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Summery 

I 

Summery  

During the development, cells have to change their shape, migrate and 

rearrange their internal structure properly etc. All these processes depend on 

actin cytoskeleton. In Drosophila embryonic development, the actin filaments 

form different structures corresponding to different developmental stages. The 

formin protein Dia, as an actin nucleator, plays an important role in the 

regulation of actin architecture.  

The F-BAR protein Cip4 overexpression leads to a phenocopy of dia in 

Drosophila embryos, implying the interaction of these two proteins. We found 

that in vitro Cip4 inhibited Dia activity by using actin pyrene and TIRF 

microscopy assay, collaborated with M. Winterhoff and Prof. Dr. J. Faix.    

dia mutant embryos show a defect on stabilization of membrane at furrow 

canals. I found that Arp2/3 complex promoted the membrane tubular 

extensions at furrow canals, and this effect was counteracted by Dia. Another 

phenotype of dia mutant is a defect of maintenance of membrane 

compartmentalization during cellularization. Using shibire/dynamin temperature 

sensitive allele, I found that sorting mechanism mediated by endocytosis and 

exocytosis was not essential for this process. By FRAP analysis, I could show 

that the difference of membrane mobility caused by F-actin accumulation 

contributes to the membrane compartmentalization. 

I propose that Dia localizes at furrow canals and polymerizes F-actin, and 

F-actin stabilizes the membrane at furrow canals and maintains the 

compartmentalization of lateral-basal domains.  

In addition, a new allele of ced-12 was identified. Current data suggest 

that Ced-12/Spg provides the signal linker between centrosomes and actin 

caps/metaphase furrows.
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Chapter 1. Introduction 

1.1 Actin polymerization regulation 

Actin is one of the most abundant proteins in eukaryotic cells where it 

may be present at concentrations of over 100 μM (Pollard et al., 2000). 

Globular actin (G-actin), as a 42 KDa protein with ATPase activity, can undergo 

self-assembly into filamentous actin (F-actin). F-actin are two-stranded helical 

polymers with a diameter of 5-9 nm (Kishino and Yanagida, 1988). In the living 

cells, F-actin can be assembled into different structures, such as linear actin 

bundles, two dimensional networks, and three dimensional gel, to perform 

specific functions (Chhabra and Higgs, 2007). 

 

Figure 1.1 Ribbon and space-filling models of the actin molecule (Pollard and Cooper, 

2009). An actin monomer is approximately pear shaped and composed of four domains with a 

large cleft almost bisecting the molecule. This cleft (arrow) contains the nucleotide binding site. 

  

Actin monomers can spontaneously polymerize into filaments in vitro, 

with a relatively slow starting phase, because the dimers and trimers are very 

unstable. But once the short filaments have been created, actin polymerization 

undergoes rapidly. However, the dynamics of actin polymerization in eukaryotic 

cells are highly controlled by more than 100 actin-accessory proteins (Staiger 

and Blanchoin, 2006). The functions of these accessory proteins include 

maintaining actin monomer pool, controlling the length of actin filaments, 
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regulating the polymerization and depolymerization of F-actin, and cross-linking 

F-actin to bundles or networks. 

Here we will focus on actin nucleation regulation. 

In the initiation of actin assembly, the formation of actin dimers and 

trimers is kinetically unfavorable. To overcome the thermodynamic barrier, actin 

nucleators are required. From genetic and cell biological approach, a large 

number of actin nucleators are identified. These actin nucleators can be 

classified into 3 groups: 1) Arp2/3complex and its nucleation promoting factors 

(NPFs), 2) formins and 3) WH2-domain containing proteins (Campellone and 

Welch, 2010). These 3 classes of nucleators use different mechanism to 

overcome the nucleation kinetic barrier, and have distinct roles in cellular 

functions. 

 

 

Figure 1.2 Actin nucleation regulations. (A) Spontaneous nucleation and elongation. The 

dimer and trimer formation is kinetically unfavorable, but the following addition of monomer is 

favorable (Pfaendtner et al., 2010). (B-D) The nucleators help actin to overcome the kinetic 

barrier. (B) Nucleation and elongation mediated by formins. Formins nucleate actin by 

stabilizing the dimer, allowing new monomer added to the barbed end. Formins stay associated 

with barbed end, recruit profilin-actin and transfer actin monomer to the barbed end. (C) Arp2/3 

complex induces branch actin filament by mimicking actin barbed end. (D) Spire nucleates actin 

by recruiting and organizing actin monomer into short pitch, serving as a polymerization ”seed”.  

  

A 

B C D
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1.1.1 The Arp2/3 complex 

Arp2/3 complex (Actin-related-protein 2/3) was the first identified actin 

nucleator. This complex is comprised of 7 subunits, which include Arp2 and 

Arp3, and 5 additional polypeptides, ARPC1-5. Arp2 and Arp3 proteins are 

about 45% identical to actin and the 3D structure is very similar to the plus end 

of actin itself. Actin subunits can assemble onto Arp2/3, which mimics the actin 

dimer, bypassing the rate-limiting step of filament nucleation. Meanwhile, 

ARPC2 and ARPC4 bind to the side of pre-existing actin filaments, resulting in 

about a 70° angle between the new and old filaments (Beltzner and Pollard, 

2004; Rouiller et al., 2008).  

However, the Arp2/3 complex has little activity to nucleate actin by itself. 

There are three contributors, which increase the complex activity: 1) F-actin 

binding, 2) phosphorylation of Thr and Try residues in Arp2, and 3) 

nucleation-promoting factors (NPFs), which is the best characterized 

(Campellone and Welch, 2010). Based on the mechanism involved in Arp2/3 

activation, NPFs can be divided into class I and class II NPFs (Campellone and 

Welch, 2010).  

Class I NPF includes WASP/N-WASP, WAVE/Scar, WASH, WHAMM, 

and JMY. The catalytic domain of Class I NPFs is WCA domain located at the C 

terminal. The WCA domain is comprised of 1) WH2 domain that binds to 

G-actin, 2) an amphipathic connector and 3) an acidic peptide that binds Arp2/3 

(Rotty et al., 2013). The binding of amphipathic connector/acidic peptide to 

Apr2/3 changes the conformation of Arp2/3 complex, resulting in the formation 

of an actin barbed-end-like structure, and subsequently the new actin 

monomers bind to the “fake actin nuclei” and new filament forms (Rotty et al., 

2013). However, WASPs are in an autoinhibition state, and small GTPase is 

involved in the activation of WASPs (Rohatgi et al., 1999). In addition, SH3 
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domain containing proteins such as NCK1 and Cip4/TOCA1, also contribute to 

the activation of N-WASP (Fricke et al., 2009; Tomasevic et al., 2007). 

Due to lacking WCA domain and WH2 domain, the Class II NPFs cannot 

bind to G-actin. Instead, they can promote Arp2/3 activity by mediating F-actin 

binding to Arp2/3. This category includes cortactin and haematopoietic HS1 

(Welch and Mullins, 2002). 

1.1.2 Formins  

Formins are the second family of actin nucleators recognized a decade 

ago in yeast (Pruyne et al., 2002; Sagot et al., 2002). All the formins share the 

conserved domains FH1 (Fomin-homology domain 1) and FH2 

(Fomin-homology domain 2). The Drosophila genome contains six genes 

encoding proteins with FH1 FH2 domain, including diaphanous, daam, fmnl, 

cappuccino, formin3 and knittrig/fhos (Lammel et al., 2014). Diaphanous (Dia) 

is the best characterized formin in Drosophila.  

From in vitro studies, FH2 domain was shown to be sufficient for 

nucleation of purified actin monomers (Chesarone et al., 2010; Grosshans et al., 

2005). Crystal structure study has shown that FH2 domains form a ring as a 

dimeric configuration. The dimer is stabilized by the binding of N-terminal lasso 

of each subunit to the post of the other (Xu et al., 2004). Co-crystal structure of 

yeast formin Bni1 with tetramethylrhodamine-actin study has shown that the 

FH2 bridge element binds two actin monomers in an orientation, which 

resembles a short-pitch actin filament, suggesting that this structure functions 

as a filament nucleus, and implying that the FH2 domain promotes actin 

nucleation via stabilization of actin dimer structure (Otomo et al., 2005). Study 

of biochemical properties of heterodimeric FH2 mutants revealed that the FH2 

domain consists of an alternating closed-open configuration (Otomo et al., 

2005). Together with the FH2-actin structure, a model of FH2 activity was 

proposed. In the closed conformation, both FH2 domains sit on the F-actin 
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barbed end tightly, blocking addition of new actin monomers. In the open state, 

one of the FH2 domains steps towards the barbed end and leaves space for a 

new actin monomer to the barbed end (Otomo et al., 2005).   

The FH1 domain is involved in the acceleration of F-actin elongation. 

The FH1 domain binds profiling-bound actin via its proline-rich motif 

(Courtemanche and Pollard, 2012). Profilin-actin is the major form of actin 

monomers in living cells (Sagot et al., 2002). Profilin has two binding sites. One 

binds to the face of actin monomers opposite to the ATP-binding cleft, and the 

other binds to the proline-rich domain. Profilin-actin can readily add to a free 

barbed end but cannot add to pointed end (Kovar et al., 2006). In addition, 

Profilin binding to actin suppresses spontaneous nucleation (Goode and Eck, 

2007). The FH1-Proflin interaction plays an important role in increasing the 

formin catalyzed filament elongation at the barbed end by ~10 times over the 

free barbed end (Paul and Pollard, 2009). Actin monomer diffusion rate is the 

limiting factor for the rate of actin elongation. The FH1 domain of formins can 

recruit Profilin-actin complex. This increases the local concentration of actin 

monomer at the barbed end, resulting in a fast speed elongation (Kovar et al., 

2006; Romero et al., 2004). Moreover, the rate of actin filament elongation at 

the barbed-end increases with the number of poly-proline tracks in the FH1 

domain (Courtemanche and Pollard, 2012; Paul et al., 2008).  

The N terminal half of Dia is a regulatory region, including a GTPase 

binding domain (GBD) and Diaphanous inhibitory domain (DID) that is involved 

in autoinhibition. The DID domain is followed by a coiled-coil domain and a 

dimerization domain (DD) (Chesarone et al., 2010). In addition, the FH2 domain 

forms dimeric conformation without DD (Kovar et al., 2006). The function of DD 

still needs to be clarified. The FH1-FH2 domain is located at the C terminal 

region and is followed by a short peptide termed Diaphanous autoinhibitory 

domain (DAD) at the C terminus. DAD binding to DID inhibits the FH1-FH2 actin 

polymerization activity (Wallar et al., 2006). The electron microscopy and single 



Introduction 

6 
 

particle analysis of mDia1 full length protein has shown that the DAD-DID 

interaction makes fork-shaped N-terminal DID-CC region, and this region hangs 

over the ring-shaped FH2 domain, resulting in steric obstruction of actin binding 

to the FH2 domain (Maiti et al., 2012). In Drosophila, Rho1 (RhoA in mammals) 

binding to GBD can release the FH2 actin polymerization activity from 

autoinhibition (Grosshans et al., 2005; Lammers et al., 2005).  Structure 

analysis showed that binding of DAD and RhoGTPase to GBD-DID domain is  

 
Figure 1.3 Schematic representation of domain organization and regulation of Dia. (A,B) 

N terminus is a regulatory domain, consisting of a GTPase binding domain and Dia inhibitory 

domain. The catalytic domain locates at C terminus. The FH1 domain recruits profilin-actin 

complex and delivers to the FH2 domain, increasing the local concentration of actin monomer. 

The FH2 polymerizes actin into linear filament. The Dia autoinhibition domain (DAD) mediates 

intramolecular interactions with the DID at N terminus to maintain formins in an autoinhibited 

state. (C) GTPase binding to GBD releases the autoinhibition by disrupting the interaction 

between DID and DAD.  

A 

B 

C 
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mutually exclusive (Campellone and Welch, 2010). However, the FH2 domain 

is not fully active after RhoGTPase binding in vitro. This suggests that some 

other unknown factors are required in the activation of the FH2 domain 

(Grosshans et al., 2005).  

An increasing number of studies point to the fact that formins often work 

with formin-binding nucleation-promoting-factors (NPFs) to overcome actin 

polymerization barriers. In Drosophila, there are two NPF-formin pairs:  

Spire-Capu (Quinlan, 2013) and APC-Dia (Jaiswal et al., 2013). Spire-Capu 

pair is important in oogenesis (Quinlan et al., 2005). Adenomatous polyposis 

coli (APC) colocalizes with Dia on the metaphase furrow in syncytial embryo 

and both proteins are required in metaphase furrow formation (Webb et al., 

2009). APC and Dia directly interact in vitro and co-stimulate actin assembly, 

overcoming the dual barrier imposed by profilin and capping protein (Jaiswal et 

al., 2013). The vertebrate APC and mDia1 work similarly as the Drosophila 

APC-Dia pair. A “rocket launcher” mechanism was proposed by using color 

TIRF microscopy. APC and mDia1 form a ternary complex with actin monomer 

to initiate actin filament polymerization. Upon filament polymerization, the 

complexes separate. The mDia1 sits on growing barbed ends while APC 

remains at the site of nucleation (Breitsprecher et al., 2012). 

FH1 domain is critical for recruiting profilin-actin and delivering to FH2 

domain for actin polymerization. The length of FH1 domain is an important 

element for the speed of actin elongation mediated by formins (Courtemanche 

and Pollard, 2012). In addition, recent studies show that FH1 domain also plays 

an important role in formin activity regulation (Bilancia et al., 2014; Graziano et 

al., 2014; Yan et al., 2013). Enabled and Dia are important for promoting 

filopodia, but with different morphology and dynamics. The fine tuning of 

different filopodia requires the balance of activity of Enabled and Dia. This 

balance is achieved partially by the Enabled negatively regulating Dia. Enabled 

protein inhibits Dia activity via the interaction of Enabled EVH1 domain and 
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DiaFH1 domain (Bilancia et al., 2014). Dia-interacting Protein (DIP) is another 

FH1 domain binding protein. The interaction between DIP and DiaFH1 domain 

leads to the inhibition of mDia2, and overexpression of DIP reduces membrane 

integrity (Eisenmann et al., 2007).   

In comparison to Dia, other formins in Drosophila have not been 

extensively characterized in cellular function or biochemical properties. 

Dishevelled-associated activator of morphogenesis (DAAM) is involved in the 

non-canonical Wnt signaling pathway in Xenopus gastrulation (Habas et al., 

2001). In Drosophila DAAM is required in tracheal cuticle pattern regulation 

(Matusek et al., 2006). Formin3, along with FH1 and FH2 domain containing 

protein (FHOS/FOSD), do not show any similarity in their N terminal. Formin3 is 

required in F-actin assembly during Drosophila tracheal fusion (Tanaka et al., 

2004). FHOD is involved in macrophage spreading and migration in Drosophila 

cellular immune response (Lammel et al., 2014).  Cappuccino, together with 

another actin nucleator, WH2 domain containing protein Spire, plays an 

important role in oogenesis, which will be discussed later. 

1.1.3 WH2 domain containing nucleator Spire 

      WH2 domain containing protein Spire has been identified as a novel 

actin nucleator (Quinlan et al., 2005). The WH2 (WASP-homology 2) domain is 

shared with Class I NPFs, suggesting that they are evolutionarily related. Spire 

has the ability to induce actin filaments when transiently expressed in fibroblast, 

and was predicted as a nucleation promoting factor of Arp2/3 complex because 

of the presence of WH2 domain (Otto et al., 2000). However, Spire could 

induce actin nucleation independent of Arp2/3 (Quinlan et al., 2005). It was 

reported that Spire-induced F-actin is linear, which excluded the possibility of 

Arp2/3 involvement in Spire mediated actin nucleation (Quinlan et al., 2005).  
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     In vitro studies showed the nucleation activity of Spire based on the 

tandem of four WH2 domains separated by three conserved linkers L1-3, 

especially the WH2 domain C and D, and the linker L3 between them (Rasson 

et al., 2014). The electron microscopy supported a Spire-induced actin 

nucleation model: WH2-C and WH2-D bind actin monomers, and the linker3 

coordinates the interaction between these two actin monomers to form a dimer. 

Then the third and fourth actin monomer are added to the dimer by WH2-B and 

WH2-A domain, forming a longitudinal actin oligomer, as a seed of actin 

nucleation (Kerkhoff, 2006). 

     Mutations in spire cause premature cytoplasmic streaming in oocyte. 

Embryos from spire homozygous females lack pole cells. Furthermore, the 

dorsal-ventral and the anterior-posterior axes of these embryos are affected 

(Theurkauf, 1994). A similar phenotype is also observed in cappuccino and 

chickadee (encodes profilin) mutant flies (Qualmann and Kessels, 2009; 

Theurkauf, 1994), indicating that Cappuccino, Profilin and Spire cooperate in 

actin polymerization processes. A DiaFH1FH2 coated beads assay revealed 

that Spire enhances actin polymerization by increasing the concentration of 

profilin-actin, which can be used by formin to assemble actin filaments. The 

synergy among Spire, Profilin and Cappuccino in vitro analysis mimics the 

function in cellular context and provides a molecular mechanism of genetic 

interaction between Spire, Cappuccino and Profilin in oogenesis (Bosch et al., 

2007).   
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1.2 Actin organization in early embryogenesis of Drosophila 

melanogaster  

1.2.1 Drosophila embryo development and actin distribution 

The actin cytoskeleton in eukaryotic organisms performs a wide range of 

cellular processes such as cell division, cell shape change and maintenance, 

cell movement, endocytosis and signal transduction. Not surprisingly, it is found 

to play a key role in Drosophila early embryonic development. 

After fertilization, the embryo of Drosophila undergoes 13 rounds of 

nuclear division without cytokinesis. During the first 7 mitotic cycles, the nuclei 

divide deep in the embryo interior. During 8 and 9 cycles, most nuclei migrate 

towards the embryo periphery. The yolk nuclei, which maintain their position in 

the deep yolk, will become polyploid and undergo apoptosis later in 

embryogenesis. During this stage, nuclear division is not accompanied by 

associated plasma membrane invagination, and the plasma membrane is 

underlined by a 3 μm layer of cortical F-actin (Karr and Alberts, 1986). After the 

ninth mitotic division, cortical migration is complete. Cortical migration is 

dependent on microtubule (Baker et al., 1993). Nuclei, which reach the 

posterior pole containing the pole plasma will form the progenitor germline cells. 

The somatic nuclei form a monolayer beneath the plasma membrane with a 

regular arrangement and then undergo another 4 cortical divisions. This 

developmental stage is termed syncytial blastoderm. 

During cortical migration, the organization of F-actin changes 

dramatically. At the onset of interphase of cycle 10, F-actin is re-organized into 

dome-like caps that lie between the plasma membrane and the nuclei, and the 

plasma membrane which is above nuclei contains many protrusions. Upon 

entry into mitosis, the membrane invaginates between the adjacent mitotic 

spindles to form metaphase furrow (also termed pseudo-cleavage furrow) 
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which reaches about 5 μm deep. Metaphase furrows are assembled to 

separate spindles and ensure the appropriate division of chromosome between 

adjacent nuclei. When the metaphase furrows form, F-actin redistributes 

towards the cap margins and accumulates at the tip of the metaphase furrows. 

At the same time, the plasma membrane protrusions flatten, probably as a 

membrane source of metaphase furrow formation. By late mitosis, the 

metaphase furrow rapidly regresses, plasma membrane protrusions reform, 

and F-actin concentrate into cap structure again. The whole process is 

repeated through each of the four divisions (Schejter and Wieschaus, 1993). 

After 13 nuclear divisions, the syncytial embryos fill with 6,000 nuclei in the 

periphery. The plasma membrane during the syncytial blastoderm stage is 

polarized and consists of two domains: the apical-like domain which is above 

nuclei and the basolateral-like domain which is lateral to nuclei (Mavrakis et al., 

2009). This syncytial blastoderm plasma membrane polarity requires F-actin 

organization (Mavrakis et al., 2009). 

During interphase 14, the embryo undergoes a modified cytokinesis, 

termed cellularization, which transforms the syncytial blastoderm into the 

cellular blastoderm with individual cells. The developing embryo starts 

gastrulation stage immediately after completion of cellularization. Cellularization 

is accompanied by a series of morphological events including nuclear 

elongation, clearing cortical layer of yolk and the formation of microtubule 

basket structure.  

The most prominent event in cellularization is the membrane 

invagination between the adjacent nuclei stably and ultimately forming a sheet 

of 40 μm tall columnar epithelium. The tip of the invaginating membrane forms 

a loop-like membrane structure, which is called furrow canal. Cellularization can 

be divided into 4 distinct stages (Lecuit and Wieschaus, 2000): Phase I takes 

10 min and results in the assembly of the furrow canal. Cortical nuclei start 

elongation along apical-basal axis. Phase II lasts 20 min and the membrane 
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starts invagination, but in a very slow speed. The furrow canal stays in the 

position 5 μm basal to the surface of the embryo at the end of Phase II. Cortical 

nuclear elongation completes during this phase. In Phase III, membrane 

invagination accelerates, although still at a relatively slow rate. At the end of this 

phase, the furrow canal reaches the basal part of nuclei. In the Phase IV, the 

invagination speed increases dramatically and reaches the yolk. The cells are 

closed off basally, which results in 35-40μm tall epithelia. The transition from 

slow phase to fast phase is due to the completion of furrow canal assembly 

(Figard et al., 2013).  

Prior to the membrane invagination in cellularization, cortical F-actin 

reorganizes. At the onset of interphase 14, F-actin transiently forms caps. 

However, about 10-15 min, caps resolve and F-actin marks the furrow canal. At 

the end of cellularization, F-actin is accumulated at sub-apical domain where 

adherens junctions form.  

1.2.2 The function of F-actin in Drosophila embryonic development 

The general role of the actin cytoskeleton in early embryogenesis has 

been studied by using specific inhibitor Cytochalasin B and Latrunculin, which 

disrupt the cytoskeleton structure via inhibiting F-actin polymerization. 

Cytochalasin B treatment leads to “nuclear fall-out” phenotype. Cortical nuclei 

move into the interior of syncytial blastoderm embryo. In mitosis, metaphase 

furrows are absent, which leads to fusion of adjacent spindles in the cortical 

layer (Sullivan and Theurkauf, 1995). During cellularization, Latrunculin treated 

embryos show defects in membrane invagination, stabilization of membrane at 

furrow canals, and membrane compartmentalization (Sokac and Wieschaus, 

2008a). 

Genetic analysis provides a deeper insight into the function of F-actin. 

Mutations in Arp2/3 complex result in disruption of metaphase furrow and 
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defect in actin cap expansion (Stevenson et al., 2002; Zallen et al., 2002). 

SCAR/WAVE mutant embryo shows a similar phenotype with Arpc1, a subunit 

of Arp2/3, but WASP null mutant doesn’t show obvious defects (Zallen et al., 

2002), suggesting that in Drosophila early embryogenesis Arp2/3 complex 

activator is SCAR/WAVE, rather than WASP.  

Sponge, as a non-canonical Rac Guanine nucleotide exchange factor 

(GEF), is required for the formation of actin caps and metaphase furrows 

(Biersmith et al., 2011; Postner et al., 1992). Sponge belongs to Dreadlocks 

(DOCK) protein family, and consists of SH3 domain, Dock homology 1 and 2 

domain and proline-rich domain (Biersmith et al., 2011). The most closely 

related protein in Drosophila is Myoblast city (Mbc), which is involved in 

myoblast fusion (Biersmith et al., 2011; Geisbrecht et al., 2008). Sponge cannot 

activate Rac/RhoGTPs, unless it is bound to Elmo (Côté and Vuori, 2007). The 

Elmo proteins lack catalytic activity, and seem to be scaffold proteins 

(Abu-Thuraia et al., 2014). Interaction between Elmo and DOCK proteins is 

involved in lymphocyte migration, cell invasion in mammals (Stevenson et al., 

2014) and are essential for the central nervous system development in 

Drosophila (Biersmith et al., 2011). However, the detail mechanism underlying 

the interaction of Sponge and Elmo is less clear. 

Dia is required for the formation of metaphase furrows and cellularization 

furrows. In dia germline clone embryos, multinuclear cells form due to the lack 

of actin-based metaphase furrows (Grosshans et al., 2005). Electron 

microscopy showed furrow canals are enlarged and filled with large cytoplasmic 

blebs, which suggests that the membrane in furrow canal is less stable 

(Grosshans et al., 2005).  
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Figure 1.4 Schematic representation of Drosophila early embryogenesis and actin 

cytoskeleton. Modified form S. Acharya (S. Acharya PhD dissertation, 2014) (A-E) 

Representative stage of early embryogenesis. (F) Actin forms a cortical layer beneath the 

membrane in pre-syncytial stage embryo. (G) The surface is thrown into a series of protrusions 

in the interphase of syncytial blastoderm. At the same time, actin forms dome-like caps 
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between plasma membrane and nuclei. (H) Upon entry into mitosis, the protrusions flatten and 

actin cap dissolves and marks metaphase furrows. (I-J) At the beginning of interphase 14, the 

cap forms for a short time and disassembles after a few minutes, and is enriched at the furrow 

canal. (K) Actin is enriched at the furrow canal throughout the cellularization process. (M) At 

end of cellularization, actin-myosin at the furrow canal start contracting laterally, enclosing each 

nucleus, resulting in blastoderm cells.  

 

 

Figure 1.5 Confocal images to show actin organization in different stages. (A) Actin caps 

in interphase of syncytial blastoderm stage. (B) Actin caps dissolve and concentrate at 

metaphase furrow. (C) Actin is enriched at the tip of invaginating membrane through the course 

of cellularization. Red is actin stained by phalloidin-Alexa568, and green is microtubule stained 

by monoclonal antibody, and blue is DNA staining. Scale bar: 10 μm. 

 

1.3 BAR domain proteins: a linker between membrane 

modeling and actin dynamics 

The shape of cell membranes reflects their physiological function. The 

membrane system shows a highly dynamic nature in the living cell. Membrane 

remodeling plays an important role in many biological processes, including 

infection and immune responses, cell division and axonal pathfinding (Fricke et 

al., 2010). In those processes, force generation is essential to allow the cell to 

change the membrane shape. One of the systems most commonly used to 

generate force is actin cytoskeleton (Suetsugu and Gautreau, 2012). 

A 

B 

C 
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Regulation of actin dynamics and the connection of actin and membrane is of 

great importance in those biological processes. 

Over the last decade, the Bin/Amphiphysin/Rvs (BAR) proteins were 

reported as important regulators that couple actin dynamics and membrane 

remodeling (Farsad et al., 2001; Peter et al., 2004). Crystal structure studies 

have shown that BAR domains are composed of three anti-parallel coiled-coil 

helices, which make the BAR protein homodimerized and form a 

crescent-shaped surface (Frost et al., 2009) (http://www.bar-superfamily.org/). 

The crescent-shaped surface is covered by positively charged amino acid 

residues, which allow the BAR domain to directly interact with negatively 

charged membrane lipids. Based on the amino acid sequence, BAR domain 

proteins are divided into three classes, BAR, F-BAR and I-BAR domain proteins 

(Suetsugu and Gautreau, 2012). 

BAR and F-BAR domains form a concave membrane binding surface, 

while I-BAR domain is referred to as inverse BAR due to the convex lipid 

binding surface and its ability to induce protrusions (Qualmann et al., 2011). 

These curved lipid binding surfaces are used in sensing and inducing 

membrane curvatures. Some BAR domain proteins can form amphipathic 

α-helices at the N terminus (together with BAR domain termed N-BAR domain). 

The amphipathic α helices insert into the leaflet of bilayer as a “wedge” causing 

membrane bending, and the helix intercalation may increase the binding of 

BAR domain to the curved membrane, further stabilizing the curvature (Mattila 

et al., 2007). 

The F-BAR domain was initially characterized as a Fes/CIP4 homology 

domain (FCH) plus the following CC domain (Itoh et al., 2005). The F-BAR 

domain is sufficient to deform liposomes in vitro (Itoh et al., 2005). The F-BAR 

domain dimers can form macromolecules wrapping around a curved membrane 

by associating with each other via end-to-end and lateral interactions 
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(Qualmann et al., 2011). Using this mechanism the F-BAR domain stabilizes 

the membrane curved structure, and generates the force to make the curved 

membrane invagination, forming a tubular structure with a specific diameter 

(Frost et al., 2007).  

The presence of Src Homology 3 (SH3) domain at C terminal of F-BAR 

protein mediates binding to Dynamin and WASP/WAVEs (Dawson et al., 2006). 

Dynamin is essential for membrane scission during endocytosis, which 

suggests F-BAR domain proteins play an important role in this process 

(Arasada and Pollard, 2011). WASP/WAVEs are regulators of actin-nucleation 

Arp2/3 complex as mentioned previously. Besides Cdc42 and Rac, SH3 

domain binding contributes the activation of WASP/WAVEs (Suetsugu and 

Gautreau, 2012). Cip4, as an SH3 domain containing protein, binds to 

proline-rich domain (PRD) of WASP, resulting in the activation of actin 

nucleation. In vitro studies have shown F-BAR proteins bind directly to N-WASP 

and activate actin polymerization when bound to liposome (Chitu and Stanley, 

2007). Cip4 is also able to form a complex with WAVE/Scar during endocytosis, 

and the interaction was found in Drosophila (Fricke et al., 2009), C.elegans 

(Giuliani et al., 2009) and vertebrates (Roignot et al., 2010). 
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Figure 1.6 Schematic representation of the role of BAR protein during endocytosis. 

(Fricke et al., 2010) (A) F-BAR proteins bind to and induce the membrane curvature. (B) 

F-BAR proteins form oligomers by lateral/tail-to-tail interaction, and the oligomers of F-BAR 

proteins form a helical coat around the membrane, together with actin filaments, generating 

force for membrane invagination. (C) Other BAR proteins with smaller diameter are recruited 

and associate with the neck of the tubule, narrowing the neck. (D) F-BAR proteins recruit 

Dynamin with their SH3 domain. Dynamin pinches off the neck of vesicle by GTP hydrolysis. (E) 

Scission by Dynamin. During this process, actin polymerization mediated by Arp2/3 is involved. 

(F) After the scission, WASP/WAVE associates to membrane via interaction with F-BAR protein, 

and polymerize the actin filament to push the vesicle into the depth of the cell. 

 

BAR domain proteins provide the link between membrane and actin 

cytoskeleton. BAR proteins are involved in endocytosis (Figure 1.6). BAR 

proteins bind to plasma membrane and generate curvature. Subsequently, 

other BAR proteins are recruited and form a homo-oligo or hetero-oligo 

complex. Meanwhile, NPFs are recruited and promote actin polymerization by 

activation of Arp2/3. The actin filaments generate the force to push the 
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membrane invagination. Dynamin pinches off the invaginating membrane, 

forming an endocytic vesicle which will be pushed inside of the cell by actin 

filaments. 

Fomin binding protein 17 (FBP17) was found as a binding partner to the 

mouse Formin1 (Chan et al., 1996). This protein belongs to F-BAR family 

proteins. Cip4 is a paralog of FBP17 in Drosophila. However, the physiological 

function of Cip4 to Dia is not known. 

 

1.4 Aim of the work 

 

This work focuses on the actin organization in Drosophila early embryonic 

development. We studied the mechanism of Dia function in membrane 

compartmentalization and the interaction between Dia and the F-BAR protein 

Cip4. In addition, we cloned a new allele of ced-12, which is essential for actin 

cap and metaphase furrow formation in the syncytial blastoderm.  
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Chapter 2. Materials and Methods 

2.1 Materials 

2.1.1 Chemicals Regents 

All chemicals were purchased from Sigma-Aldrich (Steinheim, Germany), 

AppliChem GmbH (Darmstadt, Germany), Carl ROTH (Karlsruhe, Germany) 

unless otherwise mentioned. 

2.1.2 Antibiotics 

Antibiotics Stock concentration Working concentration 

Ampicillin 100mg/ml 100-200μg/ml 

Geneticin (G418) 75 mg/ml 75 μg/ml 

2.1.3 Enzymes 

All restrict enzymes were purchased from Fermentas and New England 

Biolabs. 

The other enzymes used in this study were:  

 

-Taq DNA polymerase and Pfu DNA polymerase (prepared in the lab) 

-Long PCR Enzyme Mix (Fermentas)  

-Protease K (Roche) 

-T4 DNA ligase (Fermentas) 

-PreScission protease (gift form Prof. J Faix) 

-Lysozyme (AppliChem) 

 

2.1.4 Primary antibodies 

The information of primary antibodies used in this study was in the following 

list. 
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Table 2.1 Primary antibodies used in this study 

antibody Raised in 

Dilution and working 
concentration Source 
immunostaining Western blot

Amph* Guinea pig 1:1000 - Lab Grosshans 

Dlg Mouse 1:00 

(~0.4μg/ml) 

- Hybridoma bank 

4F3 

Dia* Rabbit 1:1000 1:5000 Lab Grosshans 

Dia* Guinea pig 1:1000 1:5000 Lab Grosshans 

Slam* Rabbit 1:5000 1:5000 Lab Grosshans 

α-Tubulin Mouse 1:5000 

(7μg/ml) 

1:50000 

(0.7μg/ml) 

Hybridoma bank 

B512 

γ-Tubulin Mouse 1:5000 

 

- Sigma T6557 

Krüppel* Guinea pig 1:1000 - Prof. E. Wimmer 

Even-skipped* Guinea pig 1:1000 - Lab Grosshans 

Phospho 

-Histone 

H3(S10) 

Mause 1:5000 

(0.2μg/ml) 

- Millpore 

Ced-12* Guinea pig 1:1000 1:3000 Prof. Geisbrecht 

Sponge* goat 1:1000 1:1000 Prof. Geisbrecht 

Vasa Rat 1:100(1.6μg/ml) - Hybridoma bank 

anti-vasa 

* serum 

2.1.5 Other reagents used in immunostainings 

     Secondary antibodies were used in a final concentration of 4 μg/ml 

(Invitrogen). 

GFP-Booster Atto 488, in a final concentration of 2μg/ml (Chromotek). 
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DAPI (4‟,6‟-Diamino-2-phenylindole): DNA staining, in a final concentration of 

0.4 μg/ml (Sigma-Aldrich) 

Phalloidin-Alex 488: used for actin staining, in a final concentration of 6 nM 

(Molecular Probes) 

Mounting medium: Aquapolymount (Polysciences, Eppelheim) 

2.1.6 Other reagents used in western blot 

IRDye-800CW and IRDye-680 secondary antibodies were purchased from 

LI-COR Biotechnology and used at a dilution of 1:20000 (0.05 μg /ml). 

2.1.7 Buffers 

All buffers were prepared according to Sambrook and Russel, 2001 unless 

otherwise stated.  

 

1) Buffers for DNA extraction from adults flies: 

 

Homogenisation buffer  

 

10 mM Tris/HCl pH7,5  

60 mM NaCl  

10 mM EDTA 

 
 
2) Buffer for Immunostaining and western blot: 
  
PBS 130 mM NaCl  

7 mM Na2HPO4  
3 mM NaH2PO4  
pH 7.4  
 

PBST 0.1% Tween 20 in PBS 
 

Embryo fixation solution 4.5 ml 1X PBS 
0.5 or 1 ml Formaldehyde (37%) 
5 ml Heptane  
 

Immunostaining blocking buffer 5% BSA in 1X PBS 
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Western blot blocking buffer 5% milk powder in 1X PBS 
 

Wet transfer buffer 25 mM Tris 
175 mM Glycine 
20% Methanol 

 
3) Buffer for Mini prep of plasmid DNA: 
 
Solution I  
 
 

50 mM Tris/HCl, pH 8.0 
10 mM EDTA 

Solution II 1% SDS 
0.2M NaOH  
 

Solution III 3 M Potassium acetate  
Adjusted to pH 5.4  
with acetic acid 

 
4) Buffer for GST-Tag protein purification:  
  
Lysis buffer 50 mM Tris/HCl pH 8.0 

150 mM NaCl 
1 mM DTT 
 

Wash buffer 50 mM Tris/HCl pH 8.0 
500 mM NaCl 
1 mM DTT 
 

Elution buffe 50 mM Tris/HCl pH 8.0  
150 mM NaCl  
10 mM Glutathione (freshly added from 
100 mM stock stored at -20°C)  
1 mM DTT  
 

Storage buffer 20 mM HEPES pH 8 
150 mM NaCl, 
0.5 mM DTT,  
60% Glycerol for -20 °C storage 

 
All buffers were filtered prior to use 
 
5) His-tag protein purification under native conditions:  
 
Lysis buffer 20mM Na-Phosphate pH 8.0 
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500 mM NaCl 
20mM Imidazol 
 

Wash buffer 20 mM Na-phosphate pH 8 
500 mM NaCl 
40 mM imidazol 
 

Elution buffe 20 mM Na-phosphate pH 8 
500 mM NaCl 
250 mM imidazol  
 

Storage buffer 20 mM HEPES pH 8 
150 mM NaCl, 
0.5 mM DTT,  
60% Glycerol for -20 °C storage 

 
All buffers were filtered prior to use 
 
6) Buffer for protein coupling to CNBr beads:  
 
Wash buffer for CNBr beads 1 mM HCl 

 
Coupling buffer 100 mM NaHCO3/NaOH pH 8.3 

300 mM NaCl 
 

Blocking buffer 0.1 M Tris/HCl pH 8.0 
 

Wash buffer I 0.1 M Na-acetate 
0.5 M NaCl  
pH adjusted to 4.0 
 

Wash buffer II 0.1 M Tris/HCl  
0.5 M NaCl  
pH adjusted to 8.0 

 
 
7) Buffer for affinity purification of antibodies: 
  
Wash buffer 1X PBS 

300 mM NaCl 
 

Elution buffer (Low pH) 50mM Glycine  
pH adjusted to 2.5 
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Elution buffer (High Salt) 4 M MgCl2 
50 mM Tris/HCl pH 7.5 
 

Neutralisation buffer 1M Tris/HCl pH 11.0 
 
20% Sodium Azide (NaN3)  
 
8) Buffer for making a poly-L-proline Sepharose column for purification of profilin: 
 
10X Quenching buffer 1 M NaCl 

1 M glycine 
100 mM Tris pH 7.5 
 

Storage buffer 10 mM Tris pH 7.5 
50 mM KCl 
1 mM EDTA 
0.002% Sodium Azide 

 
9) Buffer for profilin purification: 
 
P buffer 30 mM Tris pH 8.0 

100 mM KCl 
100 mM Glycin 
2 mM EDTA 
5 mM Benzamidin 
1 mM DTT 
0.1% PMSF 
 

Elution buffer 30% DMSO in P buffer 
 

Storage buffer  P buffer with 60% Glycerol for -20 °C storage 
 
All buffers were filtered prior to use 
 
10) Buffer for immunoprecipitation:  
 
RIPA buffer 10 mM Tris/HCl pH 7.5  

150 mM NaCl  
0.1% SDS  
1% TritonX 100  
1% Deoxycholate  
5 mM EDTA  
2 mM PMSF (freshly added)  
1X Roche protease inhibitor cocktail (freshly 
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added)  
 
11) Buffer for fractionation:  
 
Lysis (and wash) buffer 50mM Tris pH 7.5 

75mM NaCl  
1mM MgCl2  
0.05% NP-40  
1mM DTT  
2mM PMSF (freshly added)  
1X Roche Protease inhibitor cocktail (freshly 
added) 

2.1.8 Kits  

MiniElute Gel extraction Kit Quiagen, Hilden  

Plasmid Midi Kit Nucleobond AX Macherey-Nagel, Düren  

In-fusion HD cloning kit Clontech  

2.1.9 Column materials for protein purification 

GSTrap HP column           GE Healthcare Life Sciences  

HisTrap HP column          GE Healthcare Life Sciences 

CNBr activated Sepharose 4B  GE Healthcare Life Sciences  

PD-10 desalting columns       GE Healthcare Life Sciences  

2.1.10 Bacterial cell lines  

Following strains of E.coli were used:  
 
DH5α for molecular cloning:  
 
F– Φ80lacZ∆M15 ∆(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–, 

mK+) phoA supE44 λ– thi-1 gyrA96 relA1 
 
 
 
BL21(DE3) was used for protein expression:  

 
F– ompT hsdSB(rB–, mB–) gal dcm (DE3) 
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2.1.11 fly stocks  

Table 2.2 Fly stocks used in this study 

Stock name Genotype 
source/ lab 

collection number

oregon-R +/+ A401 

w w A101 

yw yw A102 

diasy5/CyO w ; al dp b pr dia[SY5] Frt[2L]{neoR} / 

CyO, hs-hid{w+} 

H037  

diasy5,117GFP/CyO w ;  GFP117{w+} dia[SY5] Frt[2L, 

neoR] / CyO 

H018 

UASp-GAP43-venus w[*]; 

P{w[+mC]=UASp-Venus.GAP43}10 

Bloomington 

Drosophila Stock 

Center 

shibire  w shi[1] / FM6, y B A119 

UASp-Cip4GFP w ; Sp / CyO ; UASp-Cip4GFP{w+} Dr. Sven Bogdan 

(Yan et al., 2013) 

mat67;15 w;  tub-Gal4-VP16{w+}[67] ; 

tub-Gal4-VP16{w+}[15] 

B101 

Flp122; ovoD2L hs-Flp[122]; ovoDFrt2L[40A]/If/CyO, 

hs-hid{w+} 

Maintained in the 

lab 

∆Cip4 ∆Cip4/∆Cip4 Dr. Sven Bogdan 

(Yan et al., 2013) 

diasy5/CyO; ∆Cip4 w ; al dp b pr dia[SY5] Frt[2L]{neoR} / 

CyO, hs-hid{w+}; ∆Cip4/∆Cip4 

Generated by 

Grosshans 
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arp3/TM6B w[1118]; 

P{w[+mC]=EP}Arp3[EP3640]/TM6B, 

Tb[1] 

Dr. Sven Bogdan 

(Yan et al., 2013) 

UASp-GFPDia6 w ; Sp / CyO, nlsGFP ; 

UASp-GFPdia[6] 

Dr. Christian 

Wenzl 

 UASp-GFPDia10 w ; Sp / CyO, nlsGFP ; 

UASp-GFPdia[10] 

UASp-GFPDia21 w ; Sp / CyO, nlsGFP ; 

UASp-GFPdia[21] / TM3, Sb 

UASp-GFPDia26 w ; UASp-GFPdia[27] / CyO, nlsGFP ; 

Dr / TM3, Sb 

UASp-GFPDia27 w ; UASp-GFPdia[26] / CyO, nlsGFP 

2L367 w ;2L367, al dp b pr Frt[40A]{neoR} / 

CyO, hs-hid{w+} 
K110 (Vogt et al., 

2006) 

Utrophin-GFP w; sqh-Utr::GFP/CyO Prof. T. Leciut 

(Levayer et al., 

2011) 

membrane 4XGFP 117-GFP; Spider-GFP Deqing Kong 

 

Table 2.3 Fly stocks generated in this study 

Palmitoylated-YFP-X UASp-Palmitoylated-YFP/FM7 

Palmitoylated-YFP-II UASp-Palmitoylated-YFP/CyO 

Palmitoylated-YFP-III UASp-Palmitoylated-YFP/TM3 

GFP-SAS6 Sp/CyO; GFP-SAS6/TM6c 

2L367; GFP-SAS6 2L367/ CyO; GFP-SAS6/TM6c 

GAP43-venus Sp/CyO; 

tub-Gal4-VP16{w+}[15],UASp-GAP43-venus 
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2L367; GAP43-venus 2L367/CyO; 

tub-Gal4-VP16{w+}[15],UASp-GAP43-venus

GFPlinkerDia UASp-DialinkerGFP/FM7 

DialinkerGFP2 UASp-DialinkerGFP2/TM3 

DialinkerGFP9 UASp-DialinkerGFP9/FM7 

DialinkerGFP11 UASp-DialinkerGFP11/TM3 

DialinkerGFP27 UASp-DialinkerGFP27/FM7 

DialinkerGFP; diasy5/CyO UASp-DialinkerGFP; dia[SY5] Frt[2L]{neo}, 

matGAL4[67]{w+} 

diasy5; GFPlinkerDia w ; dia[SY5] Frt[2L]{neo}, matGAL4[67]{w+} ; 

UASp-GFPlinkerdia / TM3, Sb 

UASp-Cip4GFP∆SH3 W; UASp-Cip4GFP∆SH3{w+} 

Flp122; ovoD2L; ∆Cip4 hs-Flp[122]; ovoDFrt2L[40A]/If/CyO, 

hs-hid{w+}; ∆Cip4/∆Cip4 

 

Fly stocks from Bloomington Drosophila Stock Center used for complement 

test in this study: 

 

Rab6D23D, Aats, Ced-12c06760, Mt2, Pex19, Prd, CG14946, Df(2L)BSC208, 

Df(2L)BSC209, Df(2L)ED8142, Df(2L)BSC214, Df(2L)BSC213, Df(2L)BSC145, 

Df(2L)BSC241, Df(2L)BSC244, Df(2L)ED761, Df(2L)ED775, Df(2L)BSC277, 

Df(2L)BSC892, Df(2L)BSC159, Df(2L)BSC812, Df(2L)BSC243, Df(2L)BSC826, 

Df(2L)BSC891, Df(2L)BSC407, Df(2L)Exel6031, Df(2L)Exel6033. 

2.1.12 Oligonucleotides used in this study 

All oligonucleotides used in this study were ordered from Eurofins genomics.  
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Table 2.4 Oligonucleotides used in the study 

Oligo No. sequence 5'-> 3' Description 

ZL01 
CGCGGTACCATGGTGAGCA

AGGGCGAGGAGCTGT 

Forward primer for cloning of 

GFP-Linker into pBSKII with 

KpnI 

ZL02 
CGCGAATTCGACCGGAGCT

GCCAGAGC 

Reverse primer for cloning of 

GFP-Linker into pBSKII with 

EcoRI 

JG336 
AAGAAGGAGATATACCATGA

GCTGGCAAGATTATGTG 

Foward primer for InFusion 

cloning of Profilin into pET15b 

with NcoI 

ZL03 
ATGGCTGCTGCCCATGCTA

GTACCCGCAAGTAATC 

Reverse primer for InFusion 

cloning of Profilin into pET15b 

with NcoI 

ZL04 
GGCCATGGGAGGATCACTC

AATCTCAGCCGGGCCGAG 

Foward primer for InFusion 

cloning of 

Cip4∆FBAR∆SH3/Cip4∆FBAR 

into pGEX-6OH with BamHI 

ZL05 
GATGAGATCTGGATCCTAA

GCATAGAGCGTGATCTC 

Reverse primer for InFusion 

cloning of Cip4∆FBAR into 

pGEX-6OH with BamHI 

ZL06 
GATGAGATCTGGATCTCAC

GATGCGGCCGCATTAAG 

Reverse primer for InFusion 

cloning of Cip4∆FBAR∆SH3 into 

pGEX-6OH with BamHI 

ZL07 
GGGACAACTGAACGAGTCG

G 
Cip4 Sequence primer 

ZL08 
CTGGTGGCCGTCGGCACTT

GGC 
Cip4 Sequence primer 

ZL09 
TAGTGGATCTGGATCCATG

CTGTGCTGCATCAGAAG 

Foward primer for InFusion 

cloning of Palmitoylated EYFP 

into pUASp with BamHI 

ZL10 
CGAGGTCGACTCTAGATTA

CTTGTACAGCTCGTCCAT 

Reverse primer for InFusion 

cloning of Palmitoylated EYFP 

into pUASp with XbaI 

ZL11 ACTCTAGGCTCTAGGATAAC

Foward primer for nest PCR of 

Palmitoylated EYFP from UBb5 

plasmid 

ZL12 GTTATCTCGAATCGCGCGTT

Reverse primer for nest PCR of 

Palmitoylated EYFP from UBb5 

plasmid 
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ZL13 GGCTACGGCCTGCAGTGC 
Palmitoylated EYFP sequence 

primer 

ZL14 CTTGAAGTCGATGCCCTT 
Palmitoylated EYFP sequence 

primer 

ZL15 
GAGGATCCTTACTTGTACAG

CTCGTCC 

Reverse primer for cloning of 

Linker (Right part)-GFP into 

pBSKII with BamHI 

ZL16 

GCTCTAGAGGCTCTGGCAG

CTCCGGTGGCATGGTGAGC

AAGGGCGA 

Forward primer for cloning of 

Linker(Right part)-GFP into 

pBSKII with XbaI 

ZL17 

GCCTCTAGAGCTCTGAAAAT

AAAGGTTTTCCGCGGAGCC

TAGAACCT 

Reverse primer for cloning of 

Dia-Linker (left part) into pBSKII 

with XbaI 

ZL18 
TAGCGGCCGCATGTCTCGT

CACGAGAAAACG 

Forward primer for cloning of Dia 

into pBSKII with NotI 

ZL19 TCCCAGTCACGACGTTG pSKII Sequence primer 

ZL20 TGAGCACCACGTTCAGAC Dia sequence 

ZL21 ATGGAGGAGTTCTTTGCG Dia sequence 

ZL22 CTGACCCTGAAGTTCATC GFP sequence 

 

2.1.13 Plasmids 

 

Table 2.5 Plasmids were used in this study 

Name Description Source 

pET-15b Protein expression in E.Coli Novagen 

pUASp Making transgenic flies based 

on P element insertion 

Lab of 

Grosshans 

Delta2-3 Turbo Transposes vector for making 

transgenic flies based on p 

element insertion 

Lab of 

Grosshans 

pUASp-attB Making transgenic flies with 

attB/phi-C31 system 

Lab of 

Grosshans 

pBS (SK-)-Dia (EST)  Dia cDNA clone Lab of 

Grosshans 
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pBS (SK-)-Chic (EST) Drosophila profilin cDNA clone Lab of 

Grosshans 

pQE-ZZ-DiaC DiaC expression in E.Coli Lab of 

Grosshans 

pQE-ZZ-DiaN DiaN expression in E.Coli Lab of 

Grosshans 

pGEX6P2-CIP4 FL Expression of GST-CIP4FL in 

E.Coli 

Dr. Sven 

Bodgan 

(Yan et al., 

2013) 

pGEX6P2-CIP4∆SH3 Expression of GST-CIP4∆SH3 

in E.Coli 

 

Table 2.6 Plasmids were generated in this study 

Name Description 

pET-profilin Expression of Drosophila profilin in E.Coli 

without any tag 

pGEX60H-Cip4∆FBAR Expression of GST-CIP4∆FBAR in E.Coli 

GST-tag fused on N-terminal of Cip4∆FBAR 

pGEX60H-Cip4∆FBAR∆SH3 Expression of GST-CIP4∆FBAR∆SH3 in 

E.Coli GST-tag fused on N-terminal of 

Cip4∆FBAR∆SH3 

pGEX60H-Cip4-SH3 Expression of SH3 domain in E.Coli 

GST-tag fused on N-terminal of SH3 domain 

pUASp-GFP-linker-Dia Making transgenic flies with GFP-linker-Dia; 

GFP fused on N-terminal of Dia 

pUASp-Dia-tev-linker-GFP Making transgenic flies with GFP-linker-Dia; 

GFP fused on C-terminal of Dia 

pUASp-palmitoylated-YFP Making transgenic flies with palmitoylated-YFP which 

labeled the membrane 

pUASp-attB-Cip4∆SH3 Making transgenic flies overexpressing 

Cip4∆SH3 
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2.1.14 Microscopy 

Zeiss Stemi 2000 (Carl Zeiss), Leica MZ125 (Leica), Microinjection 

microscope (Carl Zeiss), LSM 780 (Carl Zeiss), Zeiss Axiovert 200 M Ultra-view 

spinning Disc confocal microscope (Carl Zeiss), Zeiss Axioplan 2 Fluorescence 

microscope (Carl Zeiss) 

2.1.15 Other reagents and materials  

-Histone-Alexa488 for injection Life technologies 

-Complete Mini (EDTA-free) Protease Inhibitor Cocktail Roche 

-Aquapolymount  Polysciences, Inc 

-Coverslips Menzel 

-Glass slides Thermo Scientific 

-Fly vials Greiner 

-Glass pipettes (25ml, 20ml, 10ml, 5ml) Silber Brandt 

-Pasteur pipettes Brandt 

-Glass homogenizer B. Braun Biotech International 

-Petri dishes Greiner 

-Pipet-aid  Drummond 

-Micropipettes (1000μl, 200μl, 20μl, 2μl) Gilson 

-Micropipette tips (1000μl, 200μl, 20μl, 2μl)  Eppendorf 

-Eppendorf tubes (1.5ml, 2ml, 5ml) Eppendorf 

-PCR tubes Brand, Wertheim 

-Falcon tubes (50 ml, 15 ml) BD Falcon 

-Protein condensator Vivaspin sartorius 

-Dialysis tube ROTH 

-10S and 3S VoltaLef Halocarbon oil Lehmann & Voss & Co. 

-Buchner funnel  
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-C 10/10 Column GE Healthcare Life Sciences 

 

2.1.16 Other equipment  

-Äkta pure GE Healthcare Life Sciences 

-Odyssey CLx Infrared imaging system LI-COR Biosciences 

-Thermal Cycler Bio-rad 

-Needle puller P-87 Flaming/Brown Micropipette Puller-Sutter Instrument Co 

-Sonicator Sonifier Cell Distuptor Branson Ultrasonics 

-Microfluidizer EmulsiFlex-C5, Avestin 

-Microinjector  FemtoJet - Eppendorf 

-Western-Blot  Trans-blot SD Semi-Dry Transfer Cell - BIO-RAD 

-Homogeniser Dounce 

-Pump P-1 Pharmacia Biotech 

2.1.17 Softwares  

Adobe Photoshop CS6 and Adobe Illustrator CS6 from Adobe were used for 

picture arrangement. FIJI (NIH) was used for measurement gray value in FRAP 

experiments. Zen 2012 (Carl Zeiss) was used for taking picture with LSM780. 

Lasergene (GATC biotech) was used for DNA plasmids editing. Microsoft excel and 

Microsoft word (Microsoft) were used for calculation and editing. Zotero (Roy 

Rosenzweig Center for History and New Media) was used for management of 

literatures.   
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2. 2 Methods 

2.2.1 DNA methods  

2.2.1.1 Standard methods in molecular biology  

     All the molecular cloning methods were carried out according to 

Sambrook and Russel, 2001, unless otherwise stated. 

 

2.2.1.2 Isolation of DNA form adult flies 

About 200 flies were anesthetized on ice and transferred to a mortar with 

liquid nitrogen and grinded with a pestle grinder until the flies became to a 

homogenous powder. The powder was transferred to a cooled Dounce 

homogenizer containing 5 ml of homogenization buffer. After grinding with a few 

strokes, debris were removed by centrifuge at 1000 rpm for 1 min. The 

supernatant was transferred to a new tube. After centrifugation at 8000 rpm for 

5 min, the nuclei were in the pellet. The pellet was resuspended in 0.5 ml 

homogenization buffer, and incubated at 37°C for 45 to 60 min after proteinase 

K (final concentration of 100 µg/ml) and 50 µl of 10% SDS were added and 

mixed well by swirling and rocking.  

 

0.5 ml phenol/chloroform was added and mixed for 5 min. The sample was 

centrifuged at 13,000 rpm for 5 min. The upper phase was transferred to a new 

Eppendorf tube. This step was repeated to remove protein completely. 0.5 ml of 

Chloroform was added to this and mixed well. The sample was centrifuged 

again at 13,000 rpm for 5 min. The upper phase was again transferred to a 

fresh Eppendorf tube. NaCl was added to a final concentration of 200 mM and 

mixed well. Two volumes of 100% ethanol was added and mixed by gentle 

swirling. The DNA appeared at the interface as a clump. The DNA pellet was 

precipitated by centrifugation of 13000 rpm for 5 min. The pellet was washed in 
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80% ethanol and then 100% ethanol. Supernatant was discarded and pellet 

dried in the Speedvac. The dried pellet was resuspended in 0.5 ml of TE buffer. 

 

2.2.1.3 Polymerase chain reaction (PCR)  

 

PCR were carried out using Taq or Pfu DNA polymerase which were 

generated in the lab. The following reagents were mixed for the standard PCR: 

50-200 ng DNA template,  

0.5 μM forward and reverse primers,  

50 μM dNTP (each),  

10X PCR buffer (depending on the polymerase),  

1-2 units (per 50 μl of reaction) Taq or Pfu polymerase.  

The PCR were done using the following conditions:  

 

Step 1 (Initial denaturation): 95°C - 2 min  

Step 2 (Denaturation): 95°C - 30 sec  

Step 3 (Annealing): 50-60°C - 1 min  

Step 4 (Elongation): 72°C - 1 min/Kb to be amplified  

Step 5 (Final elongation) 72°C – 10 min  

 

2.2.1.4 In-fusion cloning  

In-fusion cloning was carried out according to the manufacturer’s 

instructions.  

 

2.2.1.5 DNA sequencing  

DNA sequencing was carried out with the sequencing facility at the Department 

of Developmental Biochemistry, GZMB, University of Göttingen. Sequencing 

samples were prepared according to the instructions. 

 

Repetition of 
steps 2 to 4  
for 20-35 times 
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2.2.2 Protein purification  

2.2.2.1 Preparation of Poly-L-proline column 

3 g of dry CNBr-activated-sepharose beads were swelled in 30 ml of 1 mM 

HCl for 15 min. The beads were washed on a sintered glass filter funnel with 

about 600 ml of 1 mM HCl and subsequently washed by coupling buffer. 

     0.25 gm of poly-L-proline was dissolved in 20 ml ice-cold ddH2O. The 

poly-L-proline solution was added to 50% slurry of activated Sepharose with 

stirring and followed by 2-hour stirring at room temperature and overnight stirring 

at 4°C. 10X quench buffer was added to the slurry beads. The resin was washed 

with 2 L dd H2O in sintered glass filter funnel and store in 1X storage buffer. The 

resin was poured into the C10/10 column and washed by 6 M urea, H2O, 20 % 

ethanol and again H2O.  

 

2.2.2.2 Purification of Profilin 

pET-Profilin was transformed into E.Coli BL21(DE3). The expression of 

profilin was induced when the OD600 reading of the culture reached at 0.6. 0.2 mM of 

IPTG was added for the induction. After 4 hours at 37 °C induction, the cells were 

harvested by centrifuging at 5000rpm for 30 min. 

The cells were resuspended in P buffer and incubated with 1mg/ml 

lysozyme and a pinch of DNase for 30 min on ice. The cells were then lysed 

using either microfluidizer or sonifier (4X1min, output level 5, 40% duty cycle). 

The soluble part was obtained by centrifuging twice at 15,000 rpm for 20 min 

each to remove the insoluble fraction. The clear supernatant (soluble fraction) 

was passed through the prepared a Poly-L-proline column (equilibrated with P 

buffer before use) by P-1 pump at the speed of 1 ml/min and the flow through 

was reloaded once. The column was washed with 10 X column volume and 

eluted with elution buffer. The protein solution was precipitated by ammonium 
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sulfate (final concentration of 2.4 M) at 4°C. The protein pellet was collected by 

centrifugation 15K for 40 min at 4°C, and dissolved in 0.5 ml P buffer. The 

protein solution was applied to gel filtration with Superdex75 (16/60) to get rid of 

the remaining DMSO and salt. After gelfiltration, the protein was concentrated 

with vivaspin 15 (MW5000). The protein was stored in P buffer with 60% glycerol 

at -20°C. 

 

 

Figure 2.1 Purification of profilin using poly-L-proline column. SDS-PAGE showing samples 

from different steps of profilin purification. Half of profilin remained in the pellet after lysing cells. 

After binding to the poly-L-proline column, the profilin band is lighter than input (supernatant). 

The protein was eluted from the column and precipitated by (NH4)2SO4 and went through 

gelfilteration. After concentration, the protein was stored in-20°C. 

 

2.2.2.3 Purification of His-tag proteins 

Expression of ZZ-DiaN–His6X(1..511) and ZZ-DiaC-His6X (512..1091) 

were induced by adding 0.1 mM IPTG at OD600 of 0.6 and incubated at 37°C for 

4 hours. The cells were harvested by centrifuge and lysed in His-tag protein lysis 

buffer as described previously. The supernatant was applied to a 

Nickel-Sepharose prepacked column (HisTrap HP column 1 ml) using Äkta pure 
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system. After washing with approximately 10 ml of wash buffer, the protein was 

eluted with elution buffer. Since the eluted protein solution contained high 

concentrated imidazole, buffer exchanging was done immediately using PD10 

desalting column, and the protein was concentrated using vivaspin and stored in 

storage buffer at -20°C.  

 

2.2.2.4 Purification of GST-tag proteins 

Expression of GST-Cip4 (1..631), GST-Cip4∆SH3(1..565), 

GST-Cip4∆FBAR (190..631), GST-Cip4∆FBAR∆SH3 (190..565), GST-SH3 

(564..631) were induced and the cells harvested, lysed as described previously, 

but in the GST-tag protein lysis buffer. The supernatant was applied to a 

Glutathione Sepharose prepacked column (GSTrap HP column) using Äkta pure 

system. After washing with approximately 10 ml of wash buffer, the protein was 

eluted with elution buffer. After buffer exchange, the protein were concentrated and 

kept at -20°C. Alternatively, the GST tag were cleaved using PreScission 

protease as following described.  

 

2.2.2.5 Cleavage of GST-Tag using PreScission protease 

GST-Cip4 and GST-Cip4∆SH3 were transferred tin the dialysis bag with 

PreScission protease. The storage buffer without glycerol was used as dialysis 

buffer. The volume of dialysis buffer was 100X of the protein solution volume. 

Dialysis buffer was changed three times and each dialysis duration was more 

than 3 hours. Dialysis was done at 4°C. After dialysis, the glutathione was gone 

from the dialysis bag and GST-tag was already cut off by PreScission protease. 

Subsequently the protein solution was passed through GSTrap HP column, and 

the free GST tag bond to column and Cip4/Cip4∆SH3 went through. The flow 

through was collected, concentrated and stored in storage buffer at -20°C. 
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Figure 2.2 Cleavage of GST-Cip4 using PreScission protease. SDS-PAGE showing the 

efficient cleavage. GST tag was removed by passing through Glutathione column. The flow 

through was collected. After concentrating with vivaspin, the protein was stored in storage buffer 

at -20°C   

2.2.3 Affinity purification of antibodies 

2.2.3.1 Preparation of affinity column using the CNBr-activated Sepharose 

beads  

1 g of dry CNBr-sepharose 4B (activated) beads were swelled in 10 ml of 1 

mM HCl for 15 min. The beads were washed on a sintered glass filter with about 

200 ml of 1 mM HCl. The beads were transferred to falcon tube and washed with 

coupling buffer for 3 times. The purified protein (10 mg) was diluted in coupling 

buffer, and added to the beads in a 1:2 gel:buffer ratio. The mixture was rotated 

for 3 hours at room temperature. After making the beads settle down, the 

supernatant was discarded and the beads was washed with 5X volume of 

coupling buffer to remove excess protein. The beads were resuspended and 

poured into the C10/10 column. The column was washed with five cycles of 

alternating low and high pH buffers (Buffer I and Buffer II). Then the column was 

washed with five column volumes of PBS. The column was stored at 4°C.  
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2.2.3.1 Affinity purification of antibodies against Dia C terminal and N terminal 

fragment 

The serum was centrifuged twice at 15,000 rpm for 20 min each at 4°C. 

The cleared serum was then applied to the column at a flow rate of 0.5 mg/ml by 

P1 pump. The flow-through was reloaded to the column again. The flow-through 

was collected and saved. The column was washed by ten column volumes of 

PBS + 500 mM NaCl and then with PBS + 1 M NaCl. The elution was taken in 

the order of High salt, low pH and high pH elution buffer. For collecting low pH 

and high pH elution, 100 μl of neutralization buffer was added to the collection 

tubes in advance and 900μl fractions were taken from elution.  

A280 absorption was taken for each fraction, and peak fractions from the 

same elution were pooled together. The purified antibodies were 

buffer-exchanged to PBS using PD-10 column and concentrated to 5 mg/ml. 

Na-Azide was added to 0.02% to the antibodies and they were stored at 4°C. 

 

2.2.4 Binding test 

     The expression of GST-Cip4 was induced as describe previously. The 

cells pellet were resuspended using lysis buffer and aliquoted in Eppendorf 

1.5ml tube (equal to 50 ml culture). The suspended cells were lysed by sonifier 

(3X10s, output level 4, 40% duty cycle). After centrifugation at 14,000 rpm at 

4 °C for 15 min, the supernatant was transferred to a new tube. 100 μl of 

GST-Cip4 supernatant was added to 100 μl PBST-pre-washed Glutathione 

beads. Additional lysis buffer was added to make the volume up to 0.5 ml. After 

1 hour incubation at 4 °C, the beads were washed by lysis buffer containing 

PMSF (final concentration 0.5 mM). The beads were divided into 5 fractions, and 

purified DiaC and DiaN were added in each tube according the required 

concentration. Lysis buffer was added to each tube to make up the volume of 
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0.25 ml. After 1 hour incubation at 4 °C, the beads were pelleted using centrifuge 

with 500 g for 3 min. The supernatant was transferred to a new tube and 

centrifuged at 14,000 rpm for 2 min to get rid of the remaining beads, and the 

new supernatant was taken as unbound fraction. The beads were washed by 

lysis buffer containing PMSF for 3 times, and laemmli buffer was added to the 

beads as bound fraction. SDS-PAGE was performed. GST expressed sample 

were used parallel in this assay as control. 

2.2.5 Western blot  

Embryos were staged from 1.5 to 3 hours on apple-juice agar plates and 

dechorionated in 50% Klorix bleach for 90 seconds. The dechorionated embryos 

were collected into a Eppendorf tube and weighed. The weight of the embryos 

was determined (~1mg =100 embryos). The embryo was snap frozen in liquid 

nitrogen. The embryo were homogenized in 1X Lämmli buffer with the volume to 

make the final concentration 20 embryos/μl. The sample was heated to 95°C for 

5 min and centrifuged at 14,000 rpm for 1 min. The supernatant (protein extracts) 

corresponding to 10-30 embryos were loaded on the SDS-PAGE. The proteins 

from the gel were transferred onto a nitrocellulose membrane using a semi-dry 

transfer for 1 hour at 60 V/gel. The membrane was blocked in 5% milk powder in 

PBST (fresh made) for at least 30 min and incubated with primary antibody 

either overnight at 4°C or 2 hours at room temperature. The membrane was 

rinsed with PBT for three times and 4X15 min PBST washing followed. The 

membrane was incubated with secondary antibody for 1 hour at room 

temperature, protected from light. The membrane was rinsed in PBST for three 

times and washed with PBST for 4X15 min. The bands were detected using the 

Odyssey CLx Infrared Imaging system.  
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2.2.6 Immunoprecipitation  

Protein A beads were washed with PBS. After 1 hour incubation with rabbit 

DiaC antibody (antisera and purified antibodies) at 4 °C, the beads were washed 

with PBS for three times and kept on ice. The staged embryos were collected on 

the apple juice plate, and dechorionated with bleach, then weighted and frozen 

in liquid nitrogen. The embryos were homogenized in PIPA buffer using Dounce 

homogenizer. 1 ml RIPA buffer were required for 100mg embryo. The lysate was 

centrifuged at 14,000 rpm at 4°C for 15 min. The supernatant was added to the 

antibody-loaded beads as Input and rotated on a wheel for 2 hours at 4°C. The 

beads were centrifuged with 500 g for 5 min. The supernatant was taken as 

unbound sample. The beads were washed with RIPA buffer for three times. 2X 

laemmli buffer was added to the beads and boiled for 5 min. The supernatant 

was taken after centrifugation at 14,000 rpm for 1 min as bound sample. 

According to (1μg=100embryos), the Input, (~10 embryos), unbound (~10 

embryos) and bound (~500 embryos) samples were loaded on SDS-PAGE and 

followed by western blot.  

2.2.7 Fractionation of embryos 

The dechorionated wild type embryos were homogenized in fractionation 

buffer using Dounce homogenizer. The lysate was considered as total fractions. 

The lysate was centrifuged at 2500 rpm for 5 min at 4°C for two times to 

precipitate the nuclei. Supernatant was transferred into a new Eppendorf tube 

and centrifuged at 14,000 rpm for 15 min at 4°C. The lipid layer was removed by 

an aspirator. The clear supernatant (cytoplasmic fraction) was transferred to a 

new Eppendorf tube. The pellet (membrane fraction) was washed with 

fractionation buffer for 3 times. The total, cytoplasm, membrane fraction samples 

were added 2X laemmli buffer and heated 95 °C for 5 min and loaded on a 
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SDS-PAGE, followed by western blot detection. α-Tubulin was also detected as 

loading control.  

2.2.8 Generation of diasy5 and Ced-122L367germline clone  

The germline clone was performed following the instruction by Chou and 

Perrimon (Chou and Perrimon, 1992) with minor modifications. The heat shock 

for inducing flippase was performed at 37°C for 60min per day for two days 

(24-48 hr and 48-72 hr) after hatching. 

2.2.9 Generation of transgenic fly 

     The transgenic flies were generated with either P-element transposon 

system or an attB/phi-C31-based integration system (Bischof et al., 2007; 

Bownes et al., 1990). The generation process was followed standard protocol 

(Wenzl et al., 2010) (http://wwwuser.gwdg.de/~jgrossh/method).    

2.2.10 Mapping of unknown mutants with meiosis recombination and 

deficiency 

      Meiotic recombination mapping was used to narrow down the suspicious 

mutant region. Frt2L2R{w+}/al dp b pr Frt2L, 2L367 virgins were collected. The 

heterozygous for the chromosome carrying 2L367 mutant and recessive 

markers and the Frt2L2R{w+} recombined during meiosis and various classes of 

recombinant chromosomes went to the female egg and detected by crossing 

with al dp b pr Bl c px sp/SM1 males. The position of mutation was determined 

according to the proportion of different recombinant chromosomes. To get the 

finer localization of mutant, the complement test with deficiencies was done. 

     For the complement test with deficiencies, the mutant virgins were crossed 

with the males containing the molecular defined deficiencies on II chromosome. 

If the mutant/deficiency progenies are viable and fertile, then the mutant is out of 
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this deficiency region. If the mutant/deficiency progenies couldn’t be found, i.e. 

the deficiency cannot complement the mutation, it means the mutation is located 

within the region of the deficiency. The deficiency region covers several genes. 

In order to know which gene is mutated in the mutant line, the complement test 

with specific genes which were in the suspicious deficiency region was carried 

out. The cross strategy is the same as above. If the mutated gene cannot 

complement the original mutant, it means they are the same gene.  

2.2.11 Embryo fixation and immunostaining 

The embryo fixation and immunostaining process were followed standard 

protocol (Wenzl et al., 2010) (http://wwwuser.gwdg.de/~jgrossh/method). 

2.2.12 Injection of CK666 and Histone-Alexa488 

CK666, Arp2/3 inhibitor, was dissolved in DMSO. WT and dia germline 

clone embryos were dechorionated, dried in a desiccation chamber for 10 min, 

covered with halocarbon oil and injected posteriorly with desired concentration of 

CK666. DMSO was injected as control. After injection, the embryos were 

incubated for ~10 min and subsequently fixed. The vitelline membrane was 

removed manually. The embryos were collected in Eppendorf tube, washed by 

methanol and kept -20°C.  

To track the cell cycle, Histone-Alexa488 was injected into the WT and 

2L367 germline clone embryos with the final concentration of 2 mg/ml. The 

preparation of embryos was described above. After covered with halocarbon oil, 

Histone-Alexa488 was injected posteriorly. The fluorescent movie was recorded 

at the spinning disc microscope with a 25X oil objective. 
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2.2.13 Induction of shibire phenotype  

Embryos from shibire heterozygous or homozygous females were 

collected, kept at 32°C in a water bath for 30 minutes after dechorionation. The 

embryos were fixed as described previously. 

2.2.14 Live imaging 

Embryos were dechorionated, lined up, glued on to a coverslip and 

covered with halocarbon oil. Fluorescent live-images were taken either at the 

LSM with a 63X oil or glycerol objective or at the spinning disc with a 40X oil 

objective. Differential interference contrast microscopy movie was recorded at 

the spinning disc microscope with a 25X oil objective. 

2.2.15 Fluorescence recovery after photobleaching (FRAP) 

     In order to check turnover rate of Dia-GFP on membrane, bleaching of 

UASp-Dia-GFP under the driven of Maternal GAL4 was carried out in a given 

area using 100% laser power and 50 iterations at a scan speed of 5.  

For examining the membrane property during cellularization, the furrow 

and furrow canal labeled by GAP43-venus, palmityolated-YFP and 117GFP in 

wild type and dia germline clone background was bleached. From the surface 

view a range of Z-stacks were used to track the invaginating furrow canal during 

cellularization. The 100% laser power and 50 iterations were used for bleaching, 

and the recording speed was at 5 or 6 depending on how many z-stacks were 

taken. The other approach was doing FRAP from side view. In this case, the 

glycerol objective was used. The measurement was done with FIJI.  
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Chapter 3. Results 

3.1 Actin polymerization activity of Dia is suppressed by Cip4 

3.1.1 Approaches to identify the potential Dia interactor  

The activity of Dia is tightly regulated in eukaryotic cells. The 

intramolecular interaction between DID and DAD makes Dia in an autoinhibited 

state in the cytosol (Chesarone et al., 2010). The activation of Dia is achieved 

by binding of a RhoGTPase to GBD that relieves the autoinhibition via 

interrupting the interaction between DID and DAD. Meanwhile Dia is recruited 

to the membrane by RhoGTPase or other factors (Chesarone et al., 2010). 

However, in vitro studies showed that  RhoGTP in a physiological 

concentration cannot fully reconstitute the release of Dia autoinhibition 

(Grosshans et al., 2005; Li and Higgs, 2003), suggesting that additional factors 

are involved in activating Dia in vivo.  

Dia localizes at the membrane, especially is enriched at the furrow canal 

in the cellularization stage of Drosophila embryo (Figure 3.1). However, by 

western blotting of fractionation of same stage embryos, I could show that the 

majority of Dia is in the cytosol; only a small fraction shows up in the embryo 

membrane extraction (Figure 3.2). The cytoplasmic Dia is considered to be 

inactive, since Dia is recruited to membrane when it is active (Chesarone et al., 

2010). 
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Figure 3.1 Dia localizes at the membrane. Immunostaining of Dia in cellularization stage of 

Drosophila embryo. Dia localizes at membrane, and is enriched at the furrow canal. 

 

 

Figure 3.2 The majority of Dia is in cytosol. Fractionation shows distribution of Dia in the 

embryo. Only small portion is attached with membrane, while a large amount of Dia is in cytosol. 

The absence of α-tubulin in the membrane fraction indicates that the membrane fraction is not 

contaminated by cytoplasmic fraction. 30 embryos were loaded in each lane. 

 

 

To identify those unknown factors, I planned to use immuno-precipitation 

to pull down Dia and the associated protein complex, followed by 

Mass-Spectrum analysis. The membrane fraction of Dia will be used as a 

starting material for immuno-precipitation. In our lab we have rabbit and guinea 

pig source serum against Dia C terminal fragment (termed DiaC in the following 

text) which works nicely in immunostaining. However, in the western blotting, 

rabbit source serum shows a stronger background (Figure 3.3 A). On the other 

hand, DiaC is conserved in the formin family. In an attempt to get a more 

specific antibody, I used Dia N terminal fragment (termed DiaN in the following 

text) as the antigen to immunize rabbit and guinea pig. However, no specific 

bands were detected using DiaN serum both from guinea pig and rabbit (Figure 
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3.3 A). To remove the background, affinity purification of DiaC rabbit serum was 

employed (Figure 3.3 B). The background was reduced after affinity 

purification,  

purification,  

 

Figure 3.3 Western blot and immune-precipitation by Dia andtibodies. (A) Dia can be 

detected by DiaC antibodies raised in guinea pig and rabbit, and guinea pig antibody preforms 

better in western blot. However, DiaN antibodies couldn’t detect Dia band. (B) After affinity 

purification of DiaC rabbit serum, the unspecific bands are reduced. (C) Dia can be pulled down 

with serum and purified antibody. Detected by GP antibody. Empty beads were used as a 

control. 
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purification, though there were still some unspecific bands detected. 

Endogenous Dia was immuno-precipitated using those antibodies (Figure 3.3C). 

The purified antibodies can be used in large scale immune-precipitation and 

mass spectrometry which will be done in the future. 

The other approach for Dia IP is using GFP binder to pull down Dia-GFP 

complex from Dia-GFP transgenic fly embryos. Five UASp-GFP-Dia lines were 

generated by Dr. Christian Wenzl in our lab previously (Figure 3.4 and 3.5). 

However, the expression level when driven by maternal GAL4 is much higher 

than endogenous level (Figure 3.5 B). I checked the localization of GFP-Dia 

using live imaging. Nuclear exclusion of GFP-Dia was observed in these 

embryos. UASp-GFP-Dias were introduced in diasy5, matGal4 flies by crossing. 

After inducing the germline clones of diasy5 by Flipase-Frt system, the ectopic 

GFP-Dia can partially rescue diasy5 with a rescue rate of ~50%. 

 

 

Figure 3.4 Schematic representation of GFP-Dia constructs. The GFP with flexible linker 

was added at C or N terminal of Dia 

 

In order to get a better transgenic fly in terms of expression level and 

rescue capability, we did another round of making transgenic fly. We reasoned 

that the GFP at N-terminal could affect the Dia protein folding, resulting in a 

failure to rescue completely. A flexible linker with the amino acid sequence of 

AAAGSTGSGSSG was introduced between GFP and Dia. However, the linker 

did not show any improvement (Figure 3.5). 
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Figure 3.5 The localization and expression level of GFP-Dia in 10 lines (A) Live images of 

different GFP-Dia lines. Addition of GFP with linker at C terminal improves the localization of 

GFP-Dia. The cell border was shown in high magnification. All images were taken with the 

same settings. (B) Western blot showed that the level of GFP-Dia is much higher than 

endogenous level. 15 embryos were loaded in each line. Tubulin is detected as loading control.  

 

It was previously found in our lab that N terminal fragment of Dia is 

responsible for protein localization. Adding extra amino acid at the N terminal 

may have an effect on the localization function. To overcome this problem, GFP 

tag was translocated at the C terminal fragment of Dia with the flexible linker. 

Meanwhile, a TEV cleavage site was also introduced between the linker and 

Dia. Four lines were generated after plasmid injection; two lines are with the 

pUASp-Dia-tev-linker-GFP insertion into the X chromosome and the other two 
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lines are into the third chromosome. Membrane localization of Dia-GFP could 

be observed, though there was still nuclei exclusion distribution (Figure 3.5).  

In the fixed sample, F-actin intensity in Dia-GFP is higher than wild 

type embryo which was stained in the same Eppendorf tube, suggesting the  
 
Figure 3.6 The ectopic Dia-GFP induces F-actin polymerization. (A) Dia-GFP and WT 

embryos were stained in the same tube, and were distinguished by GFP booster signal. The 

phalliodin fluorescence intensity is much higher in Dia-GFP embryos than in wild type embryos, 

indicating the ectopic Dia-GFP can induce F-actin polymerization. (B) Quantitative analysis of 

phalliodin fluorescence intensity in wild type and Dia-GFP embryo. 

 

A 

B 
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type embryo which was stained in the same Eppendorf tube, suggesting the 

activity of ectopic Dia-GFP in the embryo even though without extra Rho activity  

(Figure 3.6). However, the rescue rate is not improved (Table 3.1).  

   

Table 3.1 The rescue rate of different transgenic Dia-GFP construct 

Dia-GFP 

construct 

dasy5, matGal4 67; 

UASp-GFP-Dia 

UASp-DialinkerGFP; 

diasy5, matGal4 67 

UASp-Dia-linker-GFP; 

diasy5, matGal4 67 

Rescue rate 

~50% 

(Courtesy: Dr. Christian 

Wenzl) 

~48% 

n=130 

~49% 

n=89 

 

In order to check Dia mobility at the membrane, FRAP analysis was done 

using Dia-linker-GFP embryos. The signal on the membrane recovered within 

the range of minute. Compared with other membrane associated proteins, such 

as Slam and PDZ domain containing protein, Dia showed faster mobility 

(Acharya et al., 2014). 

 
 

Figure 3.7 Mobility of Dia is fast. Dia-GFP is enriched at the membrane, as indicated by 

yellow arrows. The first image was taken before bleach, and the second was taken immediately 

after bleach. The cytoplasmic signal is hardly bleached, because of the fast exchange in 

cytoplasm. But the membrane signal completely disappeared after bleaching (the second 

yellow arrow). The following images were taken every 5 sec, and the signal on the membrane 

recovered in less than 1 min (the third yellow arrow). 
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3.1.2 Cip4 is an interactor of Dia  

S. Bogdan and colleagues (Yan et al., 2013) found Cip4 and Dia can 

form a complex in S2 cells, which was shown by Co-immuno-precipitation. To 

confirm this result, binding assay was performed with purified proteins. Dia C 

terminal half and N terminal half were purified as indicated (Figure 3.8 and 3.9). 

Cip4 binds to DiaC with a KD of ~100 nM (Figure 3.10). 

 

 

 

Figure 3.8 Schematic representation of proteins purified in this study.  

 

 
Figure 3.9 Purified proteins used in this study. The samples were loaded on SDS-gel and 

stained with Coomassie Blue. 
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Tabel 3.2 Purified proteins in this study 

 

Protein Total amount of 

LB culture  

Column  yield 

ZZ-DiaC-Hisx6 3 l HisTrap HP column (1 ml) ~10 mg 

ZZ-DiaN-Hisx6 3 l HisTrap HP column (1 ml) ~10 mg 

Cip4 0.5 l GSTrap HP column (1 ml) ~1 mg 

Cip4∆SH3 0.5 l GSTrap HP column (1 ml) ~1 mg 

GST-Cip4∆FBAR 0.5 l GSTrap HP column (1 ml) ~1.8 mg 

GST-Cip4∆FBAR∆SH3 0.5 l GSTrap HP column (1 ml) ~1.1 mg 

GST-SH3 0.5 l GSTrap HP column (1 ml) ~1.8 mg 

Profilin 1 l poly-L-proline column ~20 mg 

  

 

 

 

Figure 3.10 Physical interaction between Cip4 and Dia. (A) The binding of Dia to Cip4 was 

detected by binding assay. DiaC, rather than DiaN, could bind to Cip4. (B) Different amount of 

DiaC were added to GST-Cip4 or GST beads. SDS-Gels were stained with Coomassie Blue. 
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3.1.3 Cip4 inhibits Dia actin polymerization activity in Pyrene assay 

(Pyrene assay was done by M. Winterhoff in Prof. J. Faix lab)  

Next, we wondered whether the binding of Cip4 show some effect on Dia 

actin polymerization activity. Pyrene assay was employed to test the actin 

polymerization activity of Dia. Compared with dDia1 P2 (dictyostelium formin 

with two poly-proline stretches), ZZ-DiaC showed stronger actin polymerization 

activity (Figure 3.11 A). In the titration experiment, a series of ZZ-DiaC dilution 

from 0.125 nM to 1 μM was used. 2.5 nM of ZZ-DiaC was found to be sufficient 

for polymerizing actin filaments. This is similar to the actin polymerization 

activity of mDia1 (Li and Higgs, 2003) (Figure 3.11 B, C and D).  

 

Figure 3.11 Dia is a strong actin nucleator shown in Pyrene assay. (A) Dia showed strong 

actin nucleation activity compared with P2. (B-D) Dia induced actin polymerization at indicated 

concentrations. 2.5 nM Dia (green line in B) could induce sufficient actin filaments which can be 

detected by Pyrene assay. 
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It has been reported that the activity of Dia is inhibited by the 

intramolecular interaction of DID and DAD domains as mentioned previously 

(Campellone and Welch, 2010). Theoretically, DiaN inhibits DiaC activity in the 

ratio of 1:1. However, in the titration inhibition assay, we found 10X more DiaN 

was needed for the inhibition (Figure 3.12). One possibility is that ZZ-DiaN may 

be not stable in lower concentration. After dilution, ZZ-DiaN lost the inhibition 

activity in a few minutes (data not shown).  

To test whether Cip4 was able to affect actin assembly, we added 

increasing amounts of purified Cip4 protein to 10 nM ZZ-DiaC in the actin 

pyrene assay. We could show that Cip4 inhibited Dia activity in a concentration 

dependent manner (Figure3.12). 100 nM (10X more than DiaC) of Cip4 is 

sufficient for inhibition. 200 nM of Cip4 inhibited DiaC activity more efficiently, 

almost comparable to autoinhibition.  

Figure 3.12 Cip4 inhibits Dia actin polymerization activity. Polymerization of actin (2 mM, 

10% pyrene-labelled) in the presence or absence of DiaC, DiaN, Cip4, Cip4∆SH3 at the 

concentrations indicated. Cip4 inhibits Dia actin polymerization in a concentration-dependent 

manner. However, Cip4∆SH3 couldn’t inhibit Dia activity as effective as by Cip4. Normalized 

curves are shown. 

 

It was reported that SH3 domain could bind to proline-rich domain and 

the binding is involved in many cellular process (Aspenström, 2014). S. Bogdan 

and colleagues (Yan et al., 2013) showed that in S2 cells, the interaction of FH1 

domain (proline-rich domain) and SH3 domain is crucial for colocalization of Dia 
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and Cip4 in the cell periphery. So we tested whether SH3 domain is necessary 

in the inhibition effect of Cip4. In the pyrene assay, Cip4∆SH3 couldn’t inhibit 

DiaC activity as efficiently as Cip4 full-length.  

Next we checked if SH3 domain itself is sufficient to inhibit Dia activity. 

GST-SH3 domain was purified and used in actin pyrene assay. It was shown 

that GST-SH3 could inhibit DiaC activity. However, this inhibition needs higher 

molar excess of GST-SH3 (Figure 3.13).  

Figure 3.13 GST-SH3 is sufficient for inhibiting Dia activity. GST-SH3 can inhibit actin 

polymerization activity of Dia, but a relatively high concentration of GST-SH3 is needed. 

 

3.1.4 Cip4 inhibits Dia actin nucleation activity shown by TIRF microscopy 

(TIRF microscopy assay was done by M. Winterhoff in Prof. J. Faix lab) 

Pyrene assay is a bulk polymerization assay, which cannot distinguish 

the actin nucleation and elongation activity. However, it was reported that Dia 

has both activities (Campellone and Welch, 2010). In order to test whether the 

inhibition is due to a reduced nucleation activity, Total Internal Reflection 

Fluorescence (TIRF) microscopy was used in this study. As shown in Figure 

3.14, the single actin filament could be observed using TIRF microscopy and it 

was shown that DiaC has a strong actin polymerization activity. Here the 
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number of actin filaments was used as the representative of the nucleation 

activity. 

 

Figure 3.14 Single actin filament observed with TIRF microscopy. In the course of time, the 

number and the length of actin filaments are growing in the present of Dia and profilin. Scale bar: 

20μm 

 

10 nM ZZ-DiaC nucleated approximately three times more filaments 

compared to the actin control (Figure 3.15). Consistent with the pyrene assay, 

the nucleation activity of DiaC was strongly inhibited by Cip4. Addition of a 

tenfold molar excess of Cip4 reduced the number of filaments comparable to 

the actin control (Figure 3.15). Cip4∆SH3 showed a weaker inhibitory effect 

than full-length Cip4, once more demonstrating the importance of the SH3 

domain for the Cip4-Dia interaction (Figure 3.15).  

3.1.5 Cip4 inhibits actin elongation activity of Dia 

Next, we tested whether elongation activity is also affected by Cip4. The 

rate of actin filament growth was measured using TIRF microscopy. Actin 

elongation activity mediated by Dia is largely dependent on binding of 

actin-profilin to FH1 domain. Purified Drosophila profilin was used in the 

following experiments. In order to allow usage of relatively high concentrations 

of Cip4 comparable to profilin-actin complex, the F-BAR domain was deleted 

since full-length Cip4 formed aggregates above 500 nM at the conditions of the 

actin polymerization assays (Figure 3.16). In pyrene assays with DiaC and 

profilin, Cip4∆BAR as well as GST-SH3 inhibited actin polymerization (Figure 

3.17).  
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Figure 3.15 Cip4 inhibits Dia actin nucleation activity shown in TIRF assay. The number of 

filaments is reduced by addition Cip4. Cip4∆SH3 showed a weaker inhibition, which is 

consistent with pyrene assay, suggesting that inhibition is dependent partially on SH3 domain. 

(A) TIRF images scale bar: 20μm. (B) Quantification of filaments number.  

 

Notably, the inhibitory effect by the GST-SH3 domain was stronger in the 

presence of profilin compared with the absence of profilin, which supports a 

competition between profilin–actin and Cip4-SH3 for interaction with Dia-FH1.  

I tried to carry out the in vitro competitive binding assay using purified 

proteins. However, I couldn’t get DiaC-Cip4-profilin complex in the bound 
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fraction. The interaction between profilin and poly-proline domain is weak 

(KD=~50 mM) (Perelroizen et al., 1994) and therefore couldn’t be detected by 

Pulldown assay.  

 
 

Figure 3.16 TIRF image showing actin aggregation caused by high concentration of Cip4. 

2 μM of Cip4 protein was added. The bright points indicated by yellow arrows are actin 

aggregation. Scale bar: 20 μm  

 

 
 

Figure 3.17 Actin polymerization shown in pyrene assay in present of profilin. Consistent 

with previous assay, Cip4 inhibits Dia activity, and SH3 domain is sufficient for inhibition. 

 

In the TIRF assay, we analyzed the filament elongation rate in the 

absence or presence of different proteins (Figure 3.18). In the presence of 

profilin, DiaC increased 10-fold barbed-end elongation with a speed of 140 

subunits/second, compared with the actin control elongation speed of 12 

subunits/second (Table 3.3 and Figure 3.18). In the presence of profilin and 
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Cip4∆BAR, most filaments grew with a speed of ~11 subunits/second, which is 

close to actin control speed. However, there were about 10% filaments which 

were identified as fast-growing filaments elongating with ~90 subunits/second.  

 

 

Figure 3.18 Cip4 reduced the actin filament elongation rate in present of profilin and Dia. 

(A) TIRF microscopy images were taken at indicated time points. Besides the reduced number 

of actin filaments due to inhibition effect of Cip4, the rate of elongation is also reduced. 

Cip4∆SH3 doesn’t show the elongation rate inhibition effect. Scale bar: 10 μm (B) 

Quantification of the number and elongation rate of actin filaments.  

 

The reduction of fast elongation rate implied that Cip4 binding interferes with 

the elongation activity of Dia. However, Cip4∆FBAR∆SH3 could not reduce the 
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rate of fast filament elongation as effect as Cip4∆FBAR. These observations 

indicate that Cip4 interferes with both Dia activities. 

 

Table 3.3 Numbers and elongation rate of actin filaments 

 

Reaction conditions Number of 

filaments 

Fast-growing 

filaments 

  

  

  

  

Elongation rate

 in subunits/s 

N 

  

S.D. 

  

P (in %)

  

S. D. 

  

v S. D. 

    

1,3 µM actin + 2,6 µM 

Profilin 

11,5 6,66 0 0   11,71 1,77 

+ 1.3 µM Cip4DBar 6,66 3,51 0 0   10,75 0,82 

                

+ 20 nM DiaC 136,67 37,90 81,53 6,66 fast-growing 138,78 23,09

          slow-growing 11,07 1,32 

                

+ 20 nM DiaC 22,8 12,56 6,45 7,00 fast-growing 91,99 7,62 

+ 1.3 µM Cip4DBAR         slow-growing 11,15 0,56 

                

+ 20 nM DiaC  65 20,74 6,16 1,69 fast-growing 122,04 19,99

+ 1.3 µM Cip4DBarDSH3         slow-growing 10,05 1,26 

3.2 Dia is essential in membrane compartmentalization during 

cellularization 

Since complete loss-of-function of Dia prevents oogenesis(Castrillon and 

Wasserman, 1994), I used a weak allele diasy5 to study the role of Dia in 

cellularization in the following experiments (Figure 3.19). Embryos of diasy5 

germline clone show multinuclear cells in the cellularization stage, due to the 

lack of metaphase furrow (Grosshans et al., 2005) (Figure 3.20). 
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Figure 3.19 Schematic representation of diasy5 allele used in this study. diasy5 was 

generated by chemical mutagenesis. Point mutation leads to changing of the 92 amino acid 

from Ser to Leu in Rho-binding domain. 

 

 

 

 

Figure 3.20 diasy5 leads the typical dia phenotype. In diasy5 germline clone embryo, 

multinuclei cell form as indicated by yellow arrow, due to the lack of metaphase furrow.  

3.2.1 Lateral marker proteins are not excluded from the furrow canal in dia 

mutant 

During the initial phase of cellularization, the basal and lateral domains of 

plasma membrane are established and maintained (Lecuit and Wieschaus, 

2000). Patj and Slam exclusively localize at the furrow canal, whereas 

Discs-large (Dlg) specifically localizes at the lateral membrane domain. 

RhoGEF2, Dia, F-actin are enriched at furrow canal (Figure 3.21 A and B). 

However, the lateral membrane marker Dlg spread into the furrow canal and 

overlapped with Slam in dia germline clone embryos. The mislocalizition of Dlg 

can be found all through cellularization process (Figure 3.21 B and C). 

Moreover, Slam, the protein marker for furrow canal remains strictly at basal 
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domain, suggesting Dia is not required for maintaining the furrow canal, but 

essential for exclusion of lateral membrane protein from the furrow canal, and 

defining or maintaining the separation of lateral and basal domain. 

 

 

 

Figure 3.21 Dia is important for lateral-basal polarity. (A) Schematic representation for the 

membrane domain separation during cellularization. Bazooka and E-Cadherin localize at the 

sub-apical domain to assemble adherens junctions. Dlg exclusively localizes at the lateral 

domain of membrane. Patj, Slam localize at furrow canal exclusively and RhoGEF2, Dia, 

F-actin localize at the membrane but are enriched at the furrow canal. A sharp boundary forms 

between lateral and basal domain. (B) Immunostaining of Dlg (green) and Slam (red) in wild 

type embryo, showing a clear boundary. The boundary is missing in dia mutant embryo.  (C) 

Profile plot was done along the invagination membranes, indicated in B by yellow bar in wild 

type and dia embryo, respectively.   
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3.2.2 Persistent tubular membrane invaginations in dia mutants 

     In the beginning of cellularization, the invaginating plasma membrane is 

highly dynamic, which can be seen as long tubular extensions stained by 

N-BAR protein Amphiphysin (Sokac and Wieschaus, 2008a) (Figure3.22 A). 

After 5-10 min, F-actin accumulates at the furrow canal and the tubular 

extensions disappear. It has been reported that cytochalasin treatment leads to 

persisting long tubular extensions even in the late stage of cellularization, 

suggesting that  

 

 

Figure 3.22 Dia is essential for membrane tubular extension suppression. (A) 

Conventional confocal images for different stages of embryos as indicated, showing tubular 

extension stained with Amph. (B) STED microscopy images showing the same pattern of Amph 

staining dots in tubular structure in wild type and dia mutant embryo (Courtesy: Dr. Christian 

Wenzl). (C) Statistics of furrow with tubular extensions in wild type and dia mutant embryo.  
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suggesting that F-actin is required for the stabilization of furrow canal (Sokac 

and Wieschaus, 2008a). 

The Amph staining in dia germline clone embryos showed a similar 

phenotype to cytochalasin treatment embryos, and the tubular extension 

persists through the cellularization process (Figure 3.22). In wild type embryos, 

the Amph tubules were only observed in cellularization early stage; in the 

middle and late stage, almost no Amph tubules could be found. In contrast, 

around 70% and 30% furrow canals were associated with Amph tubules in 

middle and late stage in dia germline clone embryos, respectively (Figure 3.22). 

These data suggest that Dia is required in suppression of tubular extensions 

after the furrow canal has formed.  

3.2.3 Cip4 protein antagonizes Dia function during cellularization 

     As shown previously, Cip4 binds to Dia and inhibits its actin 

polymerization activity. I also tested whether Cip4 interfered with Dia 

physiological function in vivo. Cip4 localizes at the membrane including furrow 

canal during cellularization (Figure 3.23). Cip4 deficient embryos develop 

normally, suggesting that a redundant pathway of Cip4 exists. 

 

 

Figure 3.23 Cip4 localizes at the membrane(Courtesy: Dr. Shuling Yan). Imuunostaining 

with Cip4 antibody staining at cellularization stage. scale bar: 10μm 

 

     I generated dia ∆Cip4 double mutant embryos. Similar to dia mutant 

embryos, the lateral marker Dlg spread into the furrow canal, and tubular 

extensions were observed in late stage (Figure 3.24). In the double mutant 

embryo, I didn’t see any enhancement or suppression of dia phenotype.  
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     Secondly, UASp-Cip4-GFP transgenic flies were generated. 

Overexpression of Cip4-GFP driven by maternal GAL4 leads to a phenocopy of 

dia germline clone embryo. Lateral marker Dlg overlaps with Patj at the furrow 

canal and multi-nuclear cells form due to the lack of invaginating furrow (Figure 

3.25). The counteracting behavior of Dia against Cip4 is dependent on the 

latter’s SH3 domain. To confirm the role of SH3 domain in vivo, 

UASp-Cip4∆SH3-GFP transgenic flies were generated. The overexpression of 

Cip4∆SH3-GFP didn’t show any defects in cellularization (Figure 3.26). 

 
 

Figure 3.24 dia ∆Cip4 double mutant embryo doesn’t show any enhancement or 

suppression of dia phenotype. Double mutant embryos were stained with indicated 

antibodies. In the double mutant embryos, Dlg spreads into furrow canal; and tubular extension 

stained with Amph is observed in late stage. scale bar: 10μm  
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Figure 3.25 Cip4 overexpression leads to a phenocopy of dia (Courtesy: Dr. Shuling Yan). 

The overexpressed Cip4 localizes at membrane. Dlg spreads into furrow canal and colocalizes 

with Patj. Due to lack of metaphase furrow, multinucleated cells form. 

 

 

Figure 3.26 Cip4∆SH3 over-expression does not induce cellularization defects. 

GFP-Cip4∆SH3 embryo was fixed and stained with indicated antibodies. (A) Contrast with 

GFP-Cip4, GFP-Cip4∆SH3 shows the nuclear exclusion rather than membrane localization. 

The F-actin organization is not disturbed. (B) The localization of Dlg and Slam are the same as 

in wild type embryos. Scale bar: 10μm 

 

These data suggest that overexpression of Cip4 can antagonize Dia in vivo 

and this activity of Cip4 depends on its SH3 domain. 
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3.2.4 Role of Arp2/3-dependent F-actin at the furrow canal 

     It has been reported that Cip4 promotes Arp2/3 activity for actin 

polymerization (Fricke et al., 2009). I wondered whether Arp2/3-dependent 

F-actin is involved in antagonism of Cip4 and Dia. However, arp3 germline 

clone embryos couldn’t develop to cellularization stage (Leibfried et al., 2013). 

CK666 is a small molecule that can inhibit Arp2/3 activity specifically (Hetrick et 

al., 2013). CK666 was injected in Utrophin-GFP emrbyos. Utrophin is an F-actin 

binding protein, and Utrophin-GFP is used for F-actin labelling for live imaging 

(Levayer et al., 2011). The fluorescence was reduced after injection (Figure 

3.27). 

 

Figure 3.27 CK666 injection reduces the Utrophin-GFP signal in embryo. The injection site 

was indicated by yellow arrow. The GFP signal was reduced in the posterior of embryo 

compared with the anterior half embryo.  

 

      Next I injected CK666 in wild type and dia germline clone embryos. 

Injection of CK666 at the onset of cellularization suppressed the membrane 

tubular extensions at furrow canals in wild type. In contrast, injection CK666 in 

dia germline clone embryos didn’t lead to the reduced number of tubular 

extensions. To confirm the role of Arp2/3 in producing membrane tubular 

extensions, I also checked the embryos from arp3/+ female. The arp3/+ flies 

can survive but only have one copy of arp3 gene, and the embryo from these 

flies are only loaded with a reduced number of arp3 gene products compared 

with wild type. In these embryos, the number of membrane tubular extensions 

was significantly reduced. These data show that Arp2/3 promotes formation of 

tubular extensions, and Dia counteracts this activity (Figure 3.28) 
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Figure 3.28 Arp2/3-dependent F-actin promotes tubular extension. (A) At the onset of 

cellularization, the number of Amph tubules is reduced in CK666 injected and Arp3/+ embryo, 

indicating Arp2/3 promotes tubular extensions. However, CK666 injection couldn’t reduce the 

tubular number in dia embryos, suggesting that Dia counteracts the promoting membrane 

extension activity of Arp2/3. (B) Quantification of furrows with tubular extensions. 

3.3 The mechanism of lateral-basal domain separation  

3.3.1 Basal junction and endocytosis are not involved in domain 

separation 

The polarity of epithelia is maintained during the course of cellularization. 

As shown in Figure 3.21, there is a very sharp boundary between lateral and 

basal domain in epithelia. However, this polarity is missing in dia embryos. In 

order to understand the mechanism of the lateral-basal boundary maintenance, 

two aspects were examined: 1) sorting mechanism by endocytosis and 

exocytosis and 2) F-actin-dependent resistance of membrane lateral diffusion. I 

began with examining the first possibility. Dynamin is a GTPase essential for 

scission during endocytosis. Endocytosis in the embryos was perturbed by 
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using a temperature-sensitive allele of dynamin, shibire (shiTS). The 

Amph-positive tubular extensions are longer in the embryos from shibire female 

due to reduced activity of Dynamin (Sokac and Wieschaus, 2008a).  

 

Figure 3.29 Sorting mechanism is not essential for lateral-basal domain separation. 

shibire phenotype is induced at 32 °C at the early(A) and late(B) cellularization. The domain 

separation is not defective.  

 

At the restrictive temperature (32 °C) shibire showed multi-nuclear cell 

and breaking of cell border which is a typical phenotype of dynamin (Georgiou 

et al., 2008) (Figure 3.29). Nevertheless the boundary between lateral and 

basal domain was maintained. This data argue against that the sorting 

mechanism mediated by endocytosis and exocytosis is involved in domain 

separation.  
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3.3.2 Dia mediated F-actin is important for the basal-lateral domain 

separation 

Dia loss-of-function (dia germline clone) embryos show furrow canal 

compartmentalization defects, which allows us to predict that F-actin is 

essential for furrow canal establishment and maintaining the lateral-basal 

domain boundary. But the difference in the property of membrane caused by 

endogenous F-actin is not clear in Drosophila cellularization process. 

In order to check the turnover rate of membrane in lateral domain and 

basal domain, I did FRAP experiments performed in palmitoylated-YFP and 

GAP43-Venus embryos. Both fluorescence markers label the plasma 

membrane including furrow canals. 

The palmitoylated-YFP signal is enriched at membrane, but the cytosol 

also shows some YFP fluorescence signal, implying that the localization of 

palmitoylated-YFP is in equilibrium between cytosol and plasma membrane. 

The fluorescence recovered after bleaching within a range of minute, and I 

couldn’t detect the difference between the recovery rate of palmitoylated-YFP in 

the lateral domain and the furrow canal, implying the possibility that the F-actin 

coated furrow canal may not be able to block the protein exchange between 

plasma membrane and cytosol. The same experiment was repeated using 

GAP43-Venus embryo. GAP43 is attached to membrane by two palmitoyl tails. 

Consistent with the result from palmitoylated-YFP FRAP, the recovery rate 

between lateral and furrow canal membrane were the same (Figure 3.30). 

Then I switched to GFP labeled membrane integrated protein 117 and  
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Figure 3.30 The turnover rate of membrane associated protein doesn’t show difference 

between basal and lateral domain. (A) FRAP experiments were done using GAP43-venus 

embryo. (B) Two independent measurements of fluorescence intensity showed the protein 

fluorescence from both domains recovered at the same speed. 

 

 
Figure 3.31 The membrane integrated proteins turnover rate are different between lateral 

and basal domain. (A) FRAP experiments were carried out using 117-GFP;Spider-GFP 

embryo. The proteins in lateral domain diffuse faster than the one at the furrow canal. Yellow 

arrow marks the lateral domain, and red arrow marks the furrow canal. (B) Measurement of 

fluorescence intensity at lateral and basal domain, respectively. 
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spider embryos and the FRAP experiment showed that the recovery rate in the 

lateral membrane was faster than the furrow canal. This data implied that the 

membrane integrated proteins in the lateral domain can diffuse along the 

membrane more easily than in the furrow canal, and the proteins in the lateral 

domain cannot diffuse into the furrow canal due to the furrow canal F-actin 

enrichment. 

To test this hypothesis, I checked the furrow canal membrane recovery 

rate in dia germline clone embryo. Consistent with our hypothesis, the 

fluorescence at furrow canals recovered faster in dia germline clone embryo 

than in wild type embryo (Figure 3.32). These data implied that F-actin plays an 

important role in the maintenance of lateral-basal boundary. In an attempt to get 

a proper quantitative analysis, more measurements are needed. 

 
Figure 3.32 The mobility of integrated protein 117 is faster in dia embryo (A) The 

fluorescence recovered faster after bleaching in dia embryos than in wild type embryos. (B) 

Measurement of fluorescence intensity in dia and wild type embryos. 
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3.4 Characterization of a novel allele of Ced-12/ELMO 

2L367 was identified in our lab with its defects in blastoderm formation 

and F-actin organization from a large collection of mutations in germline clones 

with essential functions for early development (Vogt et al., 2006). Here I 

analyzed the detailed phenotype of 2L367 and mapped the gene mutated in 

this line.   

3.4.1 Cellularization defect in 2L376 

Time-lapse movies by Differential Interference Contrast (DIC) microscopy 

showed that 2L367 embryos form a blastoderm, go through the 13 nuclear 

divisions, pause the cell cycle but fail to cellularize properly (Figure 3.33). The 

details of membrane invagination during cellularization were examined by 

fluorescence imaging using GAP43-Venus in 2L367 background emrbyo 

(Figure 3.34). The membrane could invaginate at the onset of interphase 14, 

but couldn’t finish cellularization properly.  

3.4.2 Cell cycle defect in 2L367 

     I wondered whether the cell cycle is affected in 2L367. Histone-Alexa488 

was injected in wild type and 2L367 embryos. The mitosis in 2L367 had a 

longer time than wild type (Figure 3.35). The nuclear-fall-out phenotype was 

observed in the late cycles in 2L367 embryos (Figure 3.35). Consistent with 

Histon-Alexa488 fluorescence time-lapse movie, immunostaining of the marker 

for mitosis phosphorylated Histone3 in 2L367 also showed unsynchronized cell 

cycle (Figure 3.36). 

 

 

 



Results 

77 
 

 

 
 

Figure 3.33. Live image of 2L-367 germline clone embryo. (A) The whole embryo was 

shown with bright field and Differential Interference Contrast microscopy. The 2L367 embryo 

can undergo the nuclear division and form syncytial blastoderm, but couldn’t cellularize properly. 

(B) The cortical of embryo is shown in high magnification. Arrow shows the tip of membrane 

invagination. Scale bar: 10 μm 

  

B 

A 
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Figure 3.34 metaphase furrow and cellularization defects in 2L367 embryo. Time lapse 

images of GAP43-venus in wild type and 2L367 embryo. The metaphase furrow in mitosis is not 

visible and the length of cellularization furrow is shorter in 2L67 embryo. Scale bar: 50 μm  

 

 

 
Figure 3.35 Cell cycles are prolonged in 2L367 mutant. Time lapse images after injection of 

Histone-Alexa488 to wild type and 2L367 embryos. Cell cycle is defined with the nuclei number. 

Nuclear fall-out phenotype is observed in 2L367. 
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Figure 3.36 Unsynchronized cell cycle in 2L367 embryo. Phospho-HistoneH3 (pH3) is a 

specific marker for the mitosis and stains the condensed chromatin just before chromosomal 

segregation. The staining of pH3 shows uneven distribution across the 2L367 embryo. 

 

3.4.3 Actin organization defect in 2L367 

     During the interphase in syncytial blastoderm, the actin forms a cap 

structure above the nuclear and the centrosome. Upon entry into mitosis, the 

actin caps dissolve and localize at metaphase furrows. However, in 2L367 

mutant, those actin based structures couldn’t be observed (Figure 3.37). The 

centrosome is considered to be sufficient to induce actin cap formation and 

metaphase furrow (Schejter and Wieschaus, 1993). So the localization of 

centrosomes was examined. However, the centrosome localization is not 

disrupted in 2L367 mutant (Figure 3.38). These data suggest that the gene 

mutated in this line may be involved in controlling actin polymerization and in 

the linkage between centrosome and F-actin cap/metaphase furrow actin 

remodeling. 
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Figure 3.37 Actin caps and metaphase furrow are absent in 2L367 mutant. Actin caps are 

formed above nuclear in the interphase, then dissolves and redistributes at metaphase furrows 

in mitosis. These structures are missing in 2L367 embryos. Scale bar: 20μm 
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Figure 3.38 The centrosome localization is not affected in 2L367 embryo. The centrosome 

pair separates in the onset of mitosis. In the 2L367 embryo, the centrosome localization is not 

affected but couldn’t induce actin caps and metaphase furrows. Scale bar: 50μm   

 

3.4.4 Genetic mapping of 2L367 

     In order to know which gene is mutated in this line, we carried out meiotic 

mapping with visible markers to narrow down the location of mutated gene and 

separate other mutations on the chromosome (Figure 3.39). Frt2L2R{w+}/al dp 

b pr Frt2L, 2L367 virgins were crossed with al dp b pr Bl c px sp/SM1 males. 

The recombination between 2nd chromosomes took place during meiosis in 

oogenesis, and various classes of recombinant showed up in the progeny 

(Table 3.4).  

Table 3.4 The number of progeny with different phenotypes 

phenotype 
Number of 

flies 
Viable? Sterile? 

Phenotype in germline 

clone embryo 

al w+ 3 Viable Fertile - 
al dp w+ 6 Viable Fertile - 
al dp w+ 1 Viable Sterile - 
al dp w+ 8 Lethal - No phenotype 

al dp b w+ 17 Lethal - With phenotype 

  dp b w 7 Lethal - With phenotype 

     b w 23 Lethal - No phenotype 

 w 7 Lethal - No phenotype 

 w 2 Viable Fertile - 
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Because the mutated gene leads to maternal defects, it was termed fs 

(female sterile) temporarily. In addition to fs, 2 lethal mutants were isolated. 

According to the number of progeny with different phenotype, the localization of 

lethal mutations was estimated. The first one (l1) localizes in the middle of dp 

and b (8:6) and the second one (l2) is between b and pr but close to pr (7:2) 

(figure 3.39). None of them showed maternal defects. fs is lethal mutant 

according to the progeny from recombinational cross. The location of fs was 

estimated in the similar way, and it locates between dp and b but close to b 

(32:2) on the chromosome with the range from 2L:10,020,000 to 2L:14,020,000 

(figure 3.39).  

After narrowing down to this range, we did deletion mapping using different 

deficiency lines which cover this expected range. After first round of cross, we 

couldn’t find any progeny with genotype of Df(2L)ED761/2L367 and 

Df(2L)ED775/2L367, suggesting that the overlap of these two deficiency lines 

contains the mutated gene (Figure 3.39). New deficiency lines covering this 

overlap range were used in the following complementary test. After the second 

round of deficiency cross, I got a narrower expected range which contains 10 

genes (Figure 3.39).  

Next, I did complementary cross using the lines which contain the mutant 

gene list in the expected range. Ced-12 c06760 couldn’t complement with 2L367, 

while the others could, indicating the mutant gene in 2L367 is ced-12. 
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Figure 3.39 2L367 mapping scheme. After meiotic recombinational mapping and 

complemental test, ced-12 was found as the mutated gene in 2L367 leading to the phenotype.  

3.4.5 Ced-12 colocalizes with Sponge and actin in syncytial blastoderm 

Ced-12 (ELMO in mammal) was identified in C.elengas as an essential 

gene involved in the engulfment of dying cells during apoptosis (Hedgecock et 

al., 1983). Ced-12 is involved in regulation of Rho/Rac GTPase signaling 
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pathway (Zhou et al., 2001). Western blot showed the reduced amount of 

Ced-12 in 2L367 mutant (termed Ced-122L367 in the following text) (Figure 3.40). 

 

 

Figure 3.40 Ced-12 protein is reduced in 2L367 embryo. Compared with wild type embryo 

extraction, the Ced-12 protein is reduced significantly.  

 

 

Figure 3.41 Ced-12 colocalizes with Sponge and actin. In the interphase, Ced-12 and Spg 

localize at actin caps, while in the mitosis, Ced-12 and Spg translocate to metaphase furrow 

with F-actin. Scale bar: 10μm 

 

KDa 



Results 

85 
 

It has been reported that there is a the physical interaction between 

Ced-12 and Sponge during Drosophila CNS development (Biersmith et al., 

2011). Maternal effect of sponge mutation also leads to a blastoderm 

phenotype which is similar to ced-122L367 (Postner et al., 1992). Sponge is an 

ortholog of human DOCK3 and DOCK4, and activates Rac as a noncanonical 

guanine nucleotide exchange factor (Biersmith et al., 2011). Sponge is involved 

in border cell migration and is controlled by PVR signaling (Bianco et al., 2007). 

However, DOCK proteins only show GEF activity when they are bound to 

Ced-12/Elmo (Meller et al., 2005). This could be the reason why ced-122L367 

and sponge show the same defects, and together with the localization of 

Ced-12 and Sponge, provides the link to actin dynamic regulation in syncytial 

blastoderm.  

In wild type embryo, Ced-12 colocalizes with Sponge and actin caps in 

interphase. In mitosis, Ced-12 and Sponge colocalize at the metaphase furrow 

where F-actin localizes (Figure 3.41). In ced-122L367 embryo, the localization of 

Ced-12 and Sponge spreads along the plasma membrane (data not shown). As 

shown previously, the localization of centrosome is normal in ced-122L367 

embryos (Figure 3.38), but the actin based structures are missing. Taken 

together, the current data point to the possibility that Ced-12/Sponge complex 

acts as a signal linker between centrosome and actin cytoskeleton in syncytial 

blastoderm in Drosophila.   
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Chapter 4. Discussion 

4.1 Molecular mechanism of interaction between Cip4 and Dia in 

actin polymerization 

Purified actin monomers can self-assemble to filaments, but the initiation 

step is limiting, because formation of actin filament nuclei is kinetically 

unfavorable. Therefore actin nucleators are employed to overcome the kinetic 

barrier of actin nucleation (Chhabra and Higgs, 2007). These actin nucleators 

include Arp2/3 complex, formins and Spire. Arp2/3 complex bypasses the 

kinetic barrier by mimicking the barbed end of actin filament (Goley et al., 2004). 

Spire recruits and organizes actin monomers with a tandem of WH2 domains 

into an actin oligomer, serving as an actin nucleation “seed” (Dietrich et al., 

2013). Formins assemble actin filaments using an entirely different mechanism. 

In vitro studies showed FH2 domain is sufficient for actin polymerizing 

(Chesarone et al., 2010; Grosshans et al., 2005). However, the FH2 domain 

binds actin monomers with a very low binding affinity and lacks the similarity to 

actin (Goode and Eck, 2007). Co-crystal structure of the complex of Bnip-FH2 

with muscle actin suggests that the FH2 domain can stabilize actin dimers or 

trimers, as a likely mechanism for polymerization (Otomo et al., 2005).  

Overexpression of Cip4 in Drosophila embryos lead to a phynocopy of dia 

mutant, suggesting Cip4 antagonizes Dia genetically. From the pyrene assay 

and TIRF assay, the antagonistic nature between Cip4 and Dia was uncovered 

at the molecular level. However, the mechanism of Cip4 in inhibiting actin 

polymerization activity of Dia is less clear. In the de novo polymerization 

process of actin filaments, it is possible that the binding of Cip4 to Dia prevents 

Dia from stabilizing actin dimer/trimer. On the other hand, it is also possible that 

Dia can bind the actin dimer/trimer and stabilize them, but the addition of new 
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actin monomers is blocked by binding of Cip4. Current data are not sufficient to 

distinguish between the two alternatives. Considering the effect of Cip4 on Dia 

which is already attached to barbed end of F-actin, we propose 3 models: 1) the 

binding of Cip4 to Dia makes Dia fall off from the growing barbed end of F-actin, 

2) FH1 domain is occupied by SH3 domain of Cip4, and it not accessible for 

profilin-actin complex. Dia is still sitting on the growing tip of F-actin. 3) The 

binding of SH3 to FH1 makes Cip4 cover the FH2 domain, obstructing the new 

addition of actin monomers. The TIRF assay showed Cip4 binding reduced the 

elongation rate mediated by Dia, suggesting that not all of Dia was taken off 

from the barbed end by Cip4; otherwise no fast growth (in a reduced rate) 

would be observed. A recent study on yeast suggested that F-BAR protein Hof1 

inhibited actin polymerization activity of Bnr1 (formin in yeast) without 

displacing the Bnr1 from growing filament ends (Graziano et al., 2014). This is 

consistent with our explanation. It was reported that dimerization of SH3 

domain was important for inhibition of Bnr1, suggesting that the inhibition was 

not due to competition between the SH3 domain and profilin for binding FH1 

(Graziano et al., 2014). From our data and literature, the most likely model of 

Dia inhibition by Cip4 is that binding of Cip4 to Dia makes the FH2 domain 

inaccessible to actin monomers. However, the mechanism of inaccessibility is 

either steric effect caused by any bulky protein with SH3 domain or a 

conformation-change induced by Cip4, which is still an open question. In order 

to have a clear explanation, color labeled TIRF microscopy and structure study 

of actin-Dia-Cip4 will help. 
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Figure 4.1 The schematic representation of likely mechanisms of Cip4 inhibiting Dia 

activity. (A, B) The likely mechanisms of Cip4 inhibiting Dia nucleation. (A) Binding of Cip4 to 

Dia prevents Dia from stabilizing actin dimers/trimers. (B) Binding of Cip4 doesn’t affect Dia 

stabilizing actin dimer, but blocks the addition of new actin monomer to the actin dimer core. (C) 

Cip4 binds to Dia on the barbed end of actin filament. Due to the steric effect or the 

conformation changing caused by Cip4, the FH2 domain is not accessible for the addition of 

new actin monomers.  

4.2 Membrane property during cellularization 

At the onset of cellularization, the membrane at the furrow canal is highly 

dynamic, as shown by tubular extensions stained with Amph. When the furrow 

canal assembly is complete and F-actin accumulates at the furrow canal after 

5-10 min, the tubular extensions disappear. F-actin is essential for the 

stabilization of membranes. Cytochalasin D treatment and loss of function of 
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Dia in the embryo lead to the persistent tubular extensions (Sokac and 

Wieschaus, 2008b; Yan et al., 2013).  

 

 
Figure 4.2 The stabilization of membrane at furrow canals needs F-actin. (A) During 

cellularization, the membrane at furrow canals is highly dynamic initially, but stabilizes after 

5-10 minutes due to the accumulation of F-actin at furrow canals. (B) Loss of Dia or injecting 

Cytochalasin D in the embryo leads to the persistent membrane tubular extension.    

    

For the mechanism of Dia suppressing tubular membrane extension, we 

propose that linear actin filaments generated by Dia form a dense cortical layer 

beneath the membrane, and this cortical layer of linear F-actin increases the 

membrane rigidity and suppresses membrane remodeling. A clear correlation 

of reduction of Arp2/3 activity and reduction in membrane tubular extension was 

observed, suggesting that branched F-actin network promotes endocytic 

activity, which is in contrast to the linear F-actin cortical layer. Cip4 provides a 

link between F-actin and membrane remodeling (Itoh et al., 2005; Suetsugu 

and Gautreau, 2012). Nucleation promoting factors (NPFs) are recruited by 

Cip4 to endoctyic sites and activate Arp2/3, thus promoting endocytosis (Fricke 

et al., 2009). In this study, the inhibitory activity of Cip4 on Dia was revealed. 
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Thus, Cip4 induces branched F-actin network at the membrane remodeling site 

by interaction with NPFs, which intern activate Arp2/3. Simultaneously, Cip4 

suppresses linear F-actin beneath membrane through inhibition of Dia activity. 

The dual activity of Cip4 may promote efficient membrane remodeling.  

 

 

Figure 4.3 The dual activity of Cip4 promotes efficient membrane remodeling. (A) At the 

mid-stage of cellularization, the furrow canal is stabilized by a cortical layer of linear actin 

filaments. (B) Cip4 overexpression bends the membrane, and WASPs are recruited to the 

membrane, which activate Arp2/3 and promote branch actin filament polymerization. Branched 

actin filaments provide the force for membrane invagination. Cip4 inhibits Dia activity at the 

plasma membrane, therefore reduces the amount of cortical linear F-actin. The membrane 

rigidity is reduced by the dual activity of Cip4. (C) Schematic representation of Cip4 promoting 

membrane remodeling. 

   

The polarity of epithelia is maintained during the course of cellularization. 

There is a very sharp boundary between lateral and basal domain in epithelia, 
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as indicated by immunostaining with protein markers for lateral and basal 

domains. Several mechanisms for maintaining a sharp boundary are 

considered, 1) a morphologically visible diffusion barrier, e.g. junctional 

complexes; 2) sorting mechanism by endocytosis and exocytosis and 3) 

F-actin-dependent resistance of membrane lateral diffusion.  

During cellularization, there is a basal junction localizing between lateral 

and basal domain. However, this basal junction is dispensable for lateral-basal 

domain separation (Sokac and Wieschaus, 2008b). In arm (β-catenin in 

Drosophila) mutant embryos the basal junction is missing, but functional furrow 

canal compartments and the boundary between lateral and basal are 

established and maintained (Sokac and Wieschaus, 2008b). The sorting 

mechanism by vesicle trafficking also does not involved in lateral-basal domain 

separation, as indicated in embryos from shibire female.   

The polarity of lateral-basal domain is maintained by Dia and F-actin. 

Discs-large, a marker of lateral domain, spread into the furrow canal in 

Cytochalasin D injected embryo. Loss of function of Dia and overexpression of 

Cip4 leads to a phenocopy. How does F-actin contribute to membrane 

compartmentalization? One possibility is that cortical layer of linear F-actin 

increases the rigidity and suppresses lateral diffusion. This is confirmed by 

FRAP experiments. In the GFP-labeled membrane integrated protein 

117/Spider embryo, the recovery rate of GFP signal in the furrow canal is 

slower than in the lateral domain. Furthermore, dia germline clone embryos 

also showed a faster recovery rate in furrow canals compared with wild type 

embryo. In addition, an in vitro study has provided a quantitative correlation 

between density of actin cortex and lateral diffusion (Heinemann et al., 2013). 

The same experiment was carried out with Palmitoylated-YFP embryo. In this 

embryo, the YFP inserts into the membrane via its palmitoyl tail. Besides 

membrane localization, there is a strong background of YFP signal swimming 

around in the cytoplasm freely. After bleaching, the YFP signal on the 
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membrane recovered in less than 1 minute and we couldn’t see any difference 

between the lateral membrane and the furrow canal. We reasoned that this was 

due to a fast exchange between membrane fraction and cytoplasmic fraction. 

The GAP43-venus embryo was employed in FRAP experiment. GAP43 has two 

palmitoyl tails and was considered associated with membrane more tightly than 

one palmitoyl tailed YFP. Indeed, the turnover rate of GAP43 is slower than one 

palmitoyl tailed YFP. However, no difference between lateral membrane and 

furrow canal was detected. These FRAP experiments suggest that the F-actin 

coated furrow canal counteracts membrane mobility and lateral diffusion, but is 

free for molecular exchange between plasma membrane and cytoplasm.  

 

 

Figure 4.4 Membrane properties in different domain during cellularization. (A) FRAP 

experiments using 117/Spider-GFP show that the membrane mobility at the furrow canal 

domain is slower than the lateral domain membrane. The difference between these two 

domains is due to the F-actin accumulation at the furrow canal. F-actin inhibits lateral diffusion, 

and this inhibition makes the boundary between lateral and basal domain. (B) The F-actin 

accumulated at the furrow canal doesn’t block the protein exchange between membrane and 

cytoplasm, indicated by FRAP experiments using membrane attached proteins with palmitoyl 

tails. 
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4.3 Ced-12 is required for the formation of actin caps and 

metaphase furrows  

At the onset of interphase of cycle 10 in the syncytial blastoderm stage of 

Drosophila embryo, F-actin forms a dome-like cap above each nuclear and the 

associated centrosomes. With entry into mitosis, the actin redistributes towards 

the cap margins and the cap expands until they meet each other, and 

eventually the metaphase furrow between adjacent nuclei forms. As the 

daughter nuclei separate the F-actin again forms the cap structure. The 

mechanism of actin cap formation is not understood yet. In arpc1r337st germline 

clone embryos, the formation of actin caps is not affected, but the actin caps fail 

to expand and form the metaphase furrow, resulting in the formation of smaller 

caps compared with wild type (Stevenson et al., 2002). This data suggests that 

Arp2/3 is essential for actin redistribution. However, the arpc1 r337st allele used 

was a partial loss-of-function allele, since the stronger alleles of arpc1 disrupted 

the oogenesis and blocked egg production (Stevenson et al., 2002). It is 

possible that the low level of Arp2/3 in arpc1 r337st germline clone embryo is 

sufficient for actin cap formation. The other possibility is that Arp2/3 is only 

required for actin cap expansion and that the formation of actin cap is 

independent of Arp2/3 (Stevenson et al., 2002). To distinguish these two 

alternatives, injection of high dose of CK666, Arp2/3 inhibitor, may provide new 

clue. 

In addition, in sponge germline clone embryos, actin caps and metaphase 

furrow are not formed (Postner et al., 1992). A later study showed that Sponge 

was an ortholog of DOCK protein, and bound with Ced-12, regulating 

embryonic CNS development (Biersmith et al., 2011). DOCK proteins were 

found to be guanine nucleotide exchange factors (GEFs) which activate Rac 

and Rho. DOCK proteins only show GEF activity when they are bound to 

Elmo/Ced-12 (Meller et al., 2005).  
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In our lab, 2L367 was first found in a screen for mutations from germline 

clones with a blastoderm phenotype (Rohatgi et al., 1999) (Vogt et al., 2006). In 

this study, we were able to identify that 2L367 is Ced-12. The phenotype of 

ced-122L367 germline clone embryos is similar to sponge mutant.  

Ced-12 (Ced stands for cell death abnormality) was identified initially in 

C.elengas as an essential gene involved in engulfment of dying cells during 

apoptosis (Hedgecock et al., 1983). Ced-12, together with Ced-5 (ortholog of 

Dock180), binds to PsdSer receptor, triggering the engulfment (Kinchen and 

Ravichandran, 2007). One possibility is that Sponge/Ced-12 complex promotes 

actin caps and metaphase furrows assembly via activating Rac signaling. 

 It was reported that actin caps are induced by centrosomes. The free 

centrosomes which are uncoupled from the nuclei by anti-Tubulin antibody 

treatment or low temperature are sufficient for inducing actin caps above them 

(Callaini et al., 1991). Furthermore, the free centrosomes are not distributed 

evenly, and actin caps are not able to form at the space where no centrosome 

is present. In addition, a clear correlation between the size/density of actin caps 

and the number/spatial arrangement of free centrosome material was observed 

(Callaini et al., 1991). Maternal defect of daughterless-abo-like (dal) shows a 

defect in centrosome separation, and the metaphase furrow could not form 

during mitosis (Sullivan et al., 1993), suggesting that centrosome may also be 

involved in inducing metaphase furrow assembly. However, the signals from 

centrosomes needed for induction of actin caps and metaphase furrows are 

less clear.  
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Figure 4.5 Ced-12 is necessary for inducing actin caps and metaphase furrow. (A) In 

wild-type embryos, the actin caps and metaphase furrows are induced by centrosomes in the 

interphase and mitosis, respectively. (B) In ced-122L367
 embryo, the position of centrosomes is 

not affected, but no actin caps and metaphase furrows are formed. This implies that 

Ced-12/Sponge is involved in the signal transduction.  

 

In ced-122L367 germline clones, the centrosome localization is not affected. 

However, the actin caps and metaphase furrows are missing. One possibility is 

that Ced-12/Sponge is involved in the signaling pathway between centrosome 

signaling and actin-based structure. Dock180, a homolog of Sponge, activates 

Rac in the presence of Elmo (Wang et al., 2014). And Rac is an important 

activator for N-WASP/WAVE and PI(4)P-5 kinase (de Curtis, 2014). N-WASP 

activates Arp2/3 and promotes actin assembly (Rohatgi et al., 1999). PI(4)P-5 

kinase increases concentration of PI(4,5)P2, and PI(4,5)P2 is involved in 

Myosin II assembly (Reversi et al., 2014). The other homologs of Sponge 

Dock3 and Dock10, are involved in activation of Rho (Laurin and Côté, 2014). 

Dia is a RhoGTPase effector and is necessary for metaphase furrow formation 

in Drosophila (Grosshans et al., 2005). We could not exclude involvement of 

other Arp2/3-independent mechanisms. Our hypothesis is that in interphase, 

centrosome pair induces actin caps above it via 

Ced-12/Sponge-Rac-Scar-Arp2/3 signaling pathway, and during mitosis, the 



Disscusion 

96 
 

centrosome pair separates and migrates to the side of the nuclei, and induces 

metaphase furrows via Ced-12/Sponge-Rho/Rac-Dia/Arp2/3 signal pathways. 

 

 

 

Figure 4.6 Schematic representation of involvement of Ced-12/Sponge in the regulation 

of F-actin caps and metaphase furrow. In the interphase, the centrosome induces actin cap 

formation, and Ced-12/Spg complex is essential for this process. Ced-12/Spg activates Rac; 

then Rac activates WAVE/Scar, which allows WAVE/Scar to activate Arp2/3, causing actin 

polymerization. At the onset of prophase, the centrosome undergoes duplication and migration, 

and induces metaphase furrow, probably using a similar pathway: Ced-12/Spg activates Rac 

and Rho, then Rac activates Arp2/3 and Rho activates Dia, causing actin polymerization and 

building the metaphase furrow. 
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