
 
 

 

Localisation and function of Slam in the early 

Drosophila embryo 

 

 

Dissertation 

for the award of the degree 

“Doctor rerum naturalium (Dr.rer.nat.)” 

in the GGNB program “Genes and Development” 

at the Georg-August-Universität Göttingen 

Faculty of Biology 

 

 

 

submitted by 

Sreemukta Acharya 

born in Akividu, India 

 

 

 

 

Göttingen, August 2014 

 

 



 

 
 

MEMBERS OF THE THESIS COMMITTEE  

 

Prof. Jörg Großhans (Supervisor, reviewer) 

Department of Developmental Biochemistry, University of Göttingen 

 

Prof. Reinhard Schuh (Reviewer) 

Department of Molecular Developmental Biology, Max Planck Institute for Biophysical 
Chemistry 

 

Prof. Henning Urlaub  

Bioanalytical Mass Spectometry Group, Max Planck Institute for Biophysical 
Chemistry 

 

 

 

Date of oral examination:  20.10.2014 

 

 

 

 

 

 

 

 

 

 

 



 

 

AFFIDAVIT 

 

I hereby declare that I prepared the PhD thesis “Localisation and function of Slam in 

the early Drosophila embryo” on my own with no other sources and aids than quoted. 

 

 

 

__________________ 

Sreemukta Acharya, 

Göttingen, 29.08.2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LIST OF PUBLICATIONS 

 

Acharya, S.*, Laupsien, P.*, Wenzl, C., Yan, S., and Großhans, J. (2014). Function 
and dynamics of slam in furrow formation in early Drosophila embryo. Dev. Biol. 386, 
371–384. 

 

*These authors contributed equally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.1016/j.ydbio.2013.12.022


  V 

 
 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS ....................................................................................... VIII 

SUMMARY ................................................................................................................ IX 

LIST OF FIGURES ..................................................................................................... X 

LIST OF TABLES .................................................................................................... XII 

LIST OF MOVIES .................................................................................................... XIII 

ABBREVIATIONS .................................................................................................... XV 

1. INTRODUCTION .................................................................................................... 1 

1.1 Drosophila early development ....................................................................... 1 

1.2 Cleavage furrow site specification ................................................................. 4 

1.3  Initiation and maintenance of membrane invagination ................................... 6 

1.3.1 slow as molasses (slam) ............................................................................. 7 

1.3.2 nullo ............................................................................................................ 8 

1.3.3 RhoGEF2 .................................................................................................... 9 

1.3.4 diaphanous (dia) ....................................................................................... 10 

1.3.5 abelson and enabled ................................................................................. 10 

1.3.6 Cytoskeletal components .......................................................................... 11 

1.4 Membrane transport ........................................................................................ 12 

1.5 Basal closure ................................................................................................... 15 

1.6 Aim of the work ................................................................................................ 15 

2. MATERIALS AND METHODS ............................................................................. 17 

2.1 Materials .......................................................................................................... 17 

2.1.1 Reagents ................................................................................................... 17 

2.1.2 Buffers and solutions ................................................................................. 17 

2.1.3 Media for bacterial culture ......................................................................... 22 

2.1.4 Media for flies ............................................................................................ 23 

2.1.5 Enzymes and Kits ..................................................................................... 24 

2.1.6 Chromatography ....................................................................................... 24 

2.1.7 Oligonucleotides used in the study ............................................................ 24 

2.1.8 Plasmid constructs used in the study ........................................................ 25 

2.1.9 Primary antibodies .................................................................................... 26 

2.1.10 Secondary antibodies/dyes ..................................................................... 27 

2.1.11 Bacterial cell lines ................................................................................... 27 

2.1.12 Fly stocks ................................................................................................ 27 

2.1.13 Microscopy .............................................................................................. 29 



Table of contents  VI 

 

2.1.14 Other materials ........................................................................................ 29 

2.1.15 Other equipment ..................................................................................... 30 

2.1.16 Softwares ................................................................................................ 30 

2.2 Methods .......................................................................................................... 31 

2.2.1 DNA methods ............................................................................................ 31 

2.2.1.1 Molecular cloning ................................................................................ 31 

2.2.1.2 Polymerase chain reaction (PCR) ....................................................... 31 

2.2.1.3 Site-directed mutagenesis .................................................................. 31 

2.2.1.4 In-fusion cloning .................................................................................. 32 

2.2.1.5 Purification of DNA/RNA by phenol-chloroform extraction .................. 32 

2.2.1.6 DNA sequencing ................................................................................. 32 

2.2.1.7 In-vitro transcription ............................................................................ 33 

2.2.1.8 Reverse transcription .......................................................................... 34 

2.2.1.9 Quantitative real-time PCR (qRT-PCR) .............................................. 34 

2.2.2 Biochemical methods ................................................................................ 35 

2.2.2.1 Protein purification .............................................................................. 35 

2.2.2.2 Affinity purification of antibodies ......................................................... 36 

2.2.2.3 Western blot ........................................................................................ 37 

2.2.2.4 EMSA .................................................................................................. 37 

2.2.2.5 Immunoprecipitation............................................................................ 38 

2.2.2.6 Pulldown of GFPslam using paramagnetic Streptavidin beads ........... 39 

2.2.3 Fly embryo methods .................................................................................. 39 

2.2.3.1 Fractionation of embryos .................................................................... 39 

2.2.3.2 RNA isolation following fractionation of embryos ................................ 40 

2.2.3.3 Embryo fixation ................................................................................... 41 

2.2.3.4 Immunostaining of embryos ................................................................ 41 

2.2.3.5 Fluorescence in-situ hybridisation (FISH) ........................................... 41 

2.2.3.6 Generation of germline clones ............................................................ 43 

2.2.3.7 Fly genetics ......................................................................................... 43 

2.2.3.8 Induction of shibire phenotype ............................................................ 43 

2.2.3.9 Microinjection of protein/drug into embryos ........................................ 44 

2.2.4. Microscopy ............................................................................................... 44 

2.2.4.1. Live-imaging of fly embryos ............................................................... 44 

2.2.4.2 Fluorescence recovery after photobleaching (FRAP) ......................... 44 

2.2.4.3 Laser ablation of centrosomes ............................................................ 44 

 



Table of contents  VII 

 

3. RESULTS ............................................................................................................. 46 

3.1 Factors contributing to the accumulation of Slam protein at the furrow canal . 46 

3.1.1 Centrosomes define the site of invagination ............................................. 46 

3.1.2 Accumulation of Slam is dependent on vesicular transport ....................... 50 

3.2 Dynamics of Slam protein, mobility and life-time ............................................. 59 

3.2.1 A fraction of Slam is membrane-associated .............................................. 59 

3.2.2 Slam protein is stable during cellularisation .............................................. 60 

3.2.3 Mobility of Slam is independent of new translation.................................... 63 

3.2.4 Mobility of Slam is not directly affected by the recycling endosome .......... 64 

3.3 Role of Slam during cellularisation .................................................................. 66 

3.1.1 Additional factors apart from Slam are needed for furrow specification .... 66 

3.3.1 nullo and slam together control the specification of the cleavage furrow .. 67 

3.3.2 spire – an interactor of slam in yeast two-hybrid screen ........................... 70 

3.3.3 Other interactors of Slam .......................................................................... 73 

3.4 Slam protein properties and the RNP complex................................................ 74 

3.4.1 Slam has a predicted structured N-terminal half ....................................... 74 

3.4.2 GFP tag at the N-terminus of Slam partially interferes with its function ..... 75 

3.4.3 Slam protein and slam mRNA are present in a complex ........................... 76 

4. DISCUSSION ....................................................................................................... 81 

4.1 Centrosomes specify the site of cleavage furrow and restrict Slam to the 

furrow canal ....................................................................................................... 81 

4.2 Slam restriction at the furrow canal is dependent upon the recycling 

endosome .......................................................................................................... 82 

4.3 Role of Slam during cellularisation ............................................................... 85 

4.4 Mobility of Slam at the furrow canal ............................................................. 86 

4.5 Slam protein and mRNA form a complex ..................................................... 89 

5. REFERENCES ..................................................................................................... 91 

 

 

 

 

 

 

 



  VIII 

 

ACKNOWLEDGEMENTS 

 

I would firstly like to thank my supervisor Prof. Jörg Großhans for allowing me 

to carry out my PhD work in his laboratory and for always being available for 

discussions and to answer questions, no matter how simple (or stupid). I really 

appreciate his patience, optimism and politeness towards his students. His hard-

working nature and passion for science are truly inspiring. 

I am very thankful to my thesis committee members Prof. Reinhard Schuh and 

Prof. Henning Urlaub for their helpful suggestions and constructive criticism during the 

thesis committee meetings. Their positivity was always very encouraging. 

I express my gratitude to my current and past colleagues for creating an 

excellent working atmosphere, providing with great discussions and German lessons 

over coffee and fly-sorting. I would especially like to thank everyone involved in the 

‘Slam project’ - Dr. Shuling Yan, Dr. Philip Laupsien, Dr. Christian Wenzl and 

Stephanie Gröning for sharing results, exciting discussions and helping me with the 

methods. Without their cooperation, it would have been impossible to carry out this 

collaborative work. I am grateful to Dr. Maike Claußen for helping me with the EMSA 

experiments and for suggestions regarding the project. I thank Olaf Bernhard from Dr. 

Bernhard Schmidt’s lab for carrying out Mass spectrometric analysis for us. 

I am thankful to all members of the Department of developmental biochemistry 

for their support and cooperation (and cakes). I could not have asked for a better 

working environment.  

I am indebted to my parents who always believed in me and supported me 

through thick and thin. The seeds of scientific enquiry and critical thinking sowed by 

my father and my mother’s practical advice and math lessons were crucial to reach 

this stage. I am thankful to my brother Sreekanth Acharya for being there for me 

whenever I felt downtrodden for any reason.  

I would like to thank Roman Petrovsky for fascinating discussions, insightful 

comments and constant support in the lab as well as outside of it.  

Last but not the least, I would like to thank Mansi Karkhanis for ceaseless 

support, constant encouragement and general suggestions. 



  IX 

 

SUMMARY 

 

Embryogenesis of many insects starts with a syncytial stage characterised by 

13 rapid nuclear divisions. During the following interphase, the plasma membrane of 

the embryo invaginates between each nucleus to give rise to the first epithelial layer of 

the embryo. This type of cytokinesis during interphase has been named cellularisation. 

Two important processes involved in cellularisation are a) specification of the site of 

cleavage furrow and b) initiation and maintenance of membrane invagination. We 

investigated the role of a gene slam in these processes. Although it has been shown 

earlier that slam is necessary for cellularisation and the formation of the basal domain 

of the invaginating membrane (furrow canal), it has remained unclear how Slam 

reaches the furrow canal and interacts with the membrane. The aim of the study was 

to uncover the mechanism of Slam accumulation at the furrow canal, elucidate its 

mobility dynamics at the membrane and elaborate its role in cellularisation. 

  By means of live imaging and centrosome ablation, I could show that 

centrosomes are the initial source of signals for the accumulation of Slam. Using 

shibire temperature-sensitive mutants, I found that the initial accumulation of Slam at 

the new furrow was vesicle-dependent but its maintenance at the old furrow was not. 

Analysis of nuf mutants revealed that although Slam is not directly transported on 

Rab11-positive vesicles, its proper targeting to the basal domain is indirectly 

dependent upon the recycling endosome. I identified a role of slam together with 

another gene nullo in establishing the furrow. I found that slam and nullo act 

redundantly to each other. Furthermore, using fluorescent recovery after 

photobleaching experiments, I could show that membrane-associated Slam undergoes 

a switch-like change from high mobility at the onset of cellularisation to low mobility at 

mid-cellularisation. Slam mobility in mid-cellularisation is independent of new 

translation and vesicular trafficking. Finally, I showed that Slam is a ribonucleoprotein 

complex (RNP) and that slam mRNA was more enriched at the membrane.   

I propose that the recycling endosome that is organised by the centrosome 

restricts a potential Slam receptor to the prospective basal domain of the membrane 

to which the Slam RNP is recruited from the cytoplasm. Once at the furrow, slam acts 

together with nullo to establish the furrow and initiate cellularisation without further 

recruitment of Slam RNP and Slam protein synthesis. 
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1. INTRODUCTION 

 

1.1 Drosophila early development 

 The early embryonic divisions of a Drosophila embryo, similar to many insects, 

take place in a syncytium. Subsequent to fertilisation of the oocyte by a sperm, the 

nucleus undergoes thirteen rounds of mitotic divisions (Zalokar and Erk, 1976; Foe and 

Alberts, 1983). However, the nuclear divisions are not accompanied by cytokinesis of 

the embryo, resulting in the daughter nuclei lying in a common cytoplasm. The first 

eight mitotic cycles take place in the embryonic core and are referred to as the 

preblastoderm cycles. These cycles are very rapid, lasting 8 min on an average and 

consist only of the synthetic phase (S-phase) and the mitotic phase (M-phase) of cell 

cycle (Zalokar and Erk, 1976). From cycle 9 onwards, most of the nuclei undergo 

microtubule-dependent cortical migration, which involves their migration from the 

centre of the embryo to the cortex. This stage of the embryo where the embryo contains 

a cortical monolayer of nuclei in a syncytium is called syncytial blastoderm. Some 

 

 

Fig 1.1 Schematic representation of Drosophila early development (A) Embryo after fertilisation (B) 

The first nine mitotic cycles take place in the core of the embryo (C) From cycle nine, the embryos 

undergo cortical migration to give rise to a syncytial blastoderm. Some nuclei migrate to the posterior 

pole to form the pole cells (D) In the interphase of cycle 14, the plasma membrane of the oocyte 

invaginates and encloses the nuclei into individual cells to form the cellular blastoderm. 
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nuclei migrate to the posterior pole of the embryo to form the pole cells, which are germ 

cell precursors. The nuclei at the cortex remain anchored beneath the plasma 

membrane where they undergo further mitotic divisions. These divisions include a 

second gap phase (G2 phase), whose length progressively increases following each 

cycle. After the end of the thirteenth cell cycle, there is an extended interphase of cycle 

14, which lasts about an hour (Foe and Alberts, 1983). During this interphase, the 

plasma membrane of the embryo starts invaginating between each nucleus and 

progressively encloses each nucleus into an individual cell, in a process called 

cellularisation (Fig 1.1). 

The cortex of the embryo is rich in actin that undergoes a cycle of redistribution 

under the influence of centrosomal asters during the syncytial cycles 10 to 13 (Kao and 

Megraw, 2009). During interphases, it accumulates as actin caps above each nucleus. 

As the nuclei progress through prophase and enter metaphase, the plasma membrane 

of the embryo invaginates between adjacent nuclei, reaching a depth of up to 

approximately 8m. These structures are called pseudocleavage furrows or 

metaphase furrows. Metaphase furrows prevent fusion of spindle from adjacent nuclei 

(Sullivan et al., 1993). As the cell cycle approaches telophase, the metaphase furrows 

start regressing and the actin rearranges itself again as actin caps. This cycling of actin 

distribution occurs until the embryo reaches the stage of cellularisation during which 

actin persists at the tip of the invaginating membrane (Fig 1.2). 

At the onset of cellularisation during the cycle 14 interphase, microtubules 

emanate from the apically-located centrosomes. These microtubules extend 

downwards to encompass the nuclei into an inverted basket-like structure and are 

necessary for furrow invagination. 

The process of cellularisation has been divided into four distinct phases on the 

basis of morphology and speed of invagination of the membrane (Knoblich, 2000; 

Lecuit and Wieschaus, 2000). At Phase one, the cortical region above each nucleus is 

rich in microvilli while the region at the middle of adjacent nuclei, which is called furrow 

canal, is devoid of microvilli (Lecuit and Wieschaus, 2000). Furrow canals form the 

leading edge of the invaginating furrows (Fullilove and Jacobson, 1971). Phase one, 

which lasts about 10 minutes, is also accompanied by nuclear elongation. Phase two 

is characterised by the completion of nuclear elongation but very slow membrane
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Fig 1.2 Schematic representation of pseudocleavage furrow formation and cellularisation. (A) 

Cycle 13 interphase: actin is located apical to the nuclei as caps (B) Cycle 13 mitosis: Metaphase furrows 

are formed and actin redistributes itself to the tip of the furrows (C) Cycle 14 interphase: actin forms 

caps again (D) Onset of cellularisation: Furrow canal and basal adherens junctions are formed, actin 

redistributes itself to the furrow canal (E, F) apical adherens junctions are formed and cellularisation 

proceeds first slowly (slow phase) and then the rate speeds up (fast phase). 

 

invagination. In phase three, the invaginating membrane reaches to the plane of the 

basal region of the nuclei. When the membrane reaches about 35 m in depth, it starts 

contracting laterally in a process called basal closure, which encloses each nucleus 

from beneath to give rise to blastoderm cells. Cellularisation is a precisely regulated 

process requiring establishment and maintenance of membrane polarity, specification 

of the cleavage site, regulated membrane growth and finally basal closure to enclose 
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the nuclei into cells. These processes are discussed in further detail in the following 

sections. 

Cellularisation involves formation of a polarised epithelium. As the plasma 

membrane invaginates during this process, it becomes compartmentalised into apical, 

lateral and basal domain. It has been shown that the plasma membrane of the embryo 

displays a polarised organisation already during the syncytial blastoderm stage 

(Mavrakis et al., 2009). Two distinct plasma membrane domains have been identified 

during the syncytial cycles a) above each nucleus and b) at the lateral region of the 

nuclei. These regions contain distinct membrane markers and are unable to diffuse 

outside of their own domain, indicating towards the existence of a diffusion barrier. This 

diffusion barrier was shown to be actin-dependent (Mavrakis et al., 2009). 

Establishment and maintenance of membrane polarity during cellularisation is 

also dependent upon several other factors such as proper vesicle targeting through 

the recycling endosome and the proper localisation of initial furrow canal markers such 

as Actin and Slam. The role of these factors has been discussed later under individual 

sections. 

   

1.2 Cleavage furrow site specification 

Cellularisation of the Drosophila embryo is a modified cytokinesis and hence, 

many of the mechanisms involved in the positioning of the cytokinetic furrow during 

cellularisation are similar to conventional cytokinesis. The cytokinetic furrow in 

eukaryotic animal cells is positioned at the cell cortex midway down the longitudinal 

axis of the mitotic spindle (Balasubramanian et al., 1992; Bi et al., 1998; Fujiwara and 

Pollard, 1976; Mabuchi and Okuno, 1977, 1977). The positioning of the furrow is 

carried out by the central spindle or astral microtubules, depending on the cell size and 

type. Rappaport’s classic experiments with marine invertebrate embryos suggested 

that astral microtubules are the source of the furrow initiation signal. He created a 

binucleate embryo artificially and found that when these nuclei divided, apart from the 

two furrows that formed between the respective metaphase plates, a third ectopic 

furrow formed between neighbouring centrosomes in the absence of a nucleus or a 

central spindle (Rappaport, 1961). He proposed that the signal for initiation of the 

ectopic furrow must be generated by overlapping astral microtubules (Fig 1.3). It was 

further demonstrated that a minimal distance between the two centrosomes as well as 
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between the centrosomes and cortex were essential for furrow induction (Rappaport, 

1986).  

 

 

 

 

 

 

 

 

Fig. 1.3 Schematic representation of Rappaport and cleavage furrows. Artificially induced 

Rappaport furrows are formed between overlapping asters of adjacent centrosomes while cleavage 

furrows are formed between the overlapping spindles between a centrosome pair (Adapted from 

Sullivan, 2009). 

 

However, studies in cultured cells have suggested that the region of overlapping 

antiparallel microtubules called the central spindle is responsible for furrow positioning 

(Wheatley and Wang, 1996; Williams et al., 1995). A number of proteins required for 

cytokinesis are recruited to the central spindle. Rappaport had also showed that 

flattening the sand dollar embryos so as to allow the central spindle to interact with the 

cortex could induce a furrow (Rappaport, 1985). Recent studies on Caenorhabditis 

elegans (C.elegans) embryos have suggested both astral microtubules as well as the 

central spindle contribute to furrow induction (Bringmann and Hyman, 2005; Motegi et 

al., 2006). In these embryos, it seems that the initial furrow induction signal comes from 

the asters, while the completion of cytokinesis depends on the sustenance of the signal 

from the central spindle (Baruni et al., 2008; Bringmann and Hyman, 2005). 

In addition to forming the astral microtubules, other centrosome-associated 

activities are also essential for furrow specification. The Drosophila Centrosomin 

(CNN) is a core centrosomal protein required for normal pericentriolar material 

organisation and astral microtubule assembly (Li and Kaufman, 1996; Megraw et al., 

1999). A hypomorphic allele of cnn called cnnB4 has been used to dissect these two 
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functions since this allele shows severe disruptions in furrow formation, despite having 

an apparently normal microtubule organisation (Kao and Megraw, 2009). Kao and 

Megraw identified another protein Centrocortin (CEN), which interacts with CNN. CEN 

partially colocalises with CNN at the centrosomes and is also found on cleavage 

furrows. Strong cen alleles show similar phenotype as cnnB4 allele where cleavage 

furrows are weak or broken. Like cnnB4, cen mutants show no discernable defects in 

microtubule organisation. This study demonstrates the role of centrosomal protein 

CNN in relaying a furrow initiation signal to via CEN, thus suggesting that centrosomes 

possess additional information for furrow specification which is independent of astral 

microtubule assembly. 

Various studies have been done suggesting centrosomes are capable of 

determining the site of furrow invagination independent of the nuclei. Anucleate 

C.elegans embryos containing only a pair of centrosomes are able to form a cytokinetic 

furrow and attempt to divide (Baruni et al., 2008). In Drosophila syncytial embryos, it 

has been shown that if centrosome and nuclear divisions are uncoupled by inhibiting 

S-phase, and nuclear migration to the cortex prevented, the centrosomes that migrate 

to the posterior pole are able to initiate pole cell formation in the absence of nuclei (Raff 

and Glover, 1989). In another study, blocking nuclei from entering mitosis by 

simultaneous RNAi of all three mitotic cyclins in the early Drosophila embryos showed 

that centrosomes are able to organise Myosin ‘cages’ around them (McCleland and 

O’Farrell, 2008). The timing of cellularisation was unaffected despite the nuclear arrest 

(McCleland and O’Farrell, 2008) which suggests that the temporal information for the 

initiation of cellularisation is not regulated by the number of nuclear divisions. 

 In summary, positioning of the furrow is controlled by astral microtubules or 

central spindle or both depending upon the size and type of the cell. Centrosomal 

activity, in addition to its microtubular organizing capacity, is required during 

cellularisation in Drosophila embryos. Also, centrosomes have the ability to organise 

the furrow position in the absence of nuclei in several systems. 

 

1.3  Initiation and maintenance of membrane invagination 

 Several maternal as well as zygotic genes are necessary for the initiation of 

membrane invagination. Some of them are discussed below. 
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1.3.1 slow as molasses (slam) 

One of the zygotic genes that plays an important role in the initiation of 

membrane invagination is slow as molasses (slam). slam is highly expressed at the 

onset of cellularisation. Zygotic deficiency of slam shows a very strong and penetrant 

cellularisation phenotype (Lecuit et al., 2002). It showed defects primarily in the slow 

phase of cellularisation causing delayed furrow invagination, which is why it was 

named ‘slow as molasses’ originally (Lecuit et al., 2002). However, removal of both 

maternal and zygotic contributions has demonstrated that slam is in fact essential for 

furrow invagination. Embryos devoid of maternal and zygotic slam display no furrow 

invagination (Stein et al., 2002; Acharya et al., 2014; Dr. Philip Laupsien, PhD 

dissertation). 

Already at the onset of cellularisation, the respective morphologies of the apical 

and the basal regions of the plasma membrane are distinguishable. The apical part, 

which lies above the nuclei, consists of many villous projections. Adjacent to this region 

is a region of depressed plasma membrane that lacks villous projections. As the slow 

phase progresses, formation of the basal junction brings together the adjacent lateral 

regions of the plasma membrane, thus delimiting the basal domain from the lateral 

domain. In slam zygotic deficiency embryos, although the prospective site of furrow 

invagination shows a slight depression, no basal junction is formed and the villous 

projections extend into the prospective furrow canal (Lecuit et al., 2002). Despite the 

abnormal furrow canal organisation, a delayed membrane invagination can be seen in 

the presence of maternal Slam contribution (Lecuit et al., 2002). Membrane 

invagination is completely abolished only when the maternal contribution is also 

removed (Acharya et al., 2014; Dr. Philip Laupsien, PhD dissertation). This suggests 

that Slam has a dual role – one in polarity establishment and second in membrane 

invagination during cellularisation. 

The apical domain of the plasma membrane rich in villous projections shows 

higher endocytic behaviour compared to the prospective furrow canal region (Lecuit 

and Wieschaus, 2000). slam zygotic deficiency embryos show reduced endocytosis at 

the apical region (Lecuit et al., 2002). This suggests that Slam might establish the 

polarity of the membrane by regulating transcytosis at the onset of cellularisation 

(Lecuit et al., 2002). However, Slam localises exclusively at the furrow canal 

(Grosshans et al., 2005; Lecuit et al., 2002) so it is unclear how exactly Slam might 

regulate endocytosis at the apical region.  
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Zygotic expression of hypomorphic alleles of slam (slamwaldo1 and slamwaldo2) 

does not show a cellularisation phenotype but instead display germ cell migration 

defects. During the process of germ cell migration, neither slam mRNA nor the protein 

are detectable in the embryo. Therefore, the mechanism behind the role of slam in 

germ cell migration is unknown. It has been speculated that during cellularisation itself, 

Slam might be recruiting factors necessary for the subsequent germ cell migration. 

  

1.3.2 nullo 

nullo was first identified as a locus on the X-chromosome that was necessary 

for cellularisation (Rose and Wieschaus, 1992; Simpson and Wieschaus, 1990; 

Wieschaus and Sweeton, 1988). In nullo mutant embryos, the cleavage furrow is 

unable to invaginate resulting in the generation of multinucleate cells. Nullo stabilises 

the accumulation of components of the basal junction; in nullo mutants, Armadillo and 

E-cadherin are not concentrated in the junctional region and are instead spread across 

the lateral membrane (Hunter and Wieschaus, 2000). It was suggested that due to the 

failure of formation of the basal junction, compartmentalisation of the invaginating 

membrane was compromised. However, subsequent studies found that furrow 

compartmentalisation does not require the basal adherens junctions and that rather 

the reduced F-actin levels at furrow canals in nullo mutants is the cause of polarity 

disruption (Sokac and Wieschaus, 2008b). 

 Nullo protein is rapidly degraded before the completion of cellularisation and 

apical adherens junction formation. Prolonging the expression of Nullo into late 

cellularisation causes blockage of the apical clustering of Armadillo, -catenin and E-

cadherin. These junctional defects cause a disrupted cell morphology resulting in a 

failure to form the ventral furrow. These studies indicate that establishment of the apical 

junction and the formation of the ventral furrow is dependent on the rapid degradation 

of Nullo in late cellularisation (Hunter and Wieschaus, 2000). 

 Nullo contains an N-terminal myristoylation site that is important for its targeting 

to the plasma membrane during cycle 14. Interestingly, Nullo protein devoid of the 

myristoylation site still shows normal localisation to the plasma membrane of the 

metaphase furrows during cycle 13 (Hunter et al., 2002). This suggests that at the 

onset of cellularisation, there is alteration of some aspect of Nullo targeting or 

membrane association. 
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 Another gene that shows similar multinucleate phenotype as nullo mutants is 

serendipity-(sry-) (Merrill et al., 1988; Schweisguth et al., 1990). nullo mutants show 

severely impaired localisation of Sry-at the furrow canal and the basolateral 

membrane (Postner and Wieschaus, 1994; Schweisguth et al., 1990). Therefore it is 

likely that nullo and sry-act in the same pathway where nullo acts upstream to sry-.  

 

1.3.3 RhoGEF2 

RhoGEF2 is a guanine triphosphate (GTP) exchange factor which is localised 

apically in epithelial cells throughout embryogenesis. During cellularisation, RhoGEF2 

is localised at the furrow canal. RhoGEF2 germline clones show defects in 

cellularisation with furrow canals often missing between adjacent nuclei, resulting in 

multinucleate cells. During later stage of cellularisation, irregularities in nuclear 

arrangement were observed. Analysis of the furrow canal morphology through electron 

microscopy revealed that the furrow canals are often enlarged and do not retain the 

typical hairpin loop structure. RhoGEF2 germline clones however, show normal rate of 

membrane invagination (Grosshans et al., 2005). This is in contrast to slam where 

removal of either the maternal or the zygotic contribution causes reduction in the rate 

of membrane invagination and no membrane invagination occurs in the slam null 

situation (Acharya et al., 2014, Dr. Philip Laupsien, PhD dissertation). RhoGEF2 

recruitment to the furrow canal is however, dependent upon Slam. Slam is necessary 

and sufficient for the localisation of RhoGEF2 (Wenzl et al., 2010). 

RhoGEF2 genetically interacts with Rho1 and acts as its specific positive 

regulator during cellularisation (Barrett et al., 1997; Grosshans et al., 2005). Rho1 is a 

small GTPase that plays an important role in the regulation of the actomyosin 

cytoskeleton (Allen et al., 1997). Rho1 also localises to the furrow canal where 

Diaphanous and Myosin II are its two key targets. Diaphanous is an actin-nucleator 

while non-muscle Myosin II is an actin-binding protein that can cross-link actin and 

regulate contractility. Therefore, RhoGEF2 regulates the actomyosin network at the 

furrow canal via Rho signalling through downstream effectors such as Diaphanous and 

Myosin II. 
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1.3.4 diaphanous (dia) 

Dia belongs to a family of proteins called Formins, which associate themselves 

at the plus end (barbed end) of an actin filament and mediate nucleation and 

polymerisation (for a review, see Chesarone et al., 2010). In addition, it has been 

proposed that Dia also regulates microtubule stability (Ishizaki et al., 2001; Palazzo et 

al., 2001; Wen et al., 2004). Consistent with its function, dia hypomorphic embryos 

display severe morphological defects after nuclear cycle 11. Actin is absent from the 

hexagonal arrays of metaphase furrows. Two other furrow components, Anilin and 

Peanut (a Drosophila septin), also fail to recruit to the metaphase furrows. Additionally, 

Myosin II accumulation at the metaphase furrows is also weak (Afshar et al., 2000). 

 During cellularisation, Dia localises to the furrow canal. dia embryos show 

variable defects in actin and microtubule organisation during this stage. The least 

severe cases show morphological and positional defects in nuclei or microtubular 

structure. A more severe phenotype is characterised by irregularities or absence of 

Actin localisation at the furrow canals. Also, the positioning of nuclei and their 

associated microtubular baskets is affected (Afshar et al., 2000). 

 Dia also promotes stability of the basal domain by suppressing endocytosis at 

the region. It has been proposed that the linear actin filaments generated by Dia form 

a dense cortical layer giving rise to mechanical constraints which prevent endocytic 

budding. dia embryos show spreading of the lateral membrane markers such as Discs-

large (Dlg) and Armadillo/ß-Catenin (Arm) into the basal domain suggesting that Dia 

plays a role in the establishment of baso-lateral polarity (Yan et al., 2013). 

 

1.3.5 abelson and enabled 

 abelson (abl) is a gene encoding a highly conserved nonreceptor tyrosine 

kinase which regulates cortical actin (for a review, see Van Etten, 1999). ablM mutants 

(embryos lacking maternal contribution while half of the embryos also lack zygotic 

contribution) display defects or absence of metaphase furrows in cycle 13. During 

cellularisation, they show multinucleate cells with abnormal microtubule baskets. In 

these embryos, actin is reduced at the metaphase furrows while it shows excess 

accumulation at the apical region. Abl is localised in the syncytial blastoderm to the 

Actin caps and metaphase furrows. It has been shown that Abl regulates actin 

polymerisation primarily by downregulating another protein Enabled (Ena) through an 
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unknown mechanism (Grevengoed et al., 2003). Ena belongs to a family of actin 

modulators Ena/VASP Homology proteins (Ena/Vasodilator-stimulated 

phosphoproteins) which are involved in cell motility (for a review, see (Krause et al., 

2002). Ena/VASP proteins promote the growth of filamentous actin, possibly by binding 

to the barbed end and negatively regulating capping protein that restrains 

polymerisation (Bear et al., 2002). ablM mutants show excess accumulation of Ena at 

the apical region which is the likely cause of excessive Actin accumulation. ena 

deficient embryos however, show no defects in the hexagonal actin arrays during 

cellularisation (Fox and Peifer, 2007). Also, Ena is not localised at the furrow canal 

which suggests that it probably does not have a direct role in actin organisation at the 

furrow canal. Other pathways for actin polymerisation at the furrow canal, one of them 

being the Rho1-Diaphanous pathway are more directly involved. Arp2/3-mediated 

(Actin-related proteins 2/3) branched actin polymerisation has also been implicated to 

have some, but not a major role in the organisation of f-actin at the furrow canal 

(Stevenson et al., 2002). 

 

1.3.6 Cytoskeletal components 

 A proper cytoskeletal organisation is essential for cellularisation. All the genes 

mentioned above that disrupt cellularisation act via directly or indirectly affecting the 

cytoskeleton. Therefore it is expected that mutating/downregulating cytoskeletal 

components would disrupt cellularisation. The role of cytoskeleton during syncytial 

divisions and cellularisation has been long established (Foe and Alberts, 1983; Foe et 

al., 1993). Intact microtubules, microfilaments and f-actin are necessary for 

cellularisation. When microtubules are depolymerised by injection of Colcemid in 

embryos at the onset of cellularisation, the plasma membrane invagination is 

abolished. However, when injected at the beginning of the fast phase, there is no 

influence on the invagination. Depolymerisation of microfilaments through injection of 

Cytochalasin B at the onset of cellularisation causes blockage of membrane 

invagination and even a likely retraction (Foe et al., 1993). Actin is dynamically 

associated at the furrow canal as revealed by its quick recovery following 

photobleaching. Preventing actin polymerisation by injection of Latrunculin A into 

cellularising embryos caused loss of furrows showing that maintenance of actin at the 

furrow through continuous polymerisation is necessary to sustain plasma membrane 

integrity (Cao et al., 2008). 
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 It is also known that microtubular motors Kinesin and Dynein activity is 

necessary for furrow formation and membrane invagination. It has been reported that 

injection of the function-inhibiting anti-Khc (Kinesin1 heavy chain) antibody causes 

disruption in cellularisation (Susan L. Tran and Michael A. Welte, unpublished – as 

mentioned in Shubeita et al., 2008). The role of a kinesin-6, Pavarotti-KLP (Pavarotti-

Kinesin-like protein; Pav-KLP) has been studied in early Drosophila embryos. In 

syncytial embryos, Pav-KLP is seen to be localised on the spindle where it colocalises 

with microtubules. It has been proposed to be involved in the organisation of spindle. 

Injection of an antibody against Pav-KLP at this stage shows defects in chromosome 

segregation, spindle collapse and perturbed or absent telophase midbodies.  Pav-KLP 

is also seen to localise at the cortex, colocalising with actin caps. Blocking Pav-KLP 

function during cellularisation showed reduced furrow invagination. Recruitment of 

actin at the furrow canal was also lost, thus suggesting that Pav-KLP is involved in 

actin remodelling (Sommi et al., 2010). 

 Use of two lethal hypomorphic alleles of Dynein-heavy chain Dhc64C6-6 and 

Dhc64C6-8 that complement each other has allowed to study the role of Dynein in the 

early Drosophila embryo. Embryos from Dhc64C6-6/ Dhc64C6-8 adult females lack the 

maternal contribution of dynein heavy chain. Mitotic defects were observed during the 

syncitial cycles and majority of the embryos fail to properly cellularise and complete 

gastrulation (Robinson et al., 1999). 

  Another gene that has been implicated in furrow canal establishment by 

regulating Dynein-mediated transport is the MAST kinase Drop out (Dop). In dop 

mutants, membrane invagination is severely delayed (Hain et al., 2014; Meyer et al., 

2006). Membrane polarity is also disrupted as Slam restriction to the furrow canal is 

delayed and Dlg is spread into the basal domain. dop controls phosphorylation of Short 

wing [Drosophila Dynein intermediate chain (Dic)] either directly or indirectly (Hain et 

al., 2014). This study shows that dynein-based transport is crucial for cellularisation. 

 

1.4 Membrane transport 

 Addition of membrane to the invaginating furrows is necessary in order for 

cellularisation to proceed. The apical domain of the plasma membrane is rich in 

microvilli which unfold as the furrow ingresses (Figard et al., 2013; Figard and Sokac, 

2014). Another source of membrane is through transcytosis in which endocytic vesicles 
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bud off from the apical domain and fuse to the lateral domain (Lee and Harris, 2013; 

Pelissier et al., 2003). However, new membrane supply is also provided to the apical 

region at phase 1 and to the apico-lateral region at phase 2 of cellularisation. Injection 

of colchicine blocks the transport of Neurotactin, a transmembrane protein that 

localises apically and laterally. This shows that the transport of secretory membranes 

from Golgi-apparatus to the ingressing plasma membrane is mediated by microtubules 

(Lecuit and Wieschaus, 2000). Lava lamp (Lva) is a Golgi-associated coiled coil protein 

which when inactivated using antibodies, inhibits furrow invagination. Consistent with 

this observation, injection of Brefeldin A, an inhibitor of Golgi-derived membrane 

vesicle transport caused inhibition of membrane invagination (Sisson et al., 2000). It 

has been shown that Lva is necessary for dynein-mediated targeting of the secretory 

machinery and that it specifically associates with Golgi spectrin as well as dynein, 

dynactin and cytoplasmic linker protein-190 (CLIP-190) (Papoulas et al., 2005). 

Several studies have shown that vesicular trafficking is required for the transfer 

of membranes and furrow components to the ingressing membrane during 

cellularisation. Dynamin is a conserved protein that is necessary for the scission of 

clathrin-coated vesicles (Hinshaw and Schmid, 1995). The Drosophila homologue of 

dynamin, shibire, is indispensable for cellularisation (Swanson and Poodry, 1981). 

Using a temperature-sensitive allele, it was shown that shibire is required for 

membrane invagination in the slow phase of cellularisation (Pelissier et al., 2003). This 

is due to inhibition of apical endocytosis from the plasma membrane as well as 

impairment of vesicle trafficking from the trans-golgi network and recycling endosome. 

Injection of a dominant negative variant of Rab5, an early endosomal protein, leads to 

reduction of speed of furrow invagination, indicating that vesicle trafficking through the 

early endosome is also necessary for cellularisation (Pelissier et al., 2003). 

The importance of vesicular trafficking for cellularisation is also demonstrated 

by the necessity of a functional exocyst complex for this process. Exocyst is an 

octameric protein complex that defines the sites at which vesicles tether and fuse to 

the plasma membrane during cytokinesis (Finger et al., 1998). It has been shown that 

Sec5, a component of the exocyst, is necessary for the invagination of cleavage 

furrows. sec5ts1 (a temperature-sensitive mutant allele) embryos display no cleavage 

furrow invagination and fail to deposit Neurotactin, a transmembrane protein, at the 

plasma membrane. It has been suggested that exocyst is likely to direct polarised 
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addition of new membrane at the apico-lateral region of the invaginating membrane 

(Murthy et al., 2010). 

The recycling endosome is an endosomal compartment located at the 

pericentrosomal region apical to the nuclei in the Drosophila embryo. Rab11 is a key 

mediator of the recycling endosome function and is required for the proper targeting of 

recycling endosome vesicles (Wilson et al., 2005). Interfering with Rab11 function by 

injecting a dominant negative variant of the protein into cellularising embryos causes 

inhibition of membrane invagination during slow phase (Pelissier et al., 2003). Rab11 

physically interacts with another protein called Nuclear fallout (Nuf), a Rab11 effector 

needed to maintain the structural integrity of the recycling endosome (Rothwell et al., 

1999; Riggs et al., 2003; Horgan et al., 2007). Both Rab11 and Nuf are necessary for 

each other’s localisation at the pericentrosomal region (Riggs et al., 2003). Nuf is a 

structural and functional homologue of a mammalian ADP ribosylation factor (Arf) 

effector called Arfo2 (Arfophilin-2) (Hickson et al., 2003). nuf (nuclear fallout) is a 

maternal effect mutation where the embryos show defects during cellularisation due to 

reduction of efficient RhoGEF2 recruitment at the furrow, thus affecting F-actin levels 

at the furrow. Rab11 mutants show a similar phenotype. It has been suggested that 

the recycling endosome has an important role in the recruitment of RhoGEF2 and 

therefore in the maintenance of furrow integrity (Cao et al., 2008).  

Endocytosis is tightly regulated at the furrow by a number of factors. During 

early cellularisation, the furrow displays Amphiphysin-positive tubules at the basal 

region of the furrow (Sokac and Wieschaus, 2008a). Amphiphysin is a protein that can 

sense and bind to curved endocytic membrane via its conserved BAR domain (for a 

review, see Daumke et al., 2014). In shibire mutants, the number of tubules is 

increased, suggesting that these tubules represent intermediate structures formed 

during endocytic scission, and delay or impairment in endocytosis causes them to 

become extended (Sokac and Wieschaus, 2008a). As cellularisation progresses, the 

Amphiphysin-positive tubules are reduced in length and number (Sokac and 

Wieschaus, 2008a). Overexpression of a cytohesin Arf-GEF Steppke, a positive 

regulator of endocytosis also causes increase in tubule formation (Lee and Harris, 

2013). This indicates that endocytosis at the furrow canal is a highly regulated process 

and perturbing this balance leads to morphological as well as functional defects in the 

furrow canal. 
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1.5 Basal closure 

 Basal closure during cellularisation involves formation of actin-myosin 

contractile rings which gradually contract and decrease in diameter, eventually 

enclosing each nucleus basally. It has been suggested that the timing of basal closure 

is not dependent on the depth of invagination. Rather, it is regulated in a temporal 

manner (Royou et al., 2004). bottleneck (bnk) is one of the genes regulating basal 

closure (Merrill et al., 1988; Schejter and Wieschaus, 1993; Wieschaus and Sweeton, 

1988). bnk mutant embryos display premature contraction of actin-myosin network. 

This causes pinching off of the apical regions of nuclei, which gives the nuclei a 

bottleneck-like appearance (Schejter and Wieschaus, 1993). Apart from actin and 

myosin II, other furrow components such as anillin and septin are also required for 

(Adam et al., 2000; Field et al., 2005). The tyrosine-kinases src64 and tec29 are also 

required for contraction of microfilaments (Thomas and Wieschaus, 2004).  

 RhoGEF2 has also been implicated in regulating basal closure. RhoGEF2 

mutants show defective Bnk localisation to the furrow canal in late cellularisation and 

ectopic RhoGEF2 expression leads to recruitment of Bnk (Padash Barmchi et al., 

2005). bnk/RhoGEF2 double-mutants show a stronger phenotype compared to 

RhoGEF2 mutants in the later stages, suggesting their role in a common pathway 

involved in the regulation of basal closure. 

Another pathway of regulation of the furrow canal during late cellularisation is 

via negative regulation of Rho1 by Steppke. steppke mutants show elevated Rho1 at 

the furrows which extend perpendicularly and displace the nuclei. The elevation in 

Rho1 activity is not accompanied by elevated RhoGEF2, suggesting that Sreppke acts 

independently on Rho1. It is proposed that Steppke keeps the plasma membrane 

growth in check by acting on a specific sub-population of endocytic events (Lee and 

Harris, 2013). 

 

1.6 Aim of the work 

The main focus of this study is the gene slam. The following questions were addressed 

in this work:- 

a) What upstream signals are needed for Slam accumulation at the site of furrow 

invagination? 
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Slam is one of the first markers to reach the furrow canal and as mentioned earlier, is 

essential for cellularisation. However, it was found that furrow specification takes place 

even in the absence of Slam. Therefore, the first aim was to determine the origin of 

signals that are necessary for the specification of the site of invagination that ultimately 

lead to the accumulation of Slam at the furrow canal. 

b) What is the mechanism of Slam localisation and maintenance at the furrow canal? 

The second aim was to elaborate on the underlying mechanism behind the localisation 

of Slam at the furrow canal. Using different approaches, we aimed to determine 

whether Slam is transported directly/indirectly via microtubules/vesicles. We attempted 

to learn about its maintenance at the furrow canal by studying the mobility dynamics 

of Slam protein at the furrow. 

c) What is the function of Slam? 

Slam is a non-conserved protein with no known functional domains and therefore its 

biochemical function is yet to be discovered. We have tried to gain some insight into 

the function of slam by analysing its interactions with other genes such as nullo and 

spire. Also, Slam protein has been shown to colocalise with its mRNA (Wenzl et al., 

2010). The relationship of the protein and the mRNA has been explored further. 

 

 

 



  17 

 
 

2. MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Reagents 

All standard chemicals were purchased from AppliChem GmbH (Darmstadt), Gibco 

BRL (Eggenstein), Invitrogen (Carlsbad, USA), Merck (Darmstadt), Carl Roth GmbH 

(Karlsruhe) or Sigma-Aldrich (St. Louis, USA) unless otherwise mentioned. RNAse-

free water for EMSA was purchased from Ambion. 

 

2.1.2 Buffers and solutions 

All buffers were prepared according to Sambrook and Russel, 2001 unless otherwise 

stated. 

a) For Immunostaining and western blot 

- PBS      130 mM NaCl 

           7 mM        Na2HPO4 

       3 mM        NaH2PO4 

       pH  7.4 

 

- PBST      0.1%   Tween 20 

       1X   PBS 

 

- Embryo fixation solution   4.5ml   1X PBS 

       0.5 or 1ml Formaldehyde (37%) 

       5ml  Heptane 

 

- Immunostaining blocking buffer  1X   PBS 

5%   BSA 

 
- Western blot blocking buffer  1X   PBST 

5%   milk powder 

 

- Wet transfer buffer    25mM  Tris 
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175mM Glycine 

20%  Methanol  

 

b) For mini prep of plasmid DNA 

- Solution I     50mM  Tris/HCl, pH 8.0 

10mM  EDTA 

 

- Solution II     1%  SDS 

0.2M  NaOH 

 

- Solution III     3M  Potassium acetate 

Adjusted to pH 5.4 

with acetic acid 

 

c) For protein purification under native conditions (with GST tag) 

- Lysis buffer     50mM  Tris/HCl  pH 8.0 

100mM NaCl 

1mM  DTT 

 

- Wash buffer     50mM  Tris/HCl  pH 8.0 

500mM NaCl 

1mM  DTT 

 

- Elution buffer    50mM  Tris/HCl  pH 8.0 

50mM  NaCl 

10mM  Glutathione (freshly 
added from 10X stock stored at -20°C) 

1mM  DTT 

 

- Storage buffer    1X PBS 

Glyecerol added to 10% after 
buffer exchange 

All buffers were filtered prior to use 
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d) For protein purification under native conditions (with His tag) 

- Lysis buffer     20mM  Na-Phosphate pH 8.0 

500mM NaCl 

20mM  Imidazol 

 

- Wash buffer     20mM  Na-Phosphate pH 8.0 

500mM NaCl 

40mM  Imidazol 

 
- Elution buffer    20mM  Na-Phosphate pH 8.0 

500mM NaCl 

250mM Imidazol 

 

- Storage buffer    20mM  Na-Phosphate pH 8.0 

150mM NaCl 

      Glycerol added to 10% after buffer 

      exchange 

All buffers were filtered prior to use. 

 

e) For protein purification under denaturing conditions (with His tag) 

- Lysis buffer     20mM  Na-Phosphate pH 8.0 

500mM NaCl 

20mM  Imidazol 

 

- Buffer A     0.1M  Na-Phosphate 

10mM  Tris  pH 8.0 (NaOH) 

6M  Guanidine hydrochloride 

  (synthesis grade) 

(pH adjusted prior to use) 

 

- Buffer C     0.1M  Na-Phosphate 

10mM  Tris  pH 6.3 (HCl) 

8M  Urea 
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(pH adjusted prior to use) 

 

- Buffer E     0.1M  Na-Phosphate 

10mM  Tris  pH 4.5 (HCl) 

8M  Urea 

(pH adjusted prior to use) 

All buffers were filtered prior to use 

 

f) For protein coupling to CNBr beads 

- Wash buffer for CNBr beads  1mM  HCl 
 

- Coupling buffer    100mM NaHCO3/NaOH  pH 8.3 

300mM NaCl 

 

- Blocking buffer    0.1M  Tris/HCl  pH 8.0 

 

- Wash buffer I    0.1M  Na-acetate 

0.5M  NaCl 

pH adjusted to 4.0 

 

- Wash buffer II    0.1M  Tris/HCl 

0.5M  NaCl 

pH adjusted to 8.0 

g) For affinity purification of antibodies 

- Wash buffer     1X  PBS 

300mM NaCl 

 

- Elution buffer    50mM  Glycine 

pH adjusted to 2.5 

 

- Neutralisation buffer   1M  Tris/HCl  pH 11.0 

 

- 20% Sodium Azide (NaN3) 
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h) For immunoprecipitation 

- RIPA buffer     10mM  Tris/HCl  pH 7.5 

150mM NaCl 

0.1%  SDS 

1%  TritonX 100 

1%  Deoxycholate 

5mM  EDTA 

2mM  PMSF (freshly added) 

      1X  Roche protease inhibitor 
        cocktail (freshly added) 

i) For fractionation 

- Lysis (and wash) buffer   50mM  Tris  pH 7.5 

75mM  NaCl 

1mM  MgCl2 

0.05%  NP-40 

1mM  DTT 

2mM PMSF (freshly added) 

1X Roche Protease inhibitor 
cocktail (freshly added) 

0.01U/l Rnase inhibitor  

 
- High salt buffer    1M NaCl  in Lysis buffer 

 
 

- 6X Lämmli buffer    375mM Tris HCl 

10%  SDS 

50%  Glycerol 

0.6M  DTT 

0.06%  Bromophenol blue 

j) For EMSA 

- 5X EMSA binding buffer   5mg/ml Heparin 

       1%  Glycerol 

       50mM  KCl 

       10mM  DTT 

       5.2mM HEPES  pH 7.0 
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       1mM  MgCl2 

       0.1mM EDTA 

       40mg/ml tRNA or yeast RNA 

 

- EMSA loading dye    50 mM Tris/Cl  pH 7.5 

       50%  Glycerol 

       0.01%  Bromophenol blue 
   

k) For in-situ hybridisation of embryos 

- NTP + Dig labelling mix (10X)  10 mM ATP 

       10 mM GTP 

       10 mM CTP 

       6.5 mM UTP 

       3.5 mM Dig-11-UTP, pH 7.5 

 

- Hybridisation solution   50%  Formamide 

       5X  SSC 

       50 g/ml Heparin 

       0.2%  Tween 

100 g/ml      tRNA  (For pre-hybridisa 
-tion steps) 

DEPC H20     Make upto 50 ml 

Stored at -20°C 

 

- DEPC-treated PBST    Recipe of PBST as in immunostaining 

 

 

l) Other solutions/buffers 

- Cycloheximide buffer   0.1M  Na-phosphate 

5mM  KCl 

 

2.1.3 Media for bacterial culture 

- Luria-Bertani Broth (LB Broth):  10g  Bactotryptone 
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  5g  Yeast extract 

10g  NaCl 

1000ml ddH20  

 

- LB Agar plates    10g  Bactotryptone 

  5g  Yeast extract 

10g  NaCl 

15g  Agar 

1000ml ddH20  

Autoclaved, cooled down to 55°C and required antibiotic added, plated into petri-dishes 

and stored at 4°C      

 

2.1.4 Media for flies 

- Fly food 

128g thread agar was added to 10 l water and cooked for 2h until the agar was 

completely dissolved. 400g fresh baker’s yeast, 160g soya-bean meal and 

1.28kg maize meal was added to 4 l water, mixed, and added to the agar and 

cooked for another 2 h. 1.28kg malt extract and 350g sugar-beet molasses was 

added to 2l water and added to the mixture. The food was cooked for 30min and 

allowed to cool down below 60°C. 24g Nipagin dissolved in ethanol and 150ml 

propionic acid was added and mixed. The fly food was filled into vials. After 

solidification of the food, the vials were plugged and stored at 18°C. 

 

- Apple juice plates 

100g sugar was dissolved into 1 l apple juice and kept in a 60°C water-bath. 

40ml Nipagin solution (15% Nipagin in ethanol) was added to the apple juice. 

70g agar was dissolved into 3 l water and to this, the apple juice mixture was 

added, mixed and allowed to cool down to 60°C. The apple juice agar was 

poured into Petri dishes and stored at 4°C. 
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2.1.5 Enzymes and Kits 

All restriction enzymes were obtained either from Fermentas (St. Leon-Rot) or New 

England Biolabs (Ipswich, USA) and used according to the manufacturer’s instructions. 

Additionally, the following enzymes were used:- 

- Taq Polymerase (expressed and purified in the lab) 

- Pfu DNA Polymerase (expressed and purified in the lab) 

- T7 RNA Polymerase (expressed and purified in the lab) 

- Transcriptor Reverse transcriptase (Roche) 

- DnaseI (Roche) 

 

Following kits were used according to the manufacturer’s instructions:- 

- MiniElute Gel extraction Kit   Qiagen, Hilden 

- Plasmid Midi Kit Nucleobond AX   Macherey-Nagel 

- In-fusion HD cloning kit    Clontech 

- RNeasy Micro kit (for RNA purification)  Qiagen, Hilden 

- Individual Cy3 tyramide reagent pack  PerkinElmer 

 

2.1.6 Chromatography 

- GST columns (GSTrap HP)            GE Healthcare Life Sciences 

- CNBr activated Sepharose 4B        GE Healthcare Life Sciences 

- Ni-sepharose beads             Amersham Pharmacia Biotech  

- PD-10 desalting columns             GE Healthcare Life Sciences 

- Dynabeads protein A(paramagnetic beads)     Life technologies 

- Dynabeads MyOne Streptavidin T1 beads   Life technologies 

 

2.1.7 Oligonucleotides used in the study 

All oligonucleotides used in this study were ordered from Eurofins genomics. The 

nucleotides in red show the changed nucleotide in site-directed mutagenesis. 
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Table 2.1 Oligonucleotides used in the study 

Rab11 cloning 

Serial 

Nr. 

Seqeunce (5’ – 3’) Description 

SG1 CTCCGGTGTTGGCAAAAATAATTT

GCTCTCACG 

Forward primer for site-directed 

mutagenesis of the 25th amino acid of 

Rab11 from S to N 

SG2 CAAATTATTTTTGCCAACACCGGA

GTCACCGATAAG 

Reverse primer for site-directed 

mutagenesis of the 25th amino acid of 

Rab11 from S to N 

SG3 TGGATCCCCGGAATTCATGGGTG

CAAGAGAAGACGAG 

Forward primer for in-fusion cloning of 

Rab11 and Rab11S25N into PGEX-4T1 

SG4 GTCGACCCGGGAATTCTCACTGAC

AGCACTGTTTGCG 

Reverse primer for in-fusion cloning of 

Rab11 and Rab11S25N into PGEX-4T1 

Sequencing 

CW20a ACCCAATGTGCCTGGATGC Forward sequencing primer for PGEX-

4T1 

CW20b CGGGAGCTGCATGTGTCAGA Reverse sequencing primer for PGEX-

4T1 

qRTPCR 

SY94 GCGAGATCTACCACGCTTTTTCGC

GGTC 

Forward primer spanning exon-exon 

junction in the 5’UTR of slam 

SY95 CGTGGATCCTTTGCTAATAGCTTA

TATACAATG 

Reverse primer for detection of slam 

mRNA 

SA12 GTTAAATCGAACAAAAAGCTTAC Forward primer spanning exon-exon 

junction of first intron of actin 

SA13 GTGAGGATACCACGCTTGC Reverse primer for detection of actin 

mRNA 

 

2.1.8 Plasmid constructs used in the study  

Table 2.2 Plasmids used in the study 

Name Description Source 

pGEX6OH GST-His fusion protein Prof. Jörg Großhans 

pBS (SK-)-rab11 (EST) Rab11 cDNA Bloomington GM06568 
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pGEX-4T1-rab11 N-terminal GST tag fused with 

Rab11 protein 

Stephanie Gröning 

(Pelissier et al., 2003) 

pGEX-4T1-rab11S25N N-terminal GST tag fused with 

Rab11 protein with a point mutation 

changing the 25th amino acid from 

Serine to Asparagine 

Stephanie Gröning 

(Pelissier et al., 2003) 

pProEXHTb-p150-KIND p150-KIND with an N-terminal his-

tag 

Prof. E. Kerkhoff 

pQEslamC651 Slam N-terminal fragment from 

amino acid 1 to 545 fused with a 6X 

His tag at the C-terminal  

Prof. Jörg Großhans 

pCS2GFP GFP sequence under SP6 promoter Dr. Shuling Yan 

pCS2slam2-1(slam20) N-terminal GFP sequence fused 

with slam sequence coding from 

amino acid 200 to 330 

Dr. Shuling Yan 

pCS2slam2-2(slam21) N-terminal GFP sequence fused 

with slam sequence coding from 

amino acid 331 to 476 

Dr. Shuling Yan 

 

2.1.9 Primary antibodies 

Table 2.3 Antibodies used in the study 

Antibody Raised 

in 

Dilution and working concentration  

Source Staining Western 

ß-Gal Mouse 1:5000 (0.2g/ml) - Roche 

Dia  Rabbit 1:1000 - ZMBH 

Dlg Mouse 1:100 (~0.4g/ml) - Hybridoma bank 4F3 

Nullo Mouse 1:10 (~0.3g/ml) - Hybridoma bank 5C3-12 

Rab11 Rabbit 1:1000 - Prof. D.F. Ready 

Slam Rabbit 1:5000(~1g/ml) 1:5000(~1.1g/ml) Prof. Jörg Großhans 

Slam Guinea 

pig 

1:5000 1:5000 Prof. Jörg Großhans 

Slam (affinity 

purified) 

Rabbit - 1:5000 (~1.2g/ml) Purified by me 

Spire (affinity 

purified) 

Guinuea 

pig 

1:1000 (~10g/ml) 1:2000 (~5g/ml) Purified by me 
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-Tubulin Mouse - 1:50000 (0.7g/ml) Hybridoma bank B512 

 

2.1.10 Secondary antibodies/dyes 

Alexa-conjugated secondary antibodies for immunostaining were purchased from life 

technologies (Invitrogen) and used at a dilution of 1:500 (4g/ml). DAPI for staining of 

DNA was used at a working concentration (0.2g/ml). Anti-Digoxigenin-peroxidase 

antibodies were purchased from Roche and used at a dilution of 1:200 (0.75 U/ml). For 

western blots, IRDye-800CW and IRDye-680 secondary antibodies were purchased 

from LI-COR Biotechnology and used at a dilution of 1:20000 (0.05g/ml). 

 

2.1.11 Bacterial cell lines 

 Following strains of E.coli were used: 

- DH5for plasmid amplification: 

F–, ø80dlacZΔM15, Δ(lacZYA-argF)U169, deoR, recA1, endA1, hsdR17(rK –, 

mK+), phoA, supE44, λ–,thi-1, gyrA96, relA1 

 

- BL21DE was used for protein expression: 

F- , dcm, ompT, hsdS(rB
 -mB

 -), gal l(DE3). 

 

2.1.12 Fly stocks 

All the fly stocks were obtained from the Bloomington stock centre, unless otherwise 

stated. 

Table 2.4 Fly stocks used in the study 

Stock name Stock genotype Source/Lab serial 

nr. 

oregon-R +/+ A401 

slam5’rescue/CyO; 

GFPslam/TM3 

w ; Df(2L)slam{w+} Frt[2L]{neoR} c 

slam5’{w+}[58]/ CyO ; GFPslam{w+}/TM3, Sb 

Prof. J. Großhans 

slam3’rescue/CyO; 

Dr/TM3 

w ; Df(2L)slam{w+} slam3’{w+} Frt[2L]{neoR} / 

CyO ; Dr/TM3, Sb 

Prof. J. Großhans 

slam-9.5 slam[9.35] b pr Frt[2L]{neoR} / CyO H093 
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slam-B4.1 slam[B4.1] b pr Frt[2L]{neoR} / CyO H094 

Flp122; ovoD2L hs-Flp[122]; ovoDFrt2L[40A]/If/CyO, hs-hid Maintained in the 

lab 

mat-GFPslam w ; tub-Gal4-VP16[67]{w+} ; UASp-GFP- 

slam[1]{w+} 

H016 

GFPslam w ; GFPslam[68]{w+} H087 

SAS6GFP/TM6c w ; ubi-GFP-SAS6{w+} / TM6c, Sb Prof. J. Raff 

Sp/CyO; GFP-

SAS6/TM6c 

w ; Sp/CyO; ubi-GFP-SAS6{w+} / TM6c, Sb  Zhiyi Lv 

shibire w shi[1] / FM6, y B A119 

shibire; Sp/CyO w shi[1] / FM7c, y B; Sp/CyO Zhiyi Lv 

rab11YFP-CHR rab11YFP-wt[CHR-7]/TM3, Sb H008 

GFPslam; rab11YFP w ; tub-Gal4-VP16[67]{w+} UASp-GFP-  

slam{w+}/CyO; rab11YFP-wt[CHR-7]/TM3, Sb 

Prof. J. Großhans 

nuf/TM6B nuf[1] sr e ca / TM6B, Tb Hu H010 

Sp/CyO; nuf/TM3 Sp/CyO; nuf[1] sr e ca/ TM3, Sb Prof. J. Großhans 

eos-slam w; UASp-meos2-slam{w+} Dr. P. Laupsien 

mat67.15 tub-Gal4-VP16[67]{w+}; tub-Gal4-

VP16[15]{w+}  

Prof. D. St. 

Johnston, UK 

his-RFP w; histone2Av-mRFP[1]{w+} B384 

nullo/FM7; If/CyO Df(1)nullo[6F12] / FM7; If/CyO (Hunter and 

Wieschaus, 2000) 

Dfslam/hb-lacz Df(2L)BSC5/CyO, hb-lacZ Prof. J. Großhans 

spir1 spir[1]cn[1]bw[1]/CyO, I(2)DTS513[1] H064 

Dfspire Df(2L)Exel6046 Bloomington 

Following alleles of spire were obtained from Tübingen stock centre  Tübingen Stock nr. 

spir2L-62-29 w (P[hs-Flp]122); al? dp? b? pr P[FRT, 

neoR]40A/CyO, P[hs-hid, w+] 

L210 

spir2L-75-28 w (P[hs-Flp]122); al? dp b? pr P[FRT, 

neoR]40A/CyO, P[hs-hid, w+] 

L214 

spir2L-133-31 w (P[hs-Flp]122); al? dp? b? pr P[FRT, 

neoR]40A/CyO, P[hs-hid, w+] 

L228 

spir2L-146-30 w (P[hs-Flp]122); al dp b pr P[FRT, 

neoR]40A/CyO, P[hs-hid, w+] 

L235 

spir2L-210-2(ts) w (P[hs-Flp]122); al? dp b pr P[FRT, 

neoR]40A/CyO, P[hs-hid, w+] 

L253 
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spir2L-216-18 w (P[hs-Flp]122); al? dp? b? pr? P[FRT, 

neoR]40A/CyO, P[hs-hid, w+] 

L258 

spir2L-244-35 w (P[hs-Flp]122); al? dp b? pr P[FRT, 

neoR]40A/CyO, P[hs-hid, w+] 

L265 

Generated in this work: 

gfpslam; nuf tub-Gal4-VP16[67]{w+} ; UASp-GFP- 

slam{w+}/ CyO; nuf[1] sr e ca /TM3 

- 

shi; gfpslam w shi[1] / FM7c, y B; tub-Gal4-VP16[67]{w+} ; 

UASp-GFP- slam{w+}/ CyO 

- 

nullo/FM7; 

Dfslam5’/CyO 

Df(1)nullo[6F12] / FM7 ; Df(2L)slam{w+} 

Frt[2L]{neoR} c slam5’{w+}/ CyO 

- 

 

2.1.13 Microscopy 

- Zeiss Stemi 2000     Carl Zeiss 

- Leica MZ125      Leica 

- Microinjection microscope    Carl Zeiss 

- LSM 780      Carl Zeiss 

- Zeiss Axiovert 200 M Ultra-view  
spinning Disc confocal microscope  Carl Zeiss 

- Zeiss Axioplan 2 Fluorescence microscope Carl Zeiss 

 

2.1.14 Other materials 

- Ribolock RNAse inhibitor     Thermo Scientific  

- Cy3-UTP      Perkin Elmer 

- Cycloheximide     Sigma 

- Complete Mini (EDTA-free) 

Protease Inhibitor Cocktail    Roche 

- Aquapolymount     Polysciences, Inc. 

- Coverslips      Menzel 

- Glass slides      Thermo Scientific 

- Fly vials      Greiner 

- Glass pipettes (25ml, 20ml, 10ml, 5ml)  Silber Brandt 

- Pasteur pipettes     Brandt 

- Glass homogenizer     B. Braun Biotech International 
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- Dynamag – spin magnet    Life technologies 

- Petri dishes      Greiner 

- Pipet-aid      Drummond 

- Micropipettes (1000 l, 200l, 20l, 2l) Gilson 

- Micropipette tips (1000 l, 200l, 2l)  Eppendorf  

- Safe-seal RNase-free tips  1000 l, 200l,  

20l, 10l)      Biozym 

- Falcon tubes (50 ml, 15 ml)   BD Falcon 

- Eppendorf tubes (1.5ml, 2ml, 5ml)  Eppendorf 

- PCR tubes      Brand, Wertheim  

- 10S and 3S VoltaLef Halocarbon oil  Lehmann & Voss & Co. 

 

2.1.15 Other equipment 

- UGA-40 MLC ablation system with 

DPSL-355/14 laser     Rapp Optoelectronic 

- Äkta pure      GE Healthcare Life Sciences 

- Odyssey CLx Infrared imaging system  LI-COR Biosciences 

- CFX96 Real time PCR detection system/ 

C1000 touch thermal cycler   Biorad 

- Typhoon variable mode imager   Amersham 

 

2.1.16 Softwares 

- Adobe Photoshop CS6    Adobe 

- Adobe Illustrator CS6    Adobe  

- FIJI       NIH 

- Zen 2012      Carl Zeiss 

- Lasergene      GATC biotech 

- Microsoft excel     Microsoft 

- Microsoft word     Microsoft 

- Zotero       Roy Rosenzweig Center  

       for History and New Media 
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2.2 Methods 

2.2.1 DNA methods 

2.2.1.1 Molecular cloning 

All the molecular cloning methods were carried out according to Sambrook and Russel, 

2001, unless otherwise stated. 

 

2.2.1.2 Polymerase chain reaction (PCR) 

PCR reactions were carried out using Taq or Pfu DNA polymerase. Standard PCR 

reactions were carried out with the following reagents in the mentioned concentrations: 

50-200 ng DNA template, 0.5 M forward and reverse primers, 50 M dNTP (each), 

1X PCR buffer (depending on the polymerase), 1-2 units (per 50 l of reaction) Taq or 

Pfu polymerase. 

 

Following conditions were used for a general reaction: 

Step 1 (Initial denaturation): 95°C   - 2 min 

Step 2 (Denaturation):  95°C  - 30 sec 

Step 3 (Annealing):   50-60°C - 1 min 

  (depending on the annealing temperatures of the primers) 

Step 4 (Elongation):   72°C  - 1 min/Kb to be amplified 

Step 5 (Repetition of cycles) Steps 2 to 4 - 30 cycles 

Step 6 (Final elongation)  72°C  - 7 min 

Step 7 (Hold)      4°C  - ∞ 

  

2.2.1.3 Site-directed mutagenesis 

Site-directed mutagenesis was carried out to change the 25th amino acid in Rab11 

protein from Serine to Asparagine (AGT to AAT). The following PCR program was 

used: 
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Step 1 (Initial denaturation): 95°C   - 5 min 

Step 2 (Denaturation):  95°C  - 50 sec 

Step 3 (Annealing):   62°C  - 50 sec 

Step 4 (Elongation):   68°C  - 5.5 min 

Step 5 (Repetition of cycles) Steps 2 to 4 - 18 cycles 

Step 6 (Final elongation)  68°C  - 7 min 

Step 7 (Hold)      4°C  - ∞ 

 

2.2.1.4 In-fusion cloning 

In-fusion cloning was carried out according to the manufacturer’s instructions. 

 

2.2.1.5 Purification of DNA/RNA by phenol-chloroform extraction 

DNA/RNA sample was made up to 200 l by adding ddH20/DEPC-H20. To this, 200 l 

of Phenol:Chloroform:Isoamylalcohol was added and mixed well. The sample was 

centrifuged at 13,000 rpm for 5 min. The upper phase was transferred to a new 

eppendorf. 200 l of Chloroform was added to this and mixed well. The sample was 

centrifuged again at 13,000 rpm for 5 min. The upper phase was again transferred to 

a fresh eppendorf. To this, 20 l of 3M NaAc and 500 l Ethanol was added and mixed. 

The sample was kept at -20°C overnight (or -80°C for 1 hour). Then the sample was 

pelleted by centrifuging at 14,000 rpm for 30 min at 4°C. The supernatant was 

discarded. 100 l of 70% Ethanol was added to the pellet. Again the sample was 

centrigued at 14,000 rpm for 15 min. Supernatant was discarded and pellet dried either 

in the Speedvac or under the hood. The dried pellet was resuspended in 20l of 

ddH20/DEPC-H20. 

 

2.2.1.6 DNA sequencing 

DNA sequencing was carried out with the sequencing facility at the Department of 

Developmental Biochemistry, GZNB, University of Göttingen. 
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2.2.1.7 In-vitro transcription 

In-vitro transcription was carried out to prepare Cy3-labelled GFP, slam2-1 and slam2-

2 fragments for EMSA. The pCS2-GFP, pCS2-slam2-1 and pCS2-slam2-2 plasmids 

was restriction digested using NotI and purified using phenol-chloroform extraction 

(Refer to 2.2.1.5). The linearised plasmids were used as a template for in-vitro 

transcription. The following components were mixed into an eppendorf for the in-vitro 

transcription reaction: 

  

Component   Volume  Stock Concentration 

Linearised plasmid   5 l     0.2 g/l  

 Transcription buffer   2.5 l       10X 

 rCTP     1 l      10 mM  

 rGTP     1 l       10 mM 

 rATP     1 l       10 mM 

 rUTP     0.64 l      10 mM  

 Cy3-UTP    0.36 l    100 nmol 

 DTT     0.75 l      1M 

 Ribolock RNAse-inhibitor  1 l       40 U/l 

 SP6 polymerase   1 l       20 U/l  

 Pyrophosphatase   0.2 l      0.5 U/l  

 dH20 (Rnase-free)   10.55 l 

 Total Volume   25 l 

The reaction was kept at 37°C, overnight. 1 l of DnaseI (Stock:10 U/l)  was added 

and kept at 37°C for 30 min. The RNA was purified using Qiagen RNeasy kit, eluted in 

30 l RNAse-free water and stored at -20°C until further use. 
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2.2.1.8 Reverse transcription 

5 l RNA sample (ranging from 0.2 to 1.2 g/l) was mixed with 7 l dH20 (RNase-

free) and 1l oligo(dT) (100 pmol/l) and kept at 65°C for 10 min. After that, the 

following components were added to the sample (Stock concentration in brackets): 

 5X RT buffer    - 4 l 

 RNAse inhibitor (40 U/l)  - 0.5l 

 dNTP mix (10mM)   - 2 l 

 Reverse transcriptase (20 U/l ) - 0.5 l 

The sample (total volume 20 l), was kept at 55°C for 30 min and then at 85°C for 10 

min. The cDNA was then stored at -20°C. 

 

2.2.1.9 Quantitative real-time PCR (qRT-PCR) 

The following components were added for each qPCR reaction: 

 SYBr green qPCR mix - 12.5 l 

 dH20     - 8 l 

 Forward primer  - 1.25 l 

 Reverse primer  - 1.25 l 

 cDNA    - 2 l 

The following qPCR program was used for detection of slam and actin mRNA: 

 Step 1 (Initial denaturation): 95°C   - 3 min 

Step 2 (Denaturation):  95°C  - 10 sec 

Step 3 (Annealing):   60°C  - 15 sec  

Step 4 (Elongation):   72°C  - 30 sec 

Step 5 (Repetition of cycles) Steps 2 to 4 - 40 cycles  

Step 6 (Melting curve) 55°C to 95°C  - 10 sec + plate read 

        (Increment of 0.5°C) 
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2.2.2 Biochemical methods 

2.2.2.1 Protein purification 

Expression of all recombinant proteins was carried out in E.coli. BL21DE 

a) Purification of GST-tagged proteins under native conditions: 

GST, GST-Rab11 and GST-Rab11S25N recombinant protein expression was induced 

with 0.2 mM IPTG at 18°C overnight. The cells were harvested by centrifuging at 

5000rpm for 30 min. They were resuspended in lysis buffer for GST-tagged proteins 

and incubated with 1mg/ml lysozyme and a pinch of DNase for 30 min on ice. The cells 

were then lysed using a microfluidiser. The soluble part was obtained by centrifuging 

twice at 12,000 rpm for 20 min each to remove the insoluble fraction. The supernatant 

(soluble fraction) was passed through a Glutathione Sepharose prepacked column 

(GSTrap HP column), washed with approximately 10 ml of wash buffer and eluted with 

elution buffer. The eluted protein was then exchanged to PBS using a PD10 column 

and the protein was concentrated to 1 mg/ml for injection into GFPslam embryos. 

 

b) Purification of His-tagged proteins under native conditions: 

Expression of SlamC651 protein was induced with 0.1 mm IPTG at 18°C overnight. 

The cells were harvested and lysed as described earlier, but in lysis buffer for his-

tagged proteins. The supernatant (soluble fraction) was passed through a Nickel-

Sepharose prepacked column (HisTrap HP column), washed with approximately 10 ml 

of wash buffer and eluted with elution buffer. The eluted protein was then exchanged 

to storage buffer using a PD10 column and the protein was concentrated to 1.5 mg/ml. 

Glycerol was added to the protein sample to make the final concentration 10% glycerol 

and the protein was snap-frozen in liquid Nitrogen and stored at -80°C. 

 

c) Purification of His-tagged proteins under denaturing conditions: 

Expression of p150-KIND was induced with 0.5 mM IPTG at 37°C for three hours. The 

cells were harvested and lysed as described earlier, but in lysis buffer for his-tagged 

proteins under denaturing conditions. The supernatant (soluble fraction) was rocked 

with 5 ml Nickel-Sepharose beads for one hour at room temperature. The suspension 

was added to a gravity column and washed with approximately 50 ml of wash buffer 
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and eluted with elution buffer. The eluted protein was then exchanged to storage buffer 

using a PD10 column and the protein was concentrated to 1.5 mg/ml. Glycerol was 

added to the protein sample to make the final concentration 10% glycerol and the 

protein was snap-frozen in liquid Nitrogen and stored at -80°C, before sending it out to 

the company for antibody production. 

 

2.2.2.2 Affinity purification of antibodies 

a) Preparation of the CNBr-activated Sepharose beads: 

1 g of dry CNBr-sepharose beads were swelled in 10 ml of 1 mM HCl for 15 min. The 

beads were washed on a sintered glass filter with about 200 ml of 1 mM HCl. Washes 

were carried out in several aliquots. 

 

b) Coupling of protein to beads: 

The gel was washed with 5 ml coupling buffer. A280 of the protein solution was taken. 

The protein solution was then added to the gel in a 1:2 gel:buffer ratio. The suspension 

was mixed on a rocker for 3 hr at room temperature. The beads were allowed to settle 

down and the supernatant removed after taking the A280 reading to confirm binding. 

Blocking buffer was added to the gel and mixed for 2 hr at room temperature. The 

suspended beads were poured into a column. The column was washed with five cycles 

of alternating low and high pH buffers (Buffer I and Buffer II). Then the column was 

washed with five column volumes of PBS. The column was stored at 4°C. 

 

c) Loading of serum and elution of antibodies: 

The serum was centrifuged twice at 15,000 rpm for 20 min each at 4°C. The cleared 

serum was then applied to the column at a flow rate of 0.5 mg/ml. The flow-through 

was collected and saved. The column was washed first with ten column volumes of 

PBS + 500 mM NaCl and then with PBS + 1 M NaCl. For elution, 100 l of neutralisation 

buffer was added to the collection tubes and 900 l fractions were taken via elution 

with low pH buffer. The peak fractions were identified using A280 and pooled together. 

The pooled sample was then exchanged to PBS using PD-10 columns. The antibody 

solution was then concentrated (~5 mg/ml for Rabbit anti-Slam antibodies and ~10 

mg/ml for Guinuea pig anti-KIND antibodies). Na-Azide was added to 0.02% to the 

antibodies and they were stored at 4°C. 
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2.2.2.3 Western blot 

a) Embryo collection: 

Embryos were staged from 1.5 to 2.5 hours on apple-juice agar plates and 

dechorionated in 50% Klorix bleach for 90 seconds. The dechorionated embryos were 

collected into a weighed eppendorf tube and spun down gently. The weight of the 

embryos was determined (~1mg =100 embryos). 1X Lämmlli buffer was added and the 

embryos were homogenised. The sample was then heated to 95°C for 5 min and 

centrifuged at 14,000 rpm for 1 min. The embryos were either loaded immediately on 

an SDS-gel for a western blot or stored in -20°C for future use. 

 

b) Western blot procedure: 

A volume corresponding to 10 embryos was loaded on an SDS-PAGE gel for a general 

western blot, unless otherwise stated. The gel was run at 16 mA constant current until 

the dye front just ran off. The proteins from the gel were transferred onto a 

nitrocellulose membrane either using a semi-dry transfer for 1 hour (Westerns for Slam 

and -tubulin) or wet transfer for overnight (Westerns for GFP-slam and Spire). The 

membrane was then blocked in 5% milk powder in PBT for 35 min and incubated with 

primary antibody either overnight at 4°C or 2 hours at room temperature. The 

membrane was rinsed thrice in PBT and given four 10 minute-PBT washes. The 

membrane was incubated with secondary antibody for 1 and a half hours at room 

temperature, protected from light. Then it was again rinsed thrice in PBT and given 

four 10 minute-PBT washes, after which the bands were detected using the Odyssey 

CLx Infrared Imaging system. 

 

2.2.2.4 EMSA 

Six serial dilutions of the protein were carried out in protein storage buffer. The Cy3-

labelled RNA was heated to 95°C for 1 min and then allowed to cool to 25°C slowly on 

a thermomixer. A mastermix for twelve samples was prepared with the following 

components: 

 

 Component    Volume per sample 

 RNase-free water      12 l 
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Yeast RNA (10 g/l)   1 l 

 5X binding buffer    4 l 

 Cy3-labelled RNA (~200 ng/l)  1 l 

The above mastermix was aliquoted into 12 eppendorfs (18 l each). To each reaction 

tube, 3 l of protein dilution was added. Storage buffer without any protein was used 

as a negative control. The reaction tubes were mixed and kept at room temperature 

for 30 min for binding. 5 l of EMSA loading dye was added to samples and mixed. 

The samples were loaded on 1% Agarose gels and run at 40 V constant voltage until 

the dye front ran three-fourths of the gel length. The RNA bands were visualised using 

Typhoon phosphoimager. 

 

2.2.2.5 Immunoprecipitation 

Staged wild-type embryos were collected by dechorionating the embryos (Refer to 

2.2.2.3 a). After collecting the embryos in an eppendorf, spinning them down and 

weighing, they were snap-frozen in liquid nitrogen and stored at -80°C. 40 l 

dynabeads protein A magnetic beads were washed twice with 1 ml PBS each and 

incubated with rabbit slam antibody for 1 hour. After one hour, the beads were washed 

thrice with PBS and kept on ice. Approximately 100 mg of embryos (~10,000 embryos) 

were lysed in 1 ml RIPA buffer using a dounce homogeniser and transferred into a cool 

eppendorf using a pre-cooled pasteur pipette. The lysate was centrifuged at 14,000 

rpm at 4°C for 15 min. The lipid layer floating on the top was sucked off using an 

aspirator pump. Input sample was taken such that the final concentration in 1X Lämmlli 

buffer was 1 embryo/l. The sample was boiled at 95°C immediately for 5 min. The 

rest of the lysate was added to the antibody-conjugated dynabeads and rotated on a 

wheel for 2 hours at 4°C. Subsequently, the beads were settled down using Dynamag 

spin-magnetic and an unbound sample (supernatant) was taken in the same way as 

input sample. The beads were washed thrice with RIPA buffer and subsequently, 

protein was eluted from the beads such that the final concentration in 1X Lämmlli buffer 

was 50 embryos/l. Sample was heated immediately at 95°C for 5 min. The input (~10 

embryos), unbound (~10 embryos) and bound (~500 embryos) samples were loaded 

onto an 8% SDS-PAGE gel to carry out a western blot. 
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2.2.2.6 Pulldown of GFPslam using paramagnetic Streptavidin beads 

Staged embryos expressing GFPslam (as well as endogenous Slam) were collected 

as mentioned in the previous section (2.2.2.5). 40l of Streptavidin MyOne T1 

dynabeads (Streptavidin paramagnetic beads) were washed twice with 1X PBS. About 

5000 embryos were lysed in 500l of RIPA buffer and input sample taken. The lysate 

was then incubated with ~45nM final concentration of biotinylated GFP-binding protein 

for one hour on ice (biotinylated-GBP – a gift from Prof. Dirk Görlich). The lysate with 

biotinylated-GBP was added to the beads and rotated on a wheel at 4°C for 1h. The 

beads were settled down and unbound sample taken. The beads were washed thrice 

with RIPA buffer. The bound protein was eluted by adding 1X Lämmlli buffer and 

heating at 95°C for 5 min. 

 

2.2.3 Fly embryo methods   

2.2.3.1 Fractionation of embryos 

a) WT embryos followed by western and qPCR: 

Approximately 7500 staged embyros were lysed in 1.5 ml of fractionation buffer (Refer 

to 2.1.2 under ‘For fractionation’ for buffer recipes).  The lysate was centrifuged twice 

at 2500 rpm for 5 min at 4°C to pellet the nuclei. 1.3 ml supernatant (total lysate) was 

transferred into a new eppendorf. ‘Total lysate’ protein sample was taken such that the 

final concentration in 1X Lämmlli buffer was 1embryo/l. For ‘Total lysate’ RNA sample, 

200l (~1000 embryos) was used and immediately processed for RNA isolation (For 

protocol, refer to 2.2.3.2).  1 ml of the remaining total lysate (~5000 embryos) was 

transferred into a new eppendorf tube and centrifuged at 14,000 rpm for 15 min at 4°C. 

The lipid layer was generously removed by an aspirator. 500 l of supernatant 

(Cytoplasm) was carefully transferred into a new eppendorf. The rest of the 

supernatant was discarded and the pellet (Membrane) was re-suspended in 1 ml of 

fresh fractionation buffer until a fine suspension was formed. The ‘Cytoplasm’ and the 

‘Membrane’ tubes were centrifuged again at 14,000 rpm for 15 min at 4°C. If there was 

a significant pellet in the ‘Cytoplasm’ fraction, it was included in the ‘Membrane’ tube. 

The wash step was repeated again. After the second wash, ‘Cytoplasm’ protein and 

RNA sample was taken from the supernatant in a similar manner to the ‘Total lysate’ 

sample. The ‘Membrane’ pellet was re-suspended in 500 l fractionation buffer. 
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‘Membrane’ protein sample was taken such that the final concentration in 1X Lämmlli 

was 3 embryos/l. For the ‘Membrane’ RNA sample, 100 l (membrane derived from 

~1000 embryos) was used. All protein samples were heated immediately at 95°C for 5 

min and kept at room temperature until the end of protocol. They were loaded on an 

8% SDS gel and a western blot for Slam and -tubulin was carried out. The detection 

of Slam was done by IRDye 800 secondary antibody while the detection of -tubulin 

was done by IRDye 680 secondary antibody on the same membrane. 

Fractionation of genomic GFPslam embryos was carried out exactly in the same 

manner, except that the RNA samples were not taken. 

 

b) Fractionation followed by high salt membrane extraction: 

Fractionation of wild-type embryos was carried out in a similar manner as described 

above. Only protein samples were taken. After taking the ‘Membrane’ protein sample, 

NaCl was added to a final concentration of 1M. The sample was kept on ice with 

intermittent resuspension for 5 min. It was then centrifuged at 14,000 rpm for 15 min 

at 4°C. The supernatant sample was dissolved in 1X Lämmlli such that 20 l sample 

contained 250 embryos.  

 

2.2.3.2 RNA isolation following fractionation of embryos 

The ‘Membrane’ RNA lysate sample (100 l volume) was made up to 200 l using 

fractionation buffer to make the volume equal to the ‘Total lysate’ and ‘Cytoplasm’ 

fractions. 20l of 10% SDS and 1l (20 g/l) glycogen and 200 l 

Phenol:Chloroform:Isoamyl alcohol was added to the lysates, mixed well and 

centrifuged at 14,000 rpm for 5 min at 4°C. The upper phase was transferred into fresh 

tubes and 200 l chloroform was added and mixed well. The samples were centrifuged 

at 14,000 rpm for 5 min at 4°C. The upper phase was transferred to fresh tubes and 

40 l of 3M NaAc (DEPC-treated) was added and mixed. Then 500 l of 100% Ethanol 

was added, mixed and kept at -20°C overnight. The RNA was pelleted by centrifuging 

at 14,000 rpm for 30 min at 4°C, washed with 100 l 80% DEPC-treated Ethanol and 

centrifuged again at 14,000 rpm for 15 min at 4°C. The pellet was dried under a hood 

for 10-15 min and dissolved in 40 l RNAse-free water. The samples were stored at -

20°C. 
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2.2.3.3 Embryo fixation 

Embryos were dechorionated as mentioned earlier (2.2.2.3a) and collected into a net 

and transferred into a scintillation vial with 5 ml heptane and 4.5 ml PBS. To this, 0.5 

ml of 37% formaldehyde was added (final concentration of 4%). The embryos were 

fixed for 20 min with constant shaking. The lower phase was removed and the embryos 

were washed twice by adding and removing 4.5 ml PBS. 5 ml of methanol was added 

to the embryos and the vial was vortexed for 30 sec to devitellinise or ‘pop’ the 

embryos. The popped embryos sink to the bottom. They were collected using a Pasteur 

pipette and transferred to a fresh eppendorf tube. They were washed twice with 

methanol and also stored in methanol at -20°C. 

 

2.2.3.4 Immunostaining of embryos 

The embryos stored in methanol were rinsed thrice and washed twice for 5 min in PBT. 

Blocking was carried out for 1 hour in 1 ml of 5% BSA in PBT. The primary antibodies 

were added in the respective dilutions in PBT and embryos were incubated at 4°C with 

constant rotation. Embryos were then rinsed thrice in PBT and given four 15 min 

washes. Appropriate secondary antibodies were added in PBT and incubated for 2 

hours. Embryos were again rinsed thrice in PBT and given four 15 min washes. 

Embryos were stained with DAPI for 5 min, rinsed thrice with PBT, washed once for 5 

min with PBT and were mounted using aquapolymount mounting medium. 

  

2.2.3.5 Fluorescence in-situ hybridisation (FISH) 

a) Preparation of Dig-labelled slam mRNA probe: 

 Following components were mixed together and incubated at 37°C for 2 h: 

 Template DNA (1 g/ml)  -  1 l (linearised OTslam plasmid) 

 10X NTP+Dig labelling mix -  2 l 

 10X transcription buffer  -  2 l 

 T7 RNA polymerase (~200 U/l) -  1 l 

 RNAse inhibitor   -  0.5 l 
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 DEPC-treated water  -  13.5l 

The RNA was treated with 2l DNaseI (10 U/l) and incubated for 15 min at 37°C. The 

RNA was then purified using phenol-chloroform extraction (Refer to 2.2.1.5). The pellet 

was dissolved in 20l DEPC-treated water and stored at -20°C. 

  

b) in-situ hybridisation of Drosophila embryos: 

Day 1: Dechorionated and fixed embryos were rinsed thrice with PBT and washed 

twice for 5 min each. The embryos were incubated for 10 min in 1:1 hybridisation 

solution:PBT. Then the embryos were incubated in hybridisation solution (hyb-sol) for 

10 min. The embryos were prehybridised in hyb-sol for 1 hour at 57°C. 1 l of slam 

probe and 1 l of tRNA was mixed in 20 l DEPC-H20 and heated at 95°C for 4 min. 

The probe was chilled rapidly in ice-water. 200 l of chilled hybridisation solution was 

added to this. After the prehybridisation of embryos, the probe solution was added to 

the embryos and incubated overnight at 57°C.  

Day 2: The probe solution was removed and the embryos were rinsed thrice with 

prewarmed hyb-sol. The embryos were then give three 30 min washes in hyb-sol at 

57°C. The embryos were then given four 10 min washes with 4:1 hyb-sol/PBT (at 

57°C), 3:2 hyb-sol/PBT (at 57°C), 2:3 hyb-sol/PBT(at 57°C) and 1:4 hyb-sol/PBT (at 

room temperature) respectively. Then the embryos were washed twice, 20 min each 

with 1% BSA in PBT at room temperature. Digoxigenin antibody coupled with 

peroxidase was added to the embryos in a 1:200 dilution in PBT and incubated for 2 

hours at room temperature. The embryos were rinsed thrice with PBT and washed four 

times, 15 min each. TSA-Cy3 stock solution was diluted 1:200 in reaction buffer and 

incubated with embryos for ~1 min, protected from light. The staining reaction was 

stopped by washing with PBT. Then primary antibodies for protein staining were added 

in appropriate dilutions in PBT and incubated overnight, protected from light. 

Day 3: Immunostaining was carried out for proteins according to the protocol 

mentioned in 2.2.3.4. Immunostaining was carried out in dark. 
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2.2.3.6 Generation of germline clones 

Germline clones in the Drosophila germline were created mainly according to Chou 

and Perrimon, 1992. Heat shock for the expression of Flippase was carried out at 37°C 

for 60 min on two consecutive days after 24 hours post-hatching. 

 

2.2.3.7 Fly genetics 

slam germline clones were generated using Df(2L)slam Frt(2L) slam 5’rescue 

chromosome.  

nullo,slam double mutants were created by crossing females of Df(1)nullo6F/hs-

Flp[122]; Df(2L)slam Frt[2L] slam5’rescue/ovo[2L] with Df(2L)BSC5/CyO, hb-lacZ 

males. 

To test whether GFPslam68 can rescue viability, Df(2L)slam slam5’rescue/CyO; 

GFPslam/TM3 females were crossed with Df(2L)slam slam3’rescue/CyO; +/+ males. 

Rescued flies would consist of straight wings. 

To test whether GFPslam68 can rescue cellularisation phenotype, Df(2L)slam Frt[2L] 

slam5’rescue/ovo[2L]; GFPslam68 females were crossed with Df(2L)BSC5/CyO, hb-

lacZ males. All resultant embryos consisted of a single copy of GFPslam68 as maternal 

contribution. Half of the embryos (lacZ positive) had a zygotic rescue from a single 

copy of endogenous slam. One-fourth of the embryos (lacZ negative) contained a 

single copy of zygotic GFPslam68 while the other one-fourth (lacZ negative) contained 

no zygotic slam/GFPslam68.  

 

2.2.3.8 Induction of shibire phenotype 

shibire phenotype was induced in embryos derived from heterozygous shi(ts) females 

by keeping the embryos after dechorionation at 32°C in a water bath for 30 minutes. 

The embryos were then fixed. For live-imaging, embryos were dechorionated and 

glued on to a glass coverslip and covered with halocarbon oil. Then the coverslip was 

kept on a metal block heated to 32°C for 10 min and the imaging was carried out at 

32°C at the LSM microscope. 
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2.2.3.9 Microinjection of protein/drug into embryos 

Embryos were dechorionated, dried in a desiccation chamber for ~8 min, covered with 

halocarbon oil and injected posteriorly with 50-100 pl of protein/drug. Imaging of 

GFPslam was carried out after 10 min of injection. 

 

2.2.4. Microscopy 

2.2.4.1. Live-imaging of fly embryos 

Embryos were dechorionated, glued on to a coverslip and covered with halocarbon oil. 

Fluorescent live-images of GFPslam in buffer-injected and cycloheximide-injected 

embryos were taken at the LSM with a 63X oil objective. All other fluorescent live-

images were taken at the spinning disc with a 40X oil objective. Differential interference 

contrast microscopy was carried out at the spinning disc microscope with a 25X oil 

objective. 

 

2.2.4.2 Fluorescence recovery after photobleaching (FRAP) 

Due to the changing Z-position of the furrow during cellularisation, a range of Z-stacks 

were recorded. Bleaching of GFPslam was carried out in a given area using 100% 

laser power and 50 iterations at a scan speed of 5. The appropriate Z-stacks were 

merged for analysis. For the experiment with FRAP of GFPslam at different time-points 

of cellularisation, fluorescence of a small membrane area outside and inside of the 

bleached region was measured. For FRAP of GFPslam in shibire background, 

fluorescence intensity of only ‘old borders’ were taken into account. For the experiment 

with nuf mutants, due to increased membrane dynamics, fluorescence was measured 

at the complete furrow canal area outside and inside of the bleached region. The 

background intensity was subtracted from the total fluorescence. For all experiments, 

the starting point of the fluorescence was normalised to 1. Linear regression of 

fluorescence recovery was used to calculate the rate of fluorescence recovery. 

 

2.2.4.3 Laser ablation of centrosomes 

Embryos expressing SAS6GFP and GFPslam were aligned on agar, glued on to a 

coverslide and covered with halocarbon oil. Very little glue was used since it makes 
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the UV laser less efficient. Ablation of centrosomes was carried out with a 355 nm 

pulsed UV laser (70 J/pulse, 4x200 ms, 30%) in the anaphase of cell cycle 13, before 

the centrosome duplication. Time-lapse axial image stacks were recorded following 

ablation and subsequently merged with Fiji software. 
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3. RESULTS 

3.1 Factors contributing to the accumulation of Slam protein at the 

furrow canal 

  

3.1.1 Centrosomes define the site of invagination 

Centrosomes are microtubule-organizing centres and thus have been 

implicated in the specification of cleavage furrow. It has been shown that centrosomes 

alone, in the absence of nuclei, can induce formation of pole cells in the early 

Drosophila embryo (Raff and Glover, 1989). Hence, we asked whether centrosomes 

are the source of the initial signal for Slam accumulation and the formation of furrow 

during cellularisation. 

It has been described that overexpression of SAS6 induces de novo formation 

of multiple centriole-like structures in syncytial embryos (Peel et al., 2007). These 

structures are formed due to additional replications of centrioles in the same cell cycle. 

These ectopic centriole precursors are able to reorganise microtubules (Rodrigues-

Martins et al., 2007). Previously in our lab, it was shown that these ectopic centriole 

precursors are sufficient for the specification of a new furrow at the onset of 

cellularisation (Fig 3.1 A and B, Dr. Philip Laupsien, PhD Dissertation). Slam was able 

to localise to the furrow canal, though it was distributed all over the basal membrane, 

probably due to premature basal closure of the furrows. The ectopic furrows also 

displayed localisation of the lateral membrane marker Dlg, showing that the 

invaginating membrane is polarised. Other furrow canal markers (PDZ domain of 

RhoGEF2, Actin) were also found to be localised indicating that the furrows were 

functional (Acharya et al., 2014; Dr. Christian Wenzl, PhD dissertation). 

The ectopic furrows undergo a premature basal closure, perhaps but not 

exclusively due to the absence of nuclei. When we observed at a very early stage of 

cellularisation, we could find Slam localised in a proper furrow morphology (Fig. 3.1 C). 

This suggests that centrosomes are able to specify the site of furrow invagination, and 

is able to restrict Slam in the initial stage of cellularisation.  

We wondered whether some of these ectopic centriole precursors were formed 

as a result of nuclear fallout in earlier cell cycles. This would mean that the furrow-
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Fig 3.1 Lonesome centrosomes are capable of specifying ectopic furrows. Embryos 

overexpressing SAS6GFP display lonesome centrosomes that lack nuclei (red arrows). These 

lonesome centrosomes are able to specify ectopic furrows around them (yellow arrows), as marked by 

accumulation of Slam (green) and Dlg (red). (A and B, Dr. Philip Laupsien, PhD Dissertation) Scale bar 

10m. 

 

specification is carried out by the nucleus rather than the centrosome. To rule out this 

possibility, live imaging of syncytial embryos expressing SAS6-GFP under a ubiquitin 

promoter and GFP-slam driven by a maternal tubulin promoter was carried out. It was
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Fig 3.2 SAS6GFP overexpression results in extra centrosomes in the embryo due to additional 

centrosomal divisions. Embryos expressing SAS6GFP and GFPslam were followed from anaphase 

of cycle 13 until the onset of cellularisation. Extra centrosomes result from additional replication of 

centrosomes (yellow arrow). Scale bar 10m. 

 

found that the ectopic centriole precursors capable of specifying a new furrow, were 

formed de novo by extra divisions of the centrosomes and were not a consequence of 

nuclear fallout (Fig. 3.2). When observed live, we found that both duplicate lonesome 

centrosomes (Fig 3.3 A) and singular lonesome centrosomes (Fig 3.4 B) were capable 

of specifying a new furrow. 

Furthermore, we asked whether furrow specification was lost in the absence of 

a centrosome. To answer this question, we tried to ablate a centrosome and see the 

effect on GFP-slam accumulation. The ablation was carried out in the anaphase of 

cycle 13 before the formation of the new furrow. However, only partial ablation could 

be achieved due to the susceptibility of the adjacent membrane to a higher 

intensity/duration of laser. Despite this limitation, we could observe a loss in the 

centrosome’s ability to specify a new furrow (Fig 3.4). This suggests that we were able 

to functionally ablate the centrosome to a large extent. Although the ablation was 

carried out before the formation of the nuclear membrane, we could not rule out the 

possibility that a nuclear fallout could have been induced during ablation. However, 

since we showed earlier that centrosome is able to specify the site of the furrow even 

in the absence of a nucleus, a nuclear fallout is inconsequential to furrow-specification. 
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Fig 3.3 GFPslam accumulates around the additional duplicate/singular lonesome centrosomes 

to form ectopic furrows in SAS6GFP embryos. Duplicate lonesome centrosomes (A, yellow arrows) 

and Singular lonesome centrosomes (B) both are able to specify ectopic furrows. The red arrows in B 

indicate a singular lonesome centrosome formed in an earlier cycle as indicated by GFPslam 

accumulation in cycle 13. The yellow arrows in B indicate a singular lonesome centrosome formed in 

cycle 13 as indicated by GFPslam accumulation in cycle 14. Scale bar 10m. 
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Fig 3.4 Functional ablation of a centrosome induces loss of its furrow-specifying ability. 

Centrosome was ablated in late mitosis using a pulsed UV-laser. The dashed-circle indicates the ablated 

centrosome. The yellow arrow indicates the centrosome/centrosome pair of the daughter nucleus. Scale 

bar 5m.  

 

3.1.2 Accumulation of Slam is dependent on vesicular transport 

Next, we wanted to find out the mechanism by which Slam protein is transported 

to the furrow canal. We considered two non-exclusive possibilities a) microtubule-

dependent transport b) vesicle-based transport. When GFPslam punctae were 

followed using live imaging, they showed a random movement instead of a 

characteristic directed movement seen in case of microtubule-dependent transport (Dr. 

Philip Laupsien, PhD dissertation). It has been shown that vesicle trafficking through 

the recycling endosome is necessary for cellularisation (Pelissier et al., 2003).  This 

gave us an indication towards a direct or indirect involvement of vesicular transport in 

localising Slam. 

  One way of interfering with vesicular transport is to disrupt shibire (shi), the 

Drosophila homologue of Dynamin. We used a temperature-sensitive conditional 

mutant of shi which allowed us to induce the shi phenotype in a temporal manner 

(Pelissier et al., 2003). shi embryos were shifted to restrictive temperature (32°C), 

about fifteen minutes earlier to the onset of cellularisation, before formation of the new 

furrow. GFPslam was followed live after the induction of shi phenotype. It was observed 

that GFPslam localisation to the site of the ‘new furrow’ was perturbed. Either it 

completely failed to localise or sometimes it showed partial localisation (Fig 3.5). In 

contrast, GFPslam accumulation in wild-type background was normal at 32°C. 

Interfering with shi function, however, also disrupts apical endocytosis of the 

plasma membrane and therefore membrane delivery to the new furrow during the slow 

phase of cellularisation (Lecuit and Wieschaus, 2000). The failure of accumulation of 
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Fig 3.5 Slam accumulation at the furrow canal is dependent on vesicular transport. GFPslam 

accumulation at the ‘new furrow’ was followed using time-lapse recordings in embryos from shibire and 

wild type females expressing GFPslam at 32°C. Yellow arrows indicate incompletely or absent "new" 

furrows. 

Fig 3.6 Loss of Slam from the furrow canal is a specific effect. Fixed and stained embryos from 

shibire females. The shibire phenotype was induced by keeping the embryos at 32°C for 30min before 

fixation. The yellow arrows point to furrows where Slam is lost and Dlg is intact. Scale bar 10m. 
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Slam at the furrow canal therefore could also be due to absence of a membrane 

structure. To check this, we shifted the shi conditional mutants to the restrictive 

temperature, fixed and stained them for Slam and Dlg (a lateral membrane marker). 

Dlg is able to localise to the furrow in the absence of Slam (Acharya et al., 2014; Dr. 

Philip Laupsien, PhD dissertion). It was found that Slam was lost from the ‘new border’ 

before the loss of Dlg (Fig 3.6). Therefore it can be concluded that loss of Slam from 

the furrow canal was not a consequence of disintegration of the membrane structure. 

To investigate the specific role of recycling endosome in Slam protein transport, 

we stained wild-type embryos during cellularisation for Slam and Rab11 to see whether 

we find a colocalisation of Slam protein with a subset of Rab11 vesicles (Fig 3.7 A). 

Rab11 was observed to be primarily localising at the pericentriolar region defining the 

recycling endosome, as described in Riggs et al., 2003. Slam was not found in this 

region. When we focussed at the furrow canal where Slam is known to localise, Rab11 

did not show any specific localisation.   

 

 

Fig 3.7 Rab11 is associated with the perinuclear recycling endosome and the recycling 

endosome vesicles. Rab11 shows a different localisation near the furrow canal in fixed (A) and live 

embryos (B). All images represent the top view of the embryo. The red, dashed line in the illustration 

indicates the plane of intersection of the Z-stack. 

 

We observed embryos expressing Rab11YFP to see if additional Rab11 

vesicles were detectable via live imaging (Fig 3.7 B). Rab11 showed similar 

accumulation at the recycling endosome as seen in the immunostaining pictures. 

However, additional Rab11 punctae were observed around the furrow canal, which 

were not visible via immunostaining. 
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We followed GFPslam and Rab11YFP live to see whether there is any 

colocalisation at any stage with the additional Rab11 punctae around the furrow canal. 

No colocalisation was observed at any time point. Rab11YFP punctae were distributed 

in the cytoplasm whereas GFPslam was always found associated with the membrane 

(Fig 3.8). This suggests that Slam is not transported to the site of invagination on 

Rab11 vesicles. 

Fig 3.8 Slam is not transported on Rab11 vesicles. Embryos expressing GFPslam (red) and 

Rab11YFP (green) were followed from late cycle 13 to the onset of cellularsation using time-lapse 

recordings. (Imaging and image processing by Prof. Jörg Großhans). 

 

Rab11 transheterozygote mutants however, show a reduced accumulation of 

Slam at the furrow canal (Dr. Philip Laupsien, PhD dissertation). In the absence of 

direct transport of Slam via the recycling endosome, we examined a functional link. It 

has been previously reported that in embryos derived from nuf homozygous females 

RhoGEF2 localisation at the furrow canal is disturbed (Cao et al., 2008). Previously in 

our lab it had been shown that Slam is sufficient and necessary for the localisation of 

RhoGEF2 to the furrow canal (Wenzl et al., 2010). Hence we wondered whether the 

mislocalisation of RhoGEF2 in embryos from nuf females (henceforth referred to as 

nuf embryos) is due to mislocalisation of Slam. 

 nuf embryos show a variable phenotype where the furrow canal morphology and 

invagination rate ranges from normal to completely disrupted. At least 50% of the 

embryos showed a strong or delayed phenotype (n=14). Fig 3.9 and 3.10 represent 
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the range of phenotypes observed. We stained nuf embryos with Slam and Rab11 and 

found that as reported earlier (Riggs et al., 2003), Rab11 localisation was dependent 

upon nuf. There was a visible reduction in Rab11 pericentrosomal accumulation in the 

mild cases and a complete absence of Rab11 at the region in the severe cases. In the 

severe cases, Slam was found strongly mislocalised to the apical and lateral regions. 

 

 

 

 

Fig 3.9 Graph depicting the variability of nuf embryos. The furrow length with respect to time was 

plotted for nuf embryos (n=7). The blue lines represent mild/normal phenotypes, the green lines 

represent delayed phenotype and the orange lines represent severe phenotype. Scale bar 10m.



 

 
 

 

 

 

Fig 3.10 nuf embryos show variable phenotype ranging from mild to severe. Time-lapse movies of nuf embryos were obtained by Differential Interference 

Contrast (DIC) microscopy. Representive cases are depicted. Arrows point to the cellularisation front. Scale bar 10 m.
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 We further analysed the cases with delayed invagination and found that often 

Slam was mislocalised into the lateral membrane domain as shown by colocalisation 

with Dlg (Fig 3.11 A, yellow arrows). During cellularisation, slam, Rhogef2, nullo and 

dia control separation of lateral and basal domains (Sokac and Wieschaus, 2008b; 

Wenzl et al., 2010). So it is expected that in nuf embryos where Slam and therefore 

RhoGEF2 are mislocalised, the membrane polarisation would be disrupted. This was 

observed in the form of Dlg spreading into the basal domain (Fig 3.11 A, red arrows).  

 

Fig 3.11 Slam is not restricted to the basal domain in nuf embryos. (A) Fixed nuf embryos were 

stained for Slam (green) and Dlg (red). Slam is found mislocalised into the lateral domain (yellow arrows) 

and Dlg is occasionally spead into the basal domain (red arrows). (B) GFPslam was followed in WT and 

nuf embryos using time-lapse recordings. Red arrowheads point to the accumulations of GFPslam that 

persist much longer than in the WT. 
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Fig 3.12 Slam mislocalisation corresponds to the severity of nuf phenotype. In mild nuf 

phenotypes, Slam is mislocalised to the cortex in regions of nuclear fallout (Red arrow). Occasionally, 

an ectopic furrow between the two centrosomes is formed due to greater centrosomal separation in nuf 

embryos (Orange arrow). In severe nuf phenotypes, Slam is mislocalised to the cortex and the lateral 

domain of the furrow (Yellow arrows). Scale bar 10 m. 

 

The mislocalisation of Slam was found even in situations where Dlg was not spread 

into the basal domain, indicating an intact membrane polarity. This suggests that Slam 

mislocalisation was the cause and not a consequence of membrane polarity disruption.  

To further examine the role of nuf in the restriction of Slam to the furrow canal, 

we observed GFPslam dynamics in nuf embryos (Fig 3.11B). In wild-type GFPslam 

embryos, we observed that at the onset of cellularisation, GFPslam was found around 

the centrosomal exclusion area at the prospective site of invagination. This state, 

however, persisted only briefly as GFPslam was seen to arrange itself in a pseudo-
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hexagonal array in a few minutes. In nuf embryos, these accumulations persisted for 

a much longer time and sometimes failed to resolve into the pseudo-hexagonal array. 

Eventually, nuclei begin to fall out and Slam accumulates at the cortex. Together, these 

data suggest that a functional recycling endosome is necessary for the restriction of 

Slam to the basal domain. 

We found that the extent of Slam mislocalisation in nuf embryos was dependent 

upon the severity of the nuf phenotype. The severity of phenotype was evident by 

abnormal nuclear morphology and loss of Rab11 staining (Fig 3.12). Another 

interesting observation was that due to nuclear fallout and spreading of the 

neighbouring nuclei, the centrosomes were found more apart from each other as 

compared to the wild-type (as indicated by Rab11 staining). Due to this, occasionally 

an extra furrow was formed between the centrosomes (Fig 3.12, orange arrow), further  

 

Fig 3.13 Interference with Rab11 function in the embryo causes delay in Slam restriction to the 

furrow canal. (A) Images from time lapse recordings of wild type embryos injected with purified GST or 

GST-Rab11S25N (dominant negative allele) protein. Arrows point to the cellularisation front. (B) 

Fluorescent images from time lapse recording of embryo expressing GFPslam and injected with GST 

(10 embryos) or Rab11S25N (at least 3 out of 10 embryos showed delayed Slam restriction).
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confirming our earlier conclusion that centrosomes determined the site of membrane 

invagination. 

Since Nuf and Rab11 form a physical complex and are mutually dependent on 

their localisation (Riggs et al., 2003), we tested whether GFPslam restriction at the 

furrow canal is affected also when Rab11 function is disturbed. To accomplish this, we 

injected a dominant negative Rab11 allele, Rab11S25N (Serine 25 mutated to 

Asparagine) in GFPslam embryos and followed it by live imaging. It has been reported 

earlier that injection of purified Rab11S25N protein delays furrow invagination 

(Pelissier et al., 2003). About 40% of the injected embryos (n=5) showed delayed 

furrow invagination (Fig 3.13 A) and GFPslam restriction at the furrow canal was also 

delayed by several minutes (Fig 3.13 B). 

  

3.2 Dynamics of Slam protein, mobility and life-time 

3.2.1 A fraction of Slam is membrane-associated 

 Structured Illumination Microscopy has revealed that Slam is found at the 

membrane in a punctate form rather than being evenly distributed (Fig 3.14 A). 

Previously, it has been shown that Slam is present in both cytoplasmic and membrane 

fractions in the embryo (Lecuit et al., 2002). We confirmed this result using an antibody 

against endogenous Slam as opposed to the anti-HA antibody which was used by 

Lecuit and colleagues. Additionally, we found out that Slam can be solubilised from the 

membranes using a high-salt membrane extraction which means that Slam is merely 

associated with the membrane and is not a transmembrane protein (Fig 3.14 B). This 

is in accordance with the fact that domain prediction of Slam does not reveal any 

transmembrane-domains in the protein. 
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Fig 3.14 Slam is a membrane-associated protein. (A) Structured-illumination microscopy (SIM) 

reveals that Slam is distributed at the furrow canal in a punctate manner (Imaging carried out by Olaf 

Schulz) (B) Fractionation of WT embryos into cytoplasmic and membrane fractions was carried out and 

the membrane fraction solubilised with 1M NaCl. Slam is solubilised by the high-salt treatment indicating 

that it is a membrane-associated protein. 

 

3.2.2 Slam protein is stable during cellularisation 

 We asked whether Slam protein turnover is fast during cellularisation or whether 

the protein is stable. To determine the half-life time of Slam protein, we first utilised 

embryos expressing Eos-slam. Eos is a photoactivatable fluorescent protein that 

undergoes an irreversible photoconversion from green emission peak to a red 

emission peak when exposed to a wavelength of 390 nm (Wiedenmann et al., 2004). 

We photoconverted an area of an embryo expressing Eos-slam during cycle 14 and 

measured fluorescence decay over time (Fig 3.16 A). However, it was realised that this 

was not an optimal system because a) the photoconversion was not efficient and it 

was not possible to attain a 100% conversion b) Photoconversion of a large area was 

not feasible and hence the effects of diffusion masked the actual degradation rate of 

Slam. 
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 Therefore, we switched to another assay to calculate the half-life time of Slam. 

Cycloheximide is a potent translation inhibitor and injecting it into syncitial Drosophila 

embryos blocks cell cycle in the G2 phase (Zalokar and Erk, 1976; Edgar and 

Schubiger, 1986). To first determine the effect of blocking protein translation in different 

stages of cycle 13 and cycle 14, cycloheximide was injected in different stages of 

embryos expressing GFPslam (Fig 3.15). As a positive control, we injected 

cycloheximide in histone-RFP embryos. It was seen that injection of cycloheximide 

prevented the embryo from entering the next mitosis as reported earlier (Fig 3.15 A). 

Injections were carried out ten minutes before the stage of cellularisation we intended 

to perturb. When cycloheximide was injected during anaphase of cycle 13 (Fig 3.15 B) 

to block protein synthesis at early cycle 14, cellularisation was severely affected. 

Membrane morphology was disturbed and the embryos displayed loss of membrane 

  

 

Fig 3.15 Effect of blocking protein translation in different stages of embryo. (A) Cycloheximide 

injected in syncytial embryo expressing his-RFP; the embryo is unable to finish mitosis. (B,C,D) 

Cycloheximide injected during Anaphase of cycle 13, onset of cycle 14 and mid-cycle 14 respectively. 

Scale bar 10m. 
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between cells. The loss of membrane was not biased towards ‘old’ or the ‘new’ 

membranes, suggesting that protein synthesis during early cellularisation is essential 

for the formation of the new membrane as well as the maintenance of the old 

membrane. The severity of phenotype was reduced when the injection was carried out 

at the onset of cellularisation (to induce protein synthesis block at mid-cellularisation; 

Fig 3.15 C) and was even milder when injected during mid-cellularisation (to induce 

protein synthesis block at late-cellularisation; Fig 3.15 D). The loss of membranes 

between the cells depended on how early the injection was carried out. In the later 

stages, cycloheximide only induced thickening of membrane but loss of membranes 

was not noticed. This implies that synthesis of new proteins is most crucial at the onset 

of cellularisation and once the embryo starts cellularising, the need for new protein 

synthesis is diminished. 

 

Fig 3.16 Slam protein is stable during cellularisation. (A) EOSslam was converted from its green 

emission to red emission peak and was followed using time-lapse recordings. Yellow arrows point to the 

diffusion of EOSslam signal thus interfering with protein half-life calculation. (B) GFPslam embryos were 

injected with buffer or Cycloheximide and the reduction of fluorescence signal was followed to calculate 

the protein half-life. 

 

We measured the fluorescence of embryos injected with cycloheximide during 

mid-cellularisation. Half-life of Slam was determined by using the half-life equation:- 
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𝑡1/2 = 𝑡 ×
ln(2)

ln (
𝑁𝑜

𝑁𝑡
)
 

where t1/2 = half-life time, t = time, No = initial fluorescence and Nt = final fluorescence. 

The half-life time of Slam is about 42 min (coefficient of determination, R2 = ~97%), 

which is almost 70% of the duration of cellularisation process. This indicates that Slam 

remains stable without being degraded for most part of cellularisation. 

 

3.2.3 Mobility of Slam is independent of new translation 

 slam protein and mRNA colocalise with each other at the furrow canal (Wenzl 

et al., 2010). Therefore it is plausible that the mRNA is necessary for localised 

translation at the furrow canal or anchoring of the protein at the furrow canal or both. 

We asked whether preventing new synthesis of Slam would affect the mobility of Slam 

at the furrow canal. To test this, we carried out FRAP experiments to check for any 

changes in Slam mobility in mid to late cellularisation, in the absence of new translation 

(Fig 3.17). Cycloheximide was injected in embryos expressing GFP-slam and 

bleaching of a defined area was carried out after 10 min. It was found that the mobility 

at this stage was unaffected in cycloheximide-injected embryos. It implies that 

impairing new translation has no effect on the mobility of Slam during mid to late 

cellularisation.  

 

Fig 3.17 Mobility of Slam during cellularisation is independent of new translation. FRAP was 

carried out during cellularisation in embryos expressing GFPslam and injected with buffer or 

Cycloheximide. Fluorescence recovery of the bleached region was measured over time. 
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This experiment, however, does not rule out the possibility that Slam mobility 

could be affected at the onset of cellularisation. FRAP for GFPslam at the onset is not 

feasible since injecting cycloheximide in cycle 13 to attain a protein synthesis block at 

the onset of cellularisation leads to a block of cellularisation. Therefore, it is only 

possible to induce the phenotype after the onset during early cellularisation. However, 

even at this stage rapid loss of membranes and change in membrane morphology 

makes the analysis difficult. 

 

 3.2.4 Mobility of Slam is not directly affected by the recycling endosome 

Slam shows a very unique behaviour in terms of mobility at the furrow canal. 

FRAP experiments have revealed that it shows a very stable association at the furrow 

canal during interphase of cell cycle 13 and 14. However, at the onset of cellularisation, 

it becomes very mobile and exchanges very rapidly (Acharya et al., 2014; Dr. Philip 

Laupsien, PhD dissertation). This is in contrast with the behaviour of other furrow canal 

markers such as Amphiphysin and 4XPDZ-RFP (four PDZ domains of RhoGEF2 fused 

with RFP) which show a high mobility at all times. We asked whether this change in 

mobility of Slam is achieved gradually or whether it is a switch-like behaviour. To 

answer this, FRAP was carried out in GFPslam embryos at defined time-points and 

fluorescent recovery was observed. It was observed that during the onset of 

cellularisation, the rate of recovery was above or equal to 10% per minute whereas 

once the ‘new furrow’ was formed completely, the rate of recovery dropped to 3% per 

minute. The rate of recovery was determined by calculating the linear slope of 

fluorescent recovery per minute (Fig 3.18). No intermediate recovery rates were found, 

suggesting a switch-like change in Slam mobility once the ‘new furrow’ is formed. 

Since Slam restriction to the furrow canal is dependent on the recycling 

endosome, we looked at possible changes in Slam mobility in nuf embryos (Fig 3.19). 

Out of the five embryos that we observed, three showed normal behaviour of Slam, 

which can be attributed to the variable phenotype of nuf mutants. Two embryos, 

however, showed slightly increased mobility (about 6% per minute) (Fig 3.19 C). Apart 

from the slight increase in mobility, it was observed that the unbleached region in these 

embryos showed an increase in fluorescence, which was never observed in wild-type 
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Fig 3.18 Slam is stably associated to the membrane during interphase 13 and 14 and switches 

to a high-mobility state at the onset of cellularisation. FRAP was carried out at different stages of 

cellularisation. Time point ‘0’ is immediately after the onset of cellularisation right after the formation of 

the new furrow. The fluorescence recovery rate was calculated by measuring the linear slope of 

fluorescence recovery. The behaviour of Slam changes in a switch-like manner from a very highly mobile 

state before the onset of cellularisation to a stable, low mobility state after the onset of cellularisation.  

 

 

Fig 3.19 Slam mobility is slightly increased in a subset of nuf embryos. (A,B) GFPslam FRAP in 

WT background (C,D) GFPslam FRAP in nuf embryos showing recovery like WT (E,F) GFPslam FRAP 

in nuf embroys showing increased recovery and excessive GFPslam accumulation in the unbleached 

region.  

embryos. This can be explained by the fact that Slam spreads into the lateral 

membrane due to decreased restriction at the furrow canal in nuf mutants. Thus, less 
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spacial constraints allow more Slam to accumulate at/near the furrow canal, causing 

increase in fluorescence. To further investigate whether the change in mobility of Slam 

during cellularisation is dependent on the recycling endosome, we carried out FRAP 

experiment in shibire mutant embryos. FRAP of GFPslam during mid-cellularisation 

showed no difference in wild-type and shibire mutants (Fig 3.20). Therefore the slight 

increase in mobility of Slam in nuf embryos could be the due to the mistargeted Slam 

population at the apical and lateral regions being more mobile. Taken together, these 

data show that the recycling endosome plays a role in targeting Slam to the furrow 

canal and maintaining its spacial restriction but the mobility of Slam during 

cellularisation is not directly dependent on vesicular trafficking. 

 

Fig 3.20 The mobility of Slam during cellularisation is not dependent on vesicular trafficking. 

FRAP was carried out during cellularisation in WT and shibire embryos expressing GFPslam. 

Fluorescence recovery of the ‘old furrows’ was measured over time. 

 

3.3 Role of Slam during cellularisation 

3.1.1 Additional factors apart from Slam are needed for furrow specification 

Different alleles of slam were analysed to see whether the effect on furrow invagination 

is variable depending on the mutation (Fig 3.21). The alleles 35.16 and 20.89 are 

slamwaldo1 and slamwaldo2 respectively and have already been analysed and reported in 

Stein et al., 2002. They discovered that these alleles showed a germ cell migration 

defect in the presence of maternal slamwaldo contribution whereas M-Z- slamwaldo 

embryos failed to cellularise. We analysed the mutant alleles 9.35 and B4.1 in 

comparison with wild-type and embryos derived from slam germline clones (slam glc) 

which completely lack both maternal and zygotic Slam. Allele 9.35 has a point mutation 

at the 91st amino acid where Phenylalanine is changed to Serine while allele B4.1 has 

a deletion from nucleotide 517 to 874, causing a frame-shift that gives rise to a 

premature stop codon. Allele B4.1 produces a peptide product containing the first 173 
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amino acids of Slam sequence fused to an additional 24 amino-acid long peptide that 

doesn’t correspond to Slam. 

 

Fig 3.21 Schematic representation of alleles of slam. The peptide sequence refers to the B4.1 allele 

that contains the first 172 amino acids of Slam and an additional 24 amino-acid long peptide, the first of 

which is (T) is also present in the Slam sequence. 

 

Live imaging of embryos was carried out using differential interference contrast 

(DIC) microscopy and the furrow invagination was compared between the alleles (Fig 

3.22). It was found that furrow invagination in allele 9.35 was largely unaffected, though 

in some cases it was slightly delayed. In allele B4.1, furrow was formed and also 

invaginated, though only to a certain extent. Later nuclear morphology was disrupted 

and the embryos failed to cellularise. In comparison, the most severe phenotype was 

seen in slam glc embryos where there was no furrow invagination (Fig 3.22 ; Dr. Philip 

Laupsien, PhD dissertation). It is known that Slam is necessary, at least in part, for 

furrow specification (Lecuit et al., 2002). However, a vague furrow seemed to be 

specified despite Slam’s absence (Fig 3.22, slam glc panel). When slam glc embryos 

were stained for various furrow markers, it was found that F-actin, Dia, Nullo were 

deposited at the furrow site, suggesting that there are additional signals for the 

specification of furrow apart from Slam (Acharya et al., 2014; Dr. Philip Laupsien, PhD 

dissertation). 

 

3.3.1 nullo and slam together control the specification of the cleavage furrow 

As mentioned earlier, furrow specification takes place even in the absence of slam.  



 

 
 

 

Fig 3.22 Furrow specification requires factors additional to slam. Time-lapse movies of embryos of different slam alleles were obtained by Differential 

Interference Contrast (DIC) microscopy. The yellow arrows mark the invaginating furrow. Allele 9.35 is a weak allele, usually showing a normal cellularisation 

but sometimes showing a delay in furrow invagination. Allele B4.1 shows invagination until about half of the length of the nuclei after which it fails to invaginate 

further. Slam glc (germline-clones) lack both maternal and zygotic Slam and fail to cellularise. However, the specification of a regressed furrow is visible. Yellow 

arrow represents the cellularisation front.R
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This might either mean that slam is not involved in furrow specification or that there 

are additional redundant factors that are responsible for furrow specification. The 

zygotic gene nullo was a likely candidate that could act redundantly to slam because 

nullo has been shown to act redundantly to RhoGEF2 (Grosshans et al., 2005) while 

localisation of RhoGEF2 is dependent on slam (Wenzl et al., 2010). To test this, we 

generated embryos lacking zygotic nullo and both maternal and zygotic slam. The 

furrow was visualised by Dia staining. We found that in nullo;slam double mutants, Dia 

formed large accumulations in contrast to the single mutants where one could see a 

proper furrow structure (Fig 3.23). This shows that nullo and slam act redundant to 

each other to specify the furrow canal. 

 

 

Fig 3.23 nullo and slam together control the specification of the furrow. Embryos 

from nullo heterozygous females with slam germline-clones crossed with slam heterozygous males. 

Genotype of embryos was determined by staining for Slam and Nullo. The furrow array was visualised 

by Dia (green) staining. 
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3.3.2 spire – an interactor of slam in yeast two-hybrid screen 

 spire was identified as an interactor of slam in a yeast two-hybrid screen 

(Hybrigenics services; Dr. Philip Laupsien, PhD dissertation). Full-length Slam as well 

as its N-terminal fragment (amino acid 1 to 657) was found to interact with the WH2-

domain (actin-nucleation domain) of Spire (Fig 3.24). Spire is a maternal-effect gene 

that is required for proper dorso-ventral and antero-posterior axis determination of the 

embryo. spire mutant oocytes display premature cytoplasmic streaming and the 

embryos lack pole cells (Theurkauf, 1994). Role of spire in cellularisation hadn’t been 

explored yet and therefore we set out to characterise spire mutant phenotype in the 

embryos in further detail.  

 

Fig 3.24 Schematic representation of interaction of Slam and Spire in a Yeast two-hybrid screen. 

The N-terminal part of Slam interacts with the WH2 (actin-binding) domains of the Spire protein. 

(Representation of Spire protein modified from Vizcarra et al., 2011). 

 

We generated spire transheterozygote embryos (spir1/Df(2L)Exel6046 

embryos) and analysed the phenotype using Differential Interference Contrast 

microscopy. None of the embryos displayed a cellularisation defect though many 

embryos had a cell cycle defect where either whole or part of the embryo would 

undergo an extra cell cycle, leading to a delay in membrane invagination in that region. 

We refer to this phenotype as the ‘cell cycle phenotype’. Furthermore, we analysed a 

number of so far uncharacterised mutant alleles of spire. Some of them displayed a 

‘cellularisation phenotype’ where furrow was formed and also invaginated but failed to 

complete the invagination. 
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Fig 3.25 Spire alleles show cell-cycle defects and occasional cellularisation defects. Time-lapse 

movies of embryos of different spire alleles were obtained by Differential Interference Contrast (DIC) 

microscopy. The shown examples are representatives of the cell-cycle defect and the cellularisation 

defect. 

 

Table 3.1 Penetrance of cell-cycle and cellularisation defects in different spire alleles  

 

spir transheterozygotes embryos (spir1/Df(2L)Exel6046) display only cell-cycle defects. Cellularisation 

defect is most penetrant in the temperature-sensitive allele of spire (spir2L-210-2). n = number of embryos 

observed. 

Allele Phenotype n 
 
spir1/Df(2L)Exel6046 

 
60% cell cycle defect 
 

 
10 

 
spir2L-62-29 

 
33.3% cell cycle defect 
 

 
6 

 
spir2L-75-28 

 
7.7% cell cycle defect 
 

 
13 

  
spir2L-133-31 

 
33.3% cell cycle defect 
 

 
12 

 
spir2L-146-30 

 
7% cellularisation defect 
7% cell cycle defect 
 

 
14 

 
spir2L-210-2 

 
44.4% cellularisation defect 
11% cell cycle defect 
 

 
9 

 
spir2L-216-18 

 
30% cell cycle defect 
 

 
10 

  
spir2L-244-35   
 

 
21% cell cycle defect 
21% cellularisation defect 
 

 
14 
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Typical examples of the ‘cell cycle phenotype’ and cellularisation phenotype’ have 

been depicted in Fig 3.25. The percentage of embryos displaying these phenotypes in 

the alleles analysed has been mentioned in Table 3.1. 

 Next, we generated an antibody against the KIND domain of Spire. KIND 

domain was purified using an N-terminal His tag under denaturing conditions (Fig 3.26 

A) Antibodies were generated in Guinea Pig and Rabbit. Affinity purification of the 

antibodies was carried out and the purified antibodies were used for western blot and 

immunostaining. The results from the antibodies derived from guinea pig have been 

shown here. Western blot against KIND in staged embryos (1.5 to 2.5 hours) displayed 

several missing bands in the spir transheterozygote embryos when compared to wild-

   

 

Fig 3.26 Spire antibody against the KIND domain detects several isoforms of Spire. (A) The KIND-

domain was purified under denaturing conditions using a GST tag at the N-terminal part. (B) Western 

blot using the affinity-purified antibody developed against the KIND domain of Spire in WT and Spire 

transheterozygote embryos. 

 

type. There was an additional band just below 100 kDa (Fig 3.26 B, marked by *) which 

does not correspond to the size of the truncated Spir fragment arising from the spir1 

allele. It is unclear as to what this band represents. There were also additional 

background bands suggesting that the antibody is not entirely specific. 
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Nevertheless, we utilised this antibody to carry out immunostaining in embryos 

to determine the localisation of Spire during cellularisation. A strong apical staining 

reminiscent of actin caps was noticed in cellularising embryos (Fig 3.27). However, we 

found a similar staining pattern in spir transheterozygote embryos (not shown). Since 

the spir1 allele leads to a truncated fragment that includes about 85% of the KIND 

domain, it is likely that this fragment is still detected in the transheterozygote embryos, 

provided the fragment still retains localisation ability. A complete null mutant of spir 

would clarify the correct localisation pattern of Spire in the embryos.  

 

 

Fig 3.27 Immunostaining against Spire shows apical staining during cellularisation. WT embryos 

in early and late cellularisation stained with Spire (red) and Dlg (green). Spire accumulates at the apical 

domain of the cellularising embryos, in a pattern similar to Actin caps in the earlier cell cycles. 

 

However, we did not proceed to generate a complete null of spir because we 

could not find a common phenotype between slam and spir. Cellularisation phenotype 

in spir was milder and significantly different from the slam phenotype and slam mutants 

do not display cell-cycle defects. Also the pole cell formation is normal in slam mutants. 

Therefore, we concluded that Spire might have a redundant role in cellularisation as 

the phenotype is neither fully penetrant, nor very severe. 

 

3.3.3 Other interactors of Slam 

 In the above mentioned yeast two-hybrid screen, Slam was also found as an 

interactor. This could mean that Slam might form a dimer/oligomer. To test this, we 

carried out pulldown of GFPslam using GFP-binder magnetic beads from staged 
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embryos. Endogenous Slam was not coprecipitated with it (Fig 3.28 A). Therefore we 

did not find any evidence of dimerisation of Slam. 

 In an attempt to discover more interactors of Slam, we planned to carry out 

pulldown of Slam by immunoprecipitation, followed by Mass Spectrometry. For this 

purpose, antibody against Slam raised in Rabbit was affinity purified (Fig 3.28 B). We 

were able to reduce the background via affinity purification, though there were still 

some unspecific bands detected. Endogenous Slam and GFPslam were 

immunoprecipitated using this antibody (Fig 3.28 C) and we could show that this 

method can be utilised in the future for large scale immunoprecipitation followed by 

mass spectrometry to obtain more interactors.   

 

 

Fig 3.28 Pulldown of Slam and GFPslam. (A) GFPslam pulldown using Streptavidin-magnetic beads. 

Only GFPslam is detected in the bound fraction (Courtesy: Stephanie Gröning) (B) Affinity purification 

of rabbit anti-slam antibody (C) Immunoprecipitation using affinity-purified antibody can precipitate both 

GFPslam and endogenous Slam. Input and Unbound ~ 10 embryos/lane, Bound ~ 500 embroyos/lane. 

 

3.4 Slam protein properties and the RNP complex 

3.4.1 Slam has a predicted structured N-terminal half 

 Slam is a non-conserved protein with no known functional domains. Secondary 

structure prediction of Slam shows that it has a highly disordered structure in the middle 
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region from amino acid ~450 to 850 (Fig 3.29). The N-terminus and the C-terminus on 

the other hand, contain more predicted ordered regions. 

 

Fig 3.29 Schematic representation of disordered regions in Slam protein. The gray areas represent 

disordered regions. The blue regions show putative coiled-coil regions (Prof. Jörg Großhans). 

 

3.4.2 GFP tag at the N-terminus of Slam partially interferes with its function 

 We determined whether the genomic GFPslam was able to rescue viability of 

flies (Section 2.2.3.7, paragraph 3). We could not obtain flies that contained only

  

Fig. 3.30 GFP tag partially interferes with Slam function. (A) DIC microscopy showing development 

of rescued embryos and GFPslam embryos; yellow arrows indicate the cellularisation front (B) GFPslam 

embryos can proceed into cellularisation to a certain extent but unable to finish the process. 
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GFPslam in the absence of endogenous slam. We further looked for rescue of the 

cellularisation phenotype (Section 2.2.3.7, paragraph 4) and found that embryos 

containing only GFPslam were able to cellularise to a large extent but were unable to 

complete cellularisation (Fig 3.30). This suggests that the N-terminal GFP tag causes 

interference with Slam function in some way. 

To identify any difference in localisation behaviour between GFPslam and Slam, 

fractionation of embryos expressing both GFPslam and endogenous slam was carried 

out. It was found that the population of GFPslam at the membrane was lesser 

compared to endogenous Slam (Fig 3.31). This reduced localisation efficiency could 

explain the inability of GFPslam embryos to finish cellularisation. 

 

 

Fig 3.31 GFPslam is less efficiently bound to the membrane. Fractionation of staged embryos (1.5-

2.5 hr) shows that the efficiency of GFPslam localisation is less in comparison to the endogenous Slam. 

 

3.4.3 Slam protein and slam mRNA are present in a complex 

It was shown earlier that Slam mRNA and protein colocalise at the furrow canal and 

basal particles (Wenzl et al., 2010). It was found in our lab that the protein and the 

mRNA are present in a complex. When Slam protein was immunopreciptated, the 

mRNA was coprecipitated with it (Fig 3.32; Dr. Shuling Yan, unpublished). We wanted 

to find out whether slam mRNA was enriched at the membrane when compared to a 

control mRNA. To determine this, fractionation of staged embryos was carried out and 

protein and mRNA were detected using western blot and qRT-PCR respectively (Fig 
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3.33). As a reference we quantified actin mRNA. We found that actin mRNA is enriched 

in the cytoplasmic fraction (~4 folds) and slightly depleted in the membrane fraction. In 

contrast, slam mRNA was slightly enriched in the membrane fraction (at least ~1.4 fold, 

and on an average ~3 fold in three independent experiments). This shows that a large 

pool of slam mRNA is membrane-associated indicating that the mRNA could possess 

some non-coding functions. The variation in the qPCR Ct numbers in different 

experiments (Table 3.2) is most likely due to loss of membranes during the 

fractionation procedure. Indeed the Ct numbers of actin and slam mRNA correspond 

to each other in all experiments. 

 

 

Fig 3.32 slam RNA and protein are present in a complex. (A) Slam mRNA (red) and protein (green) 

colocalise at the furrow canal and the basal particles. (B) Slam protein was immunoprecipitated and 

detected by a western bot and slam mRNA was detected by qRT-PCR. The mRNA was found to be 

enriched in the immunoprecipitated sample when compared to a control mRNA. (Experiments carried 

out by Dr. Shuling Yan). 
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Fig 3.33 slam mRNA is enriched at the membrane. Fractionation of embryos was followed by western 

blot to detect the protein (with -tubulin as a control) and qRT-PCR (with actin as a control) to detect 

the mRNA. n refers to the number of independent experiments. 

 

Table 3.2 qRT-PCR threshold cycle (Ct) numbers for three independent fractionation experiments 

 Experiment 1 Experiment 2 
 

Experiment 3 
 

 actin slam actin slam actin slam 

Total (n) 
 

16.42 
 

25.76 
 

14.00 
 

23.27 
 

14.16 
 

24.28 
 

Cytoplasm (n) 
 

16.88 
 

29.44 
 

15.89 
 

28.87 
 

15.91 
 

29.31 
 

Membrane (n) 
 

18.41 
 

26.46 
 

18.94 
 

27.53 
 

17.31 
 

26.16 
 

M/C Ratio 
 

0.35 
 

7.9 
 

0.12 
 

2.48 
 

0.38 
 

8.7 
 

 

The changes in slam M/C (Membrane/Cytoplasm) ratios in different experiments are comparable to 

changes in the respective Actin M/C ratios. 

 

Next we wondered whether the RNP complex is maintained in a situation where 

the protein is mistargeted. To test this, we carried out in-situ hybridisation for slam 

mRNA, followed by immunostaining for Slam protein in nuf embryos. We observed 

embryos displaying severe nuf phenotype where Slam protein was mislocalised to the 

cortex and to the lateral membrane and noticed that the mRNA and protein retained 
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their colocalisation (Fig 3.34). Thus, we could further confirm that the protein and 

mRNA are part of the same complex. 

 

Fig 3.34 slam mRNA and protein also colocalise ectopically. In-situ hybridisation against slam 

mRNA followed by immunostaining for Slam protein in nuf embryos shows that the complex is retained 

even when mistargeted. 

 

We wondered whether Slam protein can directly bind its mRNA. In preliminary 

assays with rabbit reticulocyte lysate in-vitro translation system, it was observed that 

Slam full-length protein was able to bind to an mRNA localising element on the slam 

mRNA (Dr. Shuling Yan, unpublished). We carried out electrophoretic mobility-shift 

assay (EMSA) to determine if Slam protein can directly bind to its localising elements 

(Fig 3.35).  

We used two localising elements of the slam mRNA called ‘slam2-1’ and ‘slam2-

2’ which are located in the 5’ half of the mRNA. Both the mRNAs had a 5’ GFP 

sequence. The mRNAs were in-vitro transcribed and labelled with Cy3. The protein 

fragment SlamC651 was used, as repeated attempts to purify a soluble recombinant 

full-length Slam protein were unsuccessful. GST protein and GFP mRNA were used 

as a negative control. Purification of SlamC651 caused another band of a lower 

molecular weight to co-purify. Analysis of this band using mass spectrometry revealed 

that this band corresponds to DnaK, a chaperone protein. When we used this 

preparation for EMSA, it was found that it caused both ‘slam2-1’ and ‘slam2-2’ 

fragments to concentrate into a dark single band from an initial smear. Even the GFP 

RNA which was initially found as a single band was resolved into two bands at a high 

SlamC651 concentration. 
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Fig 3.35 Binding assay with SlamC651 protein and slam mRNA localising elements. (A) Purified 

SlamC651 contains a second band corresponding to DnaK (B) EMSA carried out on 1% Agarose gels. 

At a higher concentration, SlamC651 appears to induce/stabilise a second band with the GFP 

sequence (green arrow) and coalesce the GFPslam2-1 and GFPslam2-2 smears into a prominent band 

(red arrows). 

 

From the result it appears as if a general ‘helicase’ activity might be present in 

the preparation that leads to stabilisation of certain secondary structures of the RNA, 

which may or may not be due to SlamC651. Further experiments are required to 

clarify whether Slam protein and the mRNA show a direct binding to each other. 
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4. DISCUSSION 

4.1 Centrosomes specify the site of cleavage furrow and restrict Slam to the 

furrow canal 

 The first step in cellularisation is the definition of the site of a cleavage furrow. 

The signals that are required for furrow-specification are as yet unclear. In this study, 

we were able to confirm previous reports and further define that centrosomes are the 

source of the initial signal for furrow specification. We found that ectopic centrosomes 

are able to specify a furrow around themselves even in the absence of nuclei. The 

involvement of nuclei in furrow specification was ruled out by following SAS6GFP and 

GFPslam live from cycle 13. It was found that the ectopic centrosomes were a result 

of additional replication and not nuclear fallout. It was observed that even single 

centrosomes were able to specify a furrow. However, it was seen that after the initial 

specification of furrow, GFPslam was not maintained at the furrow in a restricted 

manner. This can be explained by the fact that the ectopic centrosomes might be only 

partially functional. This is quite likely since it has been shown that despite having the 

ability to organise microtubules these ectopic structures lack centrioles (Rodrigues-

Martins et al., 2007). Another possibility is that in the absence of the nuclei, there is a 

premature basal closure. However, this possibility is unlikely because in wild-type 

embryos, basal closure does not occur as soon as the membrane invagination front is 

past the nuclei. The membrane invaginates several micrometres further before 

expanding laterally. Also, in bnk mutants premature basal closure is observed despite 

the presence of the nuclei. It suggests that basal closure is a regulated process that 

takes place independent of the nuclei and the maintenance of the specified furrow is a 

centrosome-associated function. 

We carried out ablation of regular centrosomes in the embryo and were able to 

identify that Slam restriction to the prospective furrow canal is dependent on the initial 

signal originating from the centrosomes. Although we were not able to completely 

ablate the centrosomes, functional ablation could be achieved as the centrosomes lost 

the ability to specify the furrow. GFPslam was found dispersed and was not maintained 

at the furrow. Even though it is likely that the ablation resulted in a nuclear-fallout, it 

does not obscure our interpretation because we have shown that centrosomes are 

able to specify the furrow in the absence of nuclei. Therefore we conclude that even if 

ablation caused nuclear-fallout, the resultant effect on furrow-specification was in fact 

due to ablation of centrosome function. 
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The signals deposited by the centrosomes at the prospective site of cleavage 

furrow are not understood yet. They could be factors needed for vesicle targeting such 

as exocyst components and/or for vesicle fusion such as SNARE proteins. It has been 

shown that the recruitment of exocyst complex to the midbody in mammalian cells is 

mediated by the microtubule motor protein MKLP (Mitotic Kinesin-like protein) and the 

centrosomal protein centriolin (Gromley et al., 2005). Centrosomal proteins could play 

similar roles during cleavage furrow specification during Drosophila cellularisation. 

These vesicle-tethering factors at the plasma membrane could then act as target sites 

for recycling endosome-derived vesicles.  

 

4.2 Slam restriction at the furrow canal is dependent upon the recycling 

endosome 

 We aimed to further determine the mechanism through which Slam 

accumulation and maintenance at the furrow canal takes place. In the absence of 

evidence for microtubule-based transport of Slam, we looked into the role of vesicular 

transport in Slam accumulation. When vesicular transport was perturbed by induction 

of shi phenotype at the onset of cellularisation, we discovered that the behaviour of 

Slam at the ‘old’ furrows (metaphase furrows) and ‘new’ furrows (cellularisation 

cleavage furrows) was different. While the localisation of Slam at the ‘old’ furrows was 

unaffected, it was either not deposited at the ‘new’ furrows, or was weakly deposited 

followed by a rapid loss. The loss of Slam preceded loss of membranes as Dlg 

localisation to the lateral membrane was intact. This differential behaviour of Slam at 

the ‘old’ and ‘new’ border suggests the existence of two different mechanisms for the 

accumulation of Slam at the prospective furrow canal – one that utilises existing signals 

from the previous cell cycle while the other that requires fresh signals for the de novo 

accumulation of Slam.  

 Since shi inhibits all clathrin-coated vesicular budding, we further investigated 

the role of specific vesicular trafficking pathways for their role in Slam accumulation at 

the prospective furrow. Slam is necessary and sufficient for RhoGEF2 localisation at 

the furrow (Wenzl et al., 2010) and since RhoGEF2 had been shown to be dependent 

on the recycling endosome function for its accumulation at the furrow (Cao et al., 2008), 

we looked into the possible role of recycling endosome in Slam localisation. Live-

imaging and immunostaing in fixed samples both proved that Slam was not transported 

on Rab11 positive vesicles.  Therefore, we looked for a functional dependence of Slam 
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localisation on recycling endosome. We observed that restriction of Slam to the furrow 

canal was significantly delayed and/or impaired in nuf embryos. Interfering with Rab11 

function by injection of a dominant negative Rab11 protein into embryos also caused 

less efficient restriction of Slam at the furrows. Additionally in nuf mutants, Slam was 

also found to be mistargeted to the lateral membrane and the cortex. This indicates 

that restriction of Slam to the basal domain of the invaginating furrow is dependent on 

the recycling endosome. Since Slam is not transported on recycling endosome 

vesicles, we concluded that a receptor for Slam must be deposited via the recycling 

endosome and Slam is subsequently recruited to the membrane through the receptor. 

Mislocalisation of Slam to the lateral or apical domains was, however, not 

noticed in shi mutants. This could be due to the different roles of Shibire and Nuf 

proteins in the vesicular trafficking pathways. Shi promotes vesicular budding and 

therefore in shi mutants, it is likely that Slam receptor does not reach the site. However, 

Nuf/Rab11 complex is involved in targeting of the vesicles (Wilson et al., 2005) and 

therefore, nuf mutants probably are unable to restrict the Slam receptor to the basal 

domain of both ‘old’ and ‘new’ furrows, thus resulting in mislocalisation of Slam that is 

unbiased between ‘old’ and ‘new’ furrows. 

A minimal distance is necessary between the two centrosomes to be able to 

induce a furrow between them (Rappaport, 1986). Due to nuclear fallout, we observed 

an increased distance between the two centrosome pairs above each nucleus during 

the interphase of cycle 14 and occasionally noticed an extra furrow formed between 

them. This observation further confirms that centrosomes are the source of the initial 

furrow-specifying signals. We showed that singular centrosomes are also able to 

specify a furrow, which suggests that the increased distance between centrosomes of 

a pair in nuf mutants seems to cause the individual centrosome to act as an 

independent furrow-specifying unit. 

The roles of centrosomes and the recycling endosome are not mutually 

exclusive. It has been shown that centrosome regulates recycling endosome 

organisation and function through its role in regulation of centriolar Rab11 localisation 

(Hehnly et al., 2012). During syncytial divisions in the early Drosophila embryo, Rab11 

maintains a reasonably constant localisation at the MTOC whereas Nuf is recruited to 

the MTOC only during the furrow invagination phases of cell cycle (Riggs et al., 2007). 
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Fig 4.1 Model for the role of centrosomes in targeting of recycling endosome vesicles to the site 

of cleavage furrow. (A) Centrosomes relay the initial signals to the cleavage furrow site at the region 

of overlapping asters probably through microtubule-dependent transport (B) Recycling endosome 

vesicles are targeted to the site of cleavage furrow via the initial cues at the site and deposit a receptor 

for Slam to which the Slam RNP is recruited from the cytoplasm 

 

Both Rab11 and Nuf localisation has been shown to be dependent on microtubules 

organised by the centrosomes (Riggs et al., 2007). Therefore, it is conceivable that the 

mechanism through which centrosomes relay the furrow-specifying signals involves 

the recycling endosome. Indeed, both in case of centrosome ablation and in nuf 

embryos we notice lack of restriction of Slam at the furrow canal. Centrosomal proteins 

such as CNN and CEN disrupt the organisation of pericentriolar material and analysis 
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of mutant alleles of their genes have shown that they are needed for cleavage furrow 

formation even though the microtubular organisation is undisturbed in their mutants 

(Kao and Megraw, 2009 and references therein). It is plausible that centrosomal 

proteins contribute to the proper organisation and function of the pericentriolar 

recycling endosome and consequently exert their effect on the furrows via a 

microtubule-independent pathway. Further studies are required to clarify the 

relationship between centrosomal proteins and the recycling endosome. 

 

4.3 Role of Slam during cellularisation 

 Previous work had found that slam is a zygotic gene that has a role in 

acceleration of membrane invagination (Lecuit et al., 2002). In our lab, it was shown 

that slam is not just necessary for acceleration of membrane invagination but that it is 

essential. However, even in the absence of Slam, furrow specification takes place, as 

demonstrated by the localisation of furrow markers such as Nullo, Diaphanous and F-

actin (Acharya et al., 2014; Dr. Philip Laupsien, PhD dissertation). This suggests that 

slam is either not involved in the specification of the site of membrane invagination or 

that it acts redundantly to other factors. One of the likely candidates for a redundant 

factor is the zygotic gene nullo, which has been shown to act redundantly to RhoGEF2 

(Grosshans et al., 2005). Embryos maternally and zygotically deficient for slam and 

zygotically deficient for nullo displayed a severely disrupted furrow, as marked by Dia 

staining. Dia accumulations might either indicate a tendency to aggregate in the 

absence of a furrow determinant or it might indicate the presence of a regressed 

furrow. In the latter case it could mean that there is a third independent pathway that 

controls the furrow specification. In any case however, we could show that nullo and 

slam act redundant to each other to specify the furrow, even if they might not be the 

only factors responsible. Therefore, at least one of the functions of Slam during 

cellularisation is to specify the furrow together with Nullo, via regulation of F-actin at 

the furrow.  

 It is unknown how Slam mediates membrane invagination. We tried to uncover 

a possible mechanism via the actin nucleator Spire which is maternally provided to the 

embryo. Slam and Spire were shown to interact in a yeast two-hybrid screen 

(Hybrigenics services; Dr. Philip Laupsien, PhD dissertation). Spire, like formins such 

as Dia, nucleates unbranched actin filaments though with a different mechanism 
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(Quinlan et al., 2005). Dia plays an essential role in cellularisation (Afshar et al., 2000) 

and therefore we looked into the role of Spire in furrow specification/invagination. spir 

transheterozygote embryos, however, showed normal cellularisation. Even though 

some alleles of spir showed a cellularisation defect, we could not establish any link 

between slam and spir and believe that Spire either has no significant role to play 

during cellularisation or acts redundantly to other actin nucleators. 

 We aimed to pulldown the Slam RNP complex in order to obtain more interactors 

that could reveal the function of Slam. For this purpose we used two approaches – 

immunoprecipitation and GFPtrap. Both methods have their pros and cons. 

Immunoprecipitation shows higher background than GFPtrap, but tagging slam with 

an N-terminal GFP causes partial impairment in Slam functionality which might result 

in loss of certain Slam interactors, especially in the fast phase of cellularisation. It would 

be best to employ both techniques in the future for pulldown and subsequent Mass 

spectrometry analysis. 

  

4.4 Mobility of Slam at the furrow canal 

 We confirmed previous reports that Slam is present in both cytoplasmic and 

membrane fractions in the embryo and were further able to show that it can be 

dissociated from the membrane using high salt treatment. FRAP experiments have 

shown that Slam is highly mobile at the onset of cellularisation but is quite stably 

associated with the membrane during cycle 13 and cycle 14 interphases (Acharya et 

al., 2014; Dr. Philip Laupsien, PhD dissertation). Slam undergoes a switch-like change 

from a low mobility to high mobility and vice versa as the embryo undergoes transition 

from cycle 13 to the onset of cellularisation and moves on to cycle 14 interphase.  

 The recovery of GFPslam fluorescence at any stage could be due to either of 

the following mechanisms – a) lateral diffusion of Slam from the unbleached plasma 

membrane b) exchange of bleached molecules at the furrow canal with unbleached 

molecules from the cytoplasm c) active transport of slam receptor via vesicles leading 

to Slam accumulation d) localised translation at the furrow canal. Lateral diffusion was 

ruled out as we didn’t notice significant reduction in the diameter of the bleached area. 

GFPslam FRAP in shi mutant background revealed that the recovery of the ‘old’ 

borders was not dependent on vesicular transport. This is not surprising as GFPslam 

accumulation at the ‘old’ borders was shown to be unaffected in shi mutants compared 
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to the ‘new’ borders. Since ‘new’ borders could not be analysed in shi mutants, we 

carried out FRAP in nuf mutants which shows unbiased mislocalisation of Slam. The 

first striking observation was the constant accumulation of Slam in the region outside 

the bleached area in a fraction of nuf embryos. This was likely due to the lack of spacial 

restriction of Slam. Apart from that, a slight increase in mobility was noticed. This 

suggests that the recycling endosome might be involved in stabilising Slam mobility 

after the onset of cellularisation.  

In the absence of a polarised membrane, Slam seems to consist of a general 

membrane-affinity as Slam expressed in S2 cells enriches at the cortex (Wenzl et al., 

2010). Even in syncytial cycles, expression of GFPslam shows that it associates in a 

pseudohexagonal array showing that the receptor is maternally provided. It is unlikely 

that Slam is able to bind directly to the membrane without a receptor because in shi 

mutants Slam fails to associate to the membrane (apical, lateral or basal) possibly due 

to the failure of receptor transport. This suggests that Slam receptor might be a general 

membrane-bound protein that is expressed in varied cell types.  

It is conceivable that at the onset of cellularisation when membrane is not polarised, 

Slam receptor/Slam is generally associated with the membrane and is highly mobile. 

As cellularisation progresses, the spacial restriction of the Slam receptor by the 

recycling endosome to the prospective basal domain leads to Slam stability. It is known 

that the basal domain of the invaginating membrane becomes more stable as 

cellularisation progresses, probably due to F-actin-mediated prevention of endocytic 

events (Sokac and Wieschaus, 2008a). It is likely that the basal domain is more stable 

than the apical or the lateral membrane. Therefore in nuf mutants, it could be that the 

population of Slam that is mistargeted to the apical and the lateral membrane is the 

more mobile population. This would also mean that when the shi phenotype was 

induced at the onset of cellularisation, Slam at the ‘old’ borders was already restricted 

to the basal domain, which is why Slam does not show mislocalisation to the apical or 

lateral domain, nor does it show any change in mobility. Indeed the high mobility phase 

of Slam lasts very shortly at the onset of cellularisation and possibly the rapid 

stabilisation of Slam to the basal domain is one reason for its switch to low-mobility. 

However, this mobility-switch behaviour is not seen in other basal domain markers 

such as Amphiphysin or PDZ domain of RhoGEF2, which retain high mobility at all 

stages (Acharya et al., 2014; Dr. Philip Laupsien, PhD dissertation). Therefore, 

restriction of Slam to the basal domain cannot be accounted as the only reason for its 
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unique behaviour. It is not known what additionally determines this switch in the 

mobility of Slam. Temporal posttranslational modifications affecting Slam conformation 

and mobility could be worth exploring. 

 

Fig 4.2 Mobility of Slam and the role of recycling endosome in its restriction (A) Slam is highly 

mobile at the onset of cellularisation (B) During mid-cellularisation, mobility of Slam switches to a less-

mobile state (C) In nuf mutants, Slam is mistargeted and fails to be restricted to the prospective basal 

domain (D) During mid-cellularisation in nuf embryos, the population of Slam associated with the apical 

and lateral domains of the membrane possibly display higher mobility.  

 

The possibility of localised translation was also explored by injection of 

cycloheximide into GFPslam embryos at mid-cellularisation followed by FRAP. Slam 
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mRNA and protein colocalise with each other at the furrow canal (Wenzl et al., 2010) 

and therefore it is a plausible mechanism through which Slam localisation is regulated. 

There was no significant change in the mobility of Slam when new translation was 

blocked in the embryo during mid-cellularisation. This shows that the (low) mobility of 

Slam at this stage is due to association-dissociation kinetics and not due to active 

translation at the furrow canal (or in the entire embryo). The half-life time of Slam was 

found to be about 42 min which is about two-thirds of the time that cellularisation lasts. 

Therefore, it is quite likely that new translation of Slam does not play a significant role 

during mid-cellularisation. However, we could not rule out the role of local translation 

in the high-mobility phase of Slam at the onset of cellularisation because injection of 

cycloheximide at an early stage leads to a cell-cycle block. A more efficient 

photoconvertible tag than the Eos tag could help determine the role of local translation 

of Slam at the onset of cellularisation.  

  

4.5 Slam protein and mRNA form a complex 

 As mentioned earlier, Slam protein and mRNA colocalise with each other at the 

furrow canal and basal particles (Wenzl et al., 2010) and have been shown to be part 

of a complex (Dr. Shuling Yan, unpublished). The mRNA and protein are essential for 

each other’s localisation and function at the furrow canal (Dr. Shuling Yan, 

unpublished). The protein and the mRNA colocalise even at ectopic regions in nuf 

embryos further confirming that the complex is a unit. Fractionation of embryos 

followed by detection of protein and the mRNA revealed that a large part of slam mRNA 

was enriched at the membrane while about a fifth of the protein population was 

associated with the membrane. 

 The association of slam mRNA with its protein raises the likelihood that it carries 

out some non-coding function at the furrow canal. It could be involved in a) local 

translation b) local protection c) anchoring d) function. As mentioned earlier, it remains 

to be seen whether it is involved in local translation at the onset of cellularisation. The 

possibility that it protects Slam protein from degradation at the furrow canal is ruled out 

by the fact that a large proportion of Slam is cytoplasmic. The third possibility that it 

has a role in anchoring Slam protein to the furrow canal could be tested by co-injecting 

an mRNA that cannot localise but makes a functional Slam protein (mRNA with 

alternative codons for Slam) and an mRNA that can localise but cannot make a 
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functional Slam protein (mRNA with a frame-shift) into a Slam mutant embryo to see 

whether the mRNA can anchor the protein to the furrow canal. Targeting Slam protein 

to the furrow canal independent of the mRNA would reveal whether the mRNA is 

required for the function of Slam. Uncovering the non-coding function of the mRNA 

would be very interesting as it could lead to a better understanding of the role of 

localised RNAs in mediating cleavage furrow specification and polarised membrane 

invagination. 

Two redundant localisation elements in the coding region of the mRNA were 

found in mapping experiments (Dr. Shuling Yan, unpublished). Preliminary results 

indicated that at least one of them was able to be bound by Slam full-length protein 

directly in an in-vitro translation system (Dr. Shuling Yan, unpublished). In an attempt 

to map the region of the protein that is likely to bind to the mRNA, we used a fragment 

consisting of the first 545 amino acids (SlamC651) to test for in-vitro binding potential 

to its mRNA localising elements. EMSA results were however, inconclusive. The Slam 

protein preparation seemed to contain some kind of general RNA secondary-structure 

altering/stabilising property, which can either be attributed to an intrinsic property of 

the protein or due to impurities in the preparation. Further experiments with purer 

preparations are required to map the RNA-binding region of the protein. Since Slam 

protein has no known functional domains, this could reveal a novel RNA-binding 

domain. 
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