Next, I tried to use bioinformatic apporcah to predict the molecular nature of X161 

mutation. The sequence alignment show that the first 50bp of RPII 215 3‟UTR is 

conserved within 4 species in the melanogaster subgroup (Figuire 29 D, red box). The 

motif prediction by MEME program also predicted one 25bp motif located at X161 

mutation site (Figure 29A, B and C).  

Since the microRNAs paly an important role controlling the translation and RNA 

stability at early development (BUSHATI et al. 2008), we first checked whether there is 
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potential miRNA binding site at 3‟UTR of RPII 215 based on the data from 

miRNA-Target predictions for Drosophila miRNAs at EMBL (STARK et al. 2005; 

STARK et al. 2003). No miRNA binding site is reported at 3‟UTR of RPII 215. No 

piRNA binding site could be found at X161 mutation region with the blast of known 

piRNA database (SAI LAKSHMI and AGRAWAL 2008). We have not tested any the 

interaction of RNA-binding protein. However, Smaug, for example, may be a good 

candidate may bind to this position. 

3.2.15. Dynamics of RNA pol mRNA and protein 

Since RPII215
X161 

mutation occurred at 3‟UTR, it should not affect amino acid 

sequence. We hypothesized that the mutation may affect the translation rate or mRNA 

level. The western blotting against RNA polymerase II was performed. In wild type, 

there was low level of RNA pol II protein in 0 to 1 hr embryos (Figure 30A). Benoit 

and colleagues also obtained similar result (BENOIT et al. 2009). Both the active form 

and the total lever of Pol II protein gradually increase during the development. In 

RPII215
X161

 embryos, there is already high level of active Pol II protein at 0 to 1 hr 

embryos; however, the amount of Pol II remains constant. 

 

Figure 30: The dynamics of RPII215 protein and transcripts. (A) The western blot of RNA 

polymerase II 215 in early embryo. II0 is active form of Pol II IIa, inactive form. Pol II by 

ARNA3-a antibody, and II0 was by H5. The number above each lane indicates the collecting 

time (unit: hr) after egg deposition. II0 is the phosphorylated and active form of Pol II (B) the 

QPCR of RPII215 relative to actin. The overall level is significantly higher in X161 embryos. 
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Next, we investigated the dynamics of RNA polymerase II transcripts with 

quantitative PCR. The dynamic of Pol II mRNA show similar pattern as the protein. 

The level of transcripts is low for 0-2 hr, but the level rises from 2hr and boost during 

3 to 4 hr (Figure 30B). This result was contrary to the current genome-wide RNA 

sequencing result on flybase, that the level of RPII 215 transcripts was stable during 

whole life cycle (Figure 31) (DAINES et al. 2011). This may due to the different scale 

and experimental procedure. In X161 embryos, the initial level of Pol II mRNA is 

much higher than in wild type (Figure 30B). The high level of RNA polymerase II 

protein and transcripts is quite unexpected. It is unclear whether the rate of translation 

is higher in X161 at 0 to 2 hr. However, the high level of active form of pol II protein 

at the 0 to 1 hr may suggest that the accumulation of pol II protein and transcripts 

already start during oogenesis.  

 

Figure 31: the RNA-seq of RPII 215 in Drosophila (adapted from Daines 2011). The level of 

RPII 215 of 0-2 hr and 2-4 hr is similar, which is contrary to the QPCR result in Figure 29B. 
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4. Discussion 

4.1. Dissection of frs genomic regulatory module 

4.1.1. The genomic regulatory modules of frs expression 

In this study, we investigated the genomic regulatory elements of frs in order to 

provide the the link between the N/C ratio and the zygotic gene expression. Although 

we did not achieve this iniatial goal, our reporter assay narrowed the core genomic 

regulatory region of frs to the 260bp upstream region upstream of its transcription 

start site. The -260bp to -180bp region is required for the transcription of frs. The 

deletion of the region dramatically reduced the expreesion. We also identified two 

transcription silencers at the genomic regulatory region of frühstart. 

prom(-68--57)::GFPand prom(-174- -161)::GFP drives the leaky expression at cycle 

13, although the expression still delayed in haploid embryos (Figure 32). However, it 

supports the idea that there would be transcription represser to prevent the premature 

activation of frs. Since Frs is a cell cycle inhibitor which is sufficient to arrest the cell 

cycle, the expression of frs needs to be restrictively controlled at temporal aspect. The 

transcription repressor combined with activator can set a sharp expression broader 

than the activator alone (DAVIDSON 2001).  

 

Figure 31: the genomic regulatory region of frs. The putative enhancer and the 

protein-bindong region is in blue. Two putative silencers (in orange) prevent the premature 

expression at cycle 13. The TAGteam motic is in pink, TATA box in green. The number below 

indicate the distance (bp) from the transcription start site. 
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In our EMSA assay, we identified one protein-binding motif at -260bp to -211bp at 

the region is required for the strong expression of frs (Figure 32). This motif may be 

an enhancer for the transcription activation. This region is conserved within D. 

melanogaster, D. simulans, and D. yakuba (all in melanogaster subgroup), but quite 

variable in other species. This may be the reason why this motif is not over-presented 

in MEME predication. We did not attempt to purify the protein binding to this motif. 

But it is worth to investigate it with DNA affinity chromatography or yeast-one hybrid 

screen. 

We could not detect any DNA-protein interaction at the region of prom(-68--57) 

and prom(-174- -161) in our EMSA assay using nuclear extract from the early embryo. 

EMSA is proofed to be a very powerful tool for investivgating the interaction between 

nuclear acid and proteins and is widely used in DNA and RNA researches. However, 

the binding interaction of EMSA is performed in vitro at reaction tube suppilied by the 

artificial buffer. The DNA probe using in EMSA are usually short (less than 500bp) 

and is without histone or DNA modification. Therefore, the EMSA could not fully 

provide the microenviroment identifical to the transcrion factors encounter in nuclei, 

especially the weak DNA-protein binding or the binding requied other factors. 

Another reason is the abundence of transcription factors. The amount of transcription 

factor is relative low compared to other nuclear protein. In early cleavage stage, the 

number of nuclei is fewer than in syncytial blastoderm or later stage. Therefore, the 

nuclear extract we used in this study may not contain sufficient transcription factor to 

mediated the shift in EMSA. The third possibily is that this motif may not be directly 

involved in protein binding. Although this two motifs are required for the repession at 

cycle 13, it may mediate the repression by change the local DNA topology, for 

example, the motif makes it more difficult to bend DNA and form the loop which is 
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required for the interaction between transcription acvitator and RNA polymerase II 

complex (TADROS et al. 2007a).  

 

4.1.2. The TAGteam motif is not required for frs expression 

The transcription of frs is largely decreased in the microarray analysis of zelda 

mutant, and about 5 to 10% of zelda mutant embryos undergo extra mitosis as in frs 

mutant (LIANG et al. 2008). These two results suggest that the expression of frs 

requires the transcription factor Zelda. The Zelda binds specificly to the TAGteam 

DNA motif (CAGGTAG). There is one CAGGTA motif located at 127 to 121 bp 

upstream of the frs transcription start site. However, in our study, substitution of this 

motif did not alter the expression of the reporter. It suggests that TAGteam motif is 

not required for the expression of frs. It is possible that there is alternative Zelda 

binding site which is not a typical cAGGTA motif or that Zelda indirectly affect frs 

expression by controlling other transcription factor. 

4.1.3. In situ hybridization as a tool studying temparol expression 

In our study, we use in situ hybridization as read out of reporter constructs for 

several reasons: first, the early cell cyles in drosophila are short. the interphase 13 

takes about 20min. The normal translation and activation of GFP takes at least 30min, 

as other reporter protein, like luciferase. Second, the RNA level is what we were 

really interested in, although the preotin level correlate with mRNA level, but it is still 

indirect. Second, we use the nuclear density as an indicator which cycles the embryo 

is. Therefore, the embryo needs to be fixed and stained by DAPI. The in situ 

hybridization is very powerful for investigation of spatial expression, since it provides 

more expression. However, it could only provide qualitive data but not quantitative 
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data. This caused some problem in this study. The staining was sometimes faint and 

difficult to decide whether it is expressed.  

Lu has showed that it is possible to hand-select the staged embyos for each cycle 

with the histone-RFP labeling the nuclei under fluorescence stereo microscope (LU et 

al. 2009). It would be a better detection method for our study to use QPCR for 

hand-select staged embyos. 

4.1.4. The N/C ratio and number of cleavage cycles 

The relation between N/C ratio and number of cleavage cycles is known for almost 

one hundred years (KORZH 2009). However, the molecular link between N/C ratio and 

cell cycle mechanism remain unclear. Lu and Wieschaus has identified 88 zygotic 

genes whose expression delay in haploid embryos (LU et al. 2009). Based on this 

finding and the previous work about frs in our lab, we hypothesized that the frs can 

provide the missing link between N/C ratio and cell cycle control. Because the 

expression of frs is respond to N/C ratio and Frs is a cell cycle inhibitor. Although we 

identified two cis-motifs which prevent premature expression at cycle 13, we could 

not identify the element responsive to the N/C ratio. One possibility is that this 

element may be an activatior which is required for frs expression, therefore, we could 

not identify it via deletion or substitution constructs. To test this, we would need to 

add the minimal frs regulatory module to the promoter of the zygotic gene which is 

not regulated by N/C ratio and see whether the fusion promoter can response to the 

N/C ratio. 

4.1.5. Outlook for the imvestigation of frs genomic regulatory elements 

So far we could not identify the elements responsive to the N/C ratio. We would 

like to improve this study by following: first, using quantitative method to measure 
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the level of trancripts. Second, use yeast-one hybrid screen to indetify candidate 

DNA-protein interaction (SIEWEKE 2000). The advantage of yeast-one hybrid system 

is the interaction is in vivo, and it can identify the candidate proteins which bind to the 

DNA. We hope that we could eventually identify the cis and trasn factors which 

respond to N/C ratio and provide the missing link between N/C ratio and cell cyele 

stop.  

4.2. The Role of RPII215 in controlling the onset of MBT 

4.2.1. RPII 215
X161

 is a novel allele of RNA polymerase 215 subunit 

In this study, we reported a special allele of RNA polymerase II 215, RPII 215
X161

, 

which contains one single T to A mutation at 40bp downstream of the stop codon. 

Several lines of evidences supported this conclusion. First, the sequencing result 

showed there was only one point mutation within the genomic region of four 

candidate genes. Second, two RPII215 allele, RPII215
G0040

 and RPII215
1
 can not 

complement the lethality. Third, the duplication line Dp(1;3)DC241 resuced both the 

lethality and maternal effect. RPII 215
X161

 caused the premature onset of MBT, which 

includs the cell cycle pause, maternal-zygotic transition and cellularization. Since the 

mutation occurs at 3‟UTR, we assume it may affect the translation efficieny and RNA 

level as it changes the level of both transcripts and protein.  

We could not find putative factor binding to X161 mutation site, therefore could not 

provide the molecular evidence how the X161 point mutation caused the phenotype. 

But the data of western and QPCR show that even the initial amount of Pol II protein 

and transcripts is high in 0 to 1hr embryos. It suggests the accumulation of Pol II may 

already start during oogenesis. This raises another question: whether the level of other 

maternal transcripts also increase in the egg. The genome-wide analysis of 

http://flybase.org/reports/FBab0046424.html
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unfertilized eggs would help to clarify it.  

 

Figure 33: The models for phenotype of X161 mutant. In wild type (A), the active Pol II 

protein gradually increases and enables the zygotic gene expression with the help of 

transcription factor. In direct model (B), the higher amount of Pol II pol II protein in 

preblastoderm is the main force driving the  

4.2.2. Two models for RPII 215
X161

 phenotype 

Based on the western blot and QPCR, we proposed two models to explain how 

RPII 215
X161

 causes the premature onset of MBT. In wild type, the level of RNA 

polymerase II protein is low after egg deposition, but is gradually increased by 

translation. When the amount of Pol II protein reachs a threshold, it starts the 

transcription of zygotic genes with the help of transcription factors (Figure 33A). 

Zygotic-expressed factors inhibit the cell cycle progression and promote 
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cellularization.  

In our first model, the direct model (figure 33B), RPII 215
X161

 affect the translation 

of Pol II protein, and generat high amount of active Pol II protein in preblastoderm. 

Pol II protein therefore forces the premature zygotic gene activation and eventually 

initiates mid-blastula transition. 

The indirect model (Figure 33C) emphasizes the change during oogenesis. The 

amount of Pol II protein is already higher in oogenesis. This may affect the 

transcription of many maternal genes. The amount of many maternal transcripts are 

higher in the egg as RPII215, probably the protein as well. These premature translated 

maternal proteins, like Zelda and Smaug, together with Pol II protein promote the 

premature expression of zygotic genes, and lead to premature MBT. 

No matter how RPII 215
X161

 promotes the premature zygotic gene expression. The 

expression of zygotic genes is required for the premature onset of MBT, as the 

α-amanitin injection showed. 

4.2.3. The Regulation of onset of Zygotic Gene Activation 

Even that the amount of active Pol II protein was much higher in preblastoderm of 

RPII 215
X16

; zygotic genes we tested were expressed only one cycle earlier than in 

wild type. This suggests that other factors are also required for zygotic gene 

expression (Figure 34). During the early nuclear divisions there are only S phase and 

M phase, which the DNA is either during DNA synthesis or packed into compact 

chromosome structure. This inhibits transcription. This may explain why there is no or 

very less transcription until cycle 10 when the interphase is prolonged. However, the 

length of interphase 12 did not prolonged in X161 embryos, but is able to transcript 

the sufficint amount of zygotic genes required for MBT. It suggested that prolonged 
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gap phase may be required passively, but it is not the switch for onset of zygotic gene 

activation. Another possible negative factor for transcription in early divisions is the 

epigenetic modification on DNA or histones. The DNAs are highly methylated and 

the transcription of zygotic genome is repressed in vertebrates (FENG et al. 2010). 

There would be also transcription repressors contributed to the inhibition of 

transcription in early embryo and defince a sharp cut of expression as our frs project 

showed. Romoval of these repressors is also required for the zygotic gene expression. 

This may mediate partily by the RNA degradation of the repressor transcripts by 

RNA-binding protein Smaug (BENOIT et al. 2009; TADROS and LIPSHITZ 2009). 

Another requirement is the availability of transcription activator. The main 

transcription activator for zygotic genes is Zelda. Zelda protein can be detected only 

after cycle 10 (LIANG et al. 2011; NIEN et al. 2011). Zygotic gene activation is 

regulated by multiple factors to setup at proper timing. In this study, we found out that 

the accumulation of RNA polymerase II is not only required but also sufficient to 

promote zygotic gene activation and MBT. 

 

Figure 34: Summary of the known and predicted factors controlling the onset of ZGA. Blue 

box lists the known factors may promote ZGA, including the prolonged interphase, the 

accummlation of active Pol II, translation of transcription factor Zelda, and translation of 

RNA binding protein Smaug. The red box lists the negative factors for ZGA, including the 

rapid cell cycle, maternal transcription represser, compact chromosome structure, and 

epigenetic repression, like DNA methylation 
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4.2.4. The Coupling of Cell Cycle Pause and Cellularization 

McCleland and O‟Farrell have performed the experiment with RNAi against 

mitotic cyclin in early embryos (MCCLELAND and O'FARRELL 2008). The embryo 

with RNAi against Cyclin A and Cyckin B would stop cell cycle prematurely, and the 

cellularization still began at the absolute time of the development. It leads to the 

conclusion that the uncoupling of the cell cycle and cellularization, and suggests cell 

cycle and cellularization are controlled by different mechanism (MCCLELAND and 

O'FARRELL 2008). However, in X161 germline clone, the cellularization do occurred 

immediately after the last mitosis. We propose that the result causes the different 

outcome is the premature expression of cellularization-related zygotic genes, such as 

nullo and slam. We hypothesis that as long as these proteins required for 

cellularization are presented in embryo, the furrow channel invegination would start 

during interphase.  

4.2.5. Role of zygotic transcription in timing and coordination of MBT 

MBT describes the assembling of changes occur at roughly the same time. However, 

these events may not be controlled by the same mechanism (YASUDA and SCHUBIGER 

1992). However, our data put the zygotic activation at the center of MBT, and 

therefore coordinate all the other events (Figure 35). The cell cycle control at MBT 

required the zygotic cell cycle inhibitor, like Frs, and also the zygotic mediated 

removal of stg and twn transcripts. The degradation of maternal transcripts may 

contribute to the zygotic gene expression, but the majority of maternal transcripts is 

depredated by zygotic-expressed miRNAs. Finally the cellularization also required the 

zygotic genes, like slam and nullo.  

The regulation of zygotic genes is not homogenous. There are two categories, N/C 
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dependent and N/C independent. These two different regulations can sense the 

internal cue (via the N/C ratio) to generate sufficient number of reasonable-size cells, 

but also can sense the environment cue (probably by N/C independent mechanism) to 

ensure the smooth and successful development at different conditions. Therefore, the 

coordination of two distinct regulatory pathways for zygotic gene activation makes 

the development more flexible and robust.  

 

 

Figure 35: The role of zygotic gene activation during mid-blastula transition. The 

zygoic genes are required and sufficient to trigger the other events on MBT 
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