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Abstract

After a brief presentation of STEIN'S two-sample test there is shown an improved procedure for
general linear hypotheses analogous to the improvement of the two-sample-t-test described by
STrIN. The example of an analysis of variance in an one-way layout demonstrates the execution
of the procedure as well as the problems that occur with the determination of the test parameters
ng and z. For these problems there is finally suggested a practicable way of solution.
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1. Introduction

One of the problems in planning experiments for testing a linear hypothesis con-
gists in determining a suitable sample size. More precisely, ‘“‘suitable” means
that although the sample size is kept as small as possible we can obtain a sufficient
test power that can be required at a relevant point in the class of alternatives. The
power function of the F-test usually applied, however, is well known to depend
on the residual variance o2, which in general is not known before the experiment.

Due to the fact that as o2 increases, the power function converges towards the
error of the first kind, it is theoretically not possible to safeguard against unexpect-
edly high variances, even if very large samples are used. For instance, even if it
is possible, on the basis of previous experiments, to state an interval [o,, 02,,]
for o2, one would have to recur to ¢2,, for determining the sample size.

By contrast, STEIN’S two-stage test (STEIN, 1945) is independent of ¢2, i.e. for
arbitrary variances it adheres to a required power. The test is carried out by esti-
mating the variance ¢2 on the basis of n, initial samples and then calculating the
number of samples that are going to be needed in addition. Determining the test
parameters n, and z may appear to be a tedious job, but it can be done easily and
fast with the help of electronic data processing. Contrary to the two-stage {-test,
an application of this method to oneway or higher-way layouts has not, to our
knowledge, been carried out up to now.

In later paragraphs, we give a comprehensive representation of STEIN’S two-
stage test for linear models, of Moshman’s method to determine an optimal initial
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sample size when o2 is known, and finally we discuss an example from forestry
research, using that as a representative of various other problems where choosing
the appropriate sample size is similarly important. The initial sample size is here
determined by using a loss function based on MosHMAN (1958), thus not only taking
into account the expectation of the total sample size N’ (as suggested by SEEL-
BINDER 1953), but also a quantile of the distribution of N’.

2. General description of procedure

The term “sample z;”’ will henceforth be understood to mean the vector
;= (x“, ceey xim)'

consisting of m mutually independent observations, where x; are subject to a
normal distribution, with the same variance o2 which is independent of i and j.
The z; are also regarded as independent, and we assume a mean vector a to be an
element of a k-dimensional space L, with £=m. We then have the usual hypothe-
ses (LEHMANN, 1959; WirTiNGg, NOLLE, 1970):

H:acL, K:acL,—L, h<k.
From n, initial samples z,, ..., x,, we estimate ¢2 using

1 o

2

-
o= z—— 3 &)
Ngj=1

ngm—k i<y

where d,(z;) is the projection of sample x; onto L;; then we calculate the total
sample size NV as a function of s2 according to

82
N =max (n0+ 1, [~—] + 1)
2

([x] is the largest integer smaller than z).
In the case of an error of the first kind, «, the hypothesis will be re]ected if

ngm —k P 1 ldk(z ;) — ay( Z cx)?
k—h k—h z

F (v4, v;) means the a-fractile of an F-distribution with the degrees of freedom
(v, v2); the ¢, are weights that depend on s and have the following properties:

=>F (k—h, ngm—k)

N
=1 D ci=z2/s2 ¢j= ... =cy_,.
i=t i=t

The c; exist because of 1/N =z/s2 Through an improved procedure it will later on
be possible to dispense with these weights. ]

The importance of the pogitive real number z lies in the fact that by specifying -
2, the non-centrality parameter 62 of the distribution of 7', and hence the power, is
- determined, for, according to Stein, 7' possesses for a ¢ L,— L, a so-called non-
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central F'-distribution with (k—h, ngm —k) degrees of freedom; this distribution
is specified through the density

n+m 123
F ( ) ~(n+m)

flx)= 2 (w—y2)T(l+x+2y6+82) 2 dy

) ()

m—3

and

_ |4(@) —dp(a)?

82
z (ngm — k)

n=nm-k m=k-h

If 62=0, the distribution of (ngm —k)/(k—h) - T is reduced to the usual central
F-distribution with the same degrees of freedom. Given n,, it is possible to calcu-
late for any point a from the class of alternatives K, the power B(a); according to

ﬂ(&)=1—ofﬂx) dz
with
k—h

ngm —

c= F, (k—h, ngm —k)

g0 that z=z(n, a) can, after relatively few trials, be determined in such a way that
the test reaches the desired power at point a. Although there is no exact solution

to the integral in f(z), it can nevertheless be approximated numerically with
sufficient precision by using a computer.

3. Improved procedure

If, in T, N is replaced by N’, the weights ¢, are replaced by the factor /YN,

where
32
N’ =max (no, [—] + 1)
2z

and if furthermore z is replaced by s2, the resulting statistic will be

- -
= 1 1 |l (Zx)—d, (2 22

ngm—k N’ 82

Presupposing hypothesis H, the distribution of (ngm —k)/(k—h) - T" is reduced
to F(k—h, ngm —k), with the result that in
{'nom—k '

T T'=>F, (k—h, 'nom—-k)}
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a critical region with respect to level « arises (see appendix II). The power function
f'(a, ¢?) is now no longer independent of o2; however, the following holds (see
appendix I):

. B(a, e =p(a)
Thus, using the new improved critical region, it is in any case true to say that the
power will not be lower than the required one.

4. Initial sample size n,

As STEIN (1945) has pointed out, the distribution of N’ depends, not only on z/62,
but also on n,, for

o? .
EN' =E(N'|ny) =noP(y2(n)<q) + = P(x2(n+2)>9q)
+OP (y¥(n)>q)

z
0=0=1 n=ngm—k g=non—.

o?

Furthermore the p-quantile of N’ is the smallest number N, (ng) for which
P(N'=N,)=P (x2('n) =N,n 3) =p
o?

holds. In this formula, y%(n) is & random function with a y2-distribution with »
degrees of freedom. Instead of choosing n, in such a way that EN’ is minimized,
MosHMAN (1958) suggested that additionally the behaviour of IV, as subject to n,
should be taken into consideration, in order to keep down the probability of very
large samples. This is relevant because it has been found that in regions where
EN’ increases only slightly, N, continues to decrease considerably (see table 1).

Table 1

Parameters of the distribution of N’
(2/62=.0856 k=m =6)

7y EN’ Nos ¥
2 12.183 24.516 -0.203 -
3 12.1823 20.469 0.000
4 12.1824 18.737 0.087
5 12.183 17.725 0.137
6 12.184 17.046 0.171
7 12.188 16.549 0.194
8 12.20 16.167 0.208
9 12.24 15.861 0.209
10 12.33 15.610 0.185
11 12.52 15.397 0.117
12 12.88 15.216 —0.019
13 13.43 15.058 —-0.236
14 14.17 14.919 -0.532
15 15.06 15.0 —0.894

16 16.01 16.0 —1.333
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This phenomenon can be taken into account by choosing an initial sample size
no=nP" in such a way that '

Wing) =(1—p) (N, (1) — IV, (110)) — (1 — P(n?)) (E(N' | no)—EQV" [ n)

is maximized. Let

Pnd)=P (N'=sEN' | nd))—P (12(1&) =EN' |n¥)n -:—2)
where ny=n¢ has been selected so as to minimize E(N’ | n,). ¥ is evidently going
to be large if a (1 — p)-weighted strong decrease of the p-quantile of N’ goes along-
side with a relatively slight increase in the expectation of N'—which increase is to
be weighted the less strong, the smaller a probability we have of N’ exceeding
E (V' | n¥). ¥ is thus a measure for the quality of the distribution of N’ with
regard to a minimal total sample size.

One drawback of this objective procedure lies in the fact that ¥ is in itself a
function of z/02. Nevertheless it is extremely helpful in the planning of experiments
as the following section will show.

5. An application example from forestry

In order to determine the effects of spacing douglas firs on the average ovendry
density of the wood, an investigation was made of six differently spaced homo-
geneous stands (Hapra, 1980). Because establishing this variable by taking bore
chip samples requires a great deal of work and costs are caused as a result of the
depreciation of the stems that undergo the boring, the number of chips to be
taken is of major importance. If 4 denotes the overall mean and »; the deviation
from y in the i-th spacing, there results an one-way analysis of variance for the
hypotheses

H:y= ..=v3=0 K:3v=>0 k=6 h=1.
Furthermore, if m =£k, one sample will consist of six measurements, one for each
spacing. As a difference in the average ovendry density of less than ~.04 gr/cm3
is of no economic interest, the idea is to obtain a high power while keeping the
range of means py+v; at .04 gr/cm3. To establish a corresponding distance Sy
from the hypothesis H, we make the additional supposition that

p=—0.020 p,=—0.012 ;= —0.004

vy= 0.004 wp= 0.012 pg= 0.020
and require a test power of approx. 95 9/, at the point

a=(n+vy, p+vs o, pt+v6) €L — Ly
i.e.
(@) —d4(@)|2= Zvi=0.00112.
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The standard deviation o among the six subgroups, if we look at experiences from
other experiments, can be vaguely expected to lie between .025 and .045. We
therefore begin by establishing, for different ¢ in the above-mentioned interval
with the help of an interactive programme using iteration, a common value for z
and the optimal initial sample sizes (section 4)—these sizes being a function of
z/o?; also, we establish the resulting test powers. For z=.535 - 10~%, we obtain
table 2.

Table 2

o 0.025 0.031 0.036 0.041 0.045
ngpt 9 14 19 26 31
B(a) 946 953 95.5 95.7 95.8

This means that in every case the desired test power is reached with sufficient
accuracy, although the initial sample sizes vary between 9 and 81. The weak in-
fluence of n, on the test power is accounted for by the fact that as n, decreases,
the decrease of the 2nd degree of freedom ngm — & of the F”-distribution counteracts
the increase of 82. As we lack furtherreaching information about o2, we pick as an
a~priori distribution for o2 the rectangular distribution in the interval [6.25 - 10~4,
2.025 - 10~3] and measure for each ¢2 and n, the decrease in quality of the distri-
bution of N, as compared to the use of ny=ng* (which according to section 4 is
optimal), by establishing the difference

0= VP(ng") — P(ng) =
(1 —p) (Np(no) — Np(ng?)) — (1 — P(nd)) (BN’ | n®) —E (N | o))
The definite initial sample size is then obtained by minimizing the expectation
D=E (¥(n™) - Pln,))
according to table 3, turning out to be ny=13. As was to be expected, this is a
figure ranging in the lower part of the interval [9, 81], because in particular

E (N’ | ng), which is more heavily weighted in ¥, increases much more rapidly
if mg is large relative to n3P*, than it does if n, is small (see table 1).

Table 3 »
ng 9 10 11 12 13 ‘14 15
D .1820 1571 .1387 .1284 .1282 1409 -.1684

The indicated values of D have here been obtained by approximation, using an
equidistant partition of the interval of variances into 50 subintervals.
Because of @,(x;) =wx;, the samples z,, ..., z;3 immediately yield

1 13 6 1 13 2
2= @ —— 3 ;) =0.798-10-3 N’ =15,
nom —k iéi ,'2:1 ( Y 13 zgf l’)

which means that only two more samples have to be taken.
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From
N N
|Gl 2 ) = Z) 2= N"22 (25— %)
it follows that ’
ngm—k 1 , 2= )
T Tzk_hN o -710.308
which amounts to the rejection of hypothesis H, as
Fy05(5,72)=2.342.
For the sake of comparison we would like to draw the reader’s attention to the
fact that if using the one-stage F-test, based on an upper limit of o=.045, a
sample size of 35 would have been required in order also to ensure a test power of

95 9/, It is only for s=.043 that, because of the somewhat lower efficiency of
StEIN’S procedure, N’ becomes 35 and s=.045 yields N'=38. But because of

2
— g4=1.14 - 1077

Var s2=
nom —k

one can hardly expect any considerably larger values for s, even when o= .045.
Test statistics for higher-way layouts can also easily be derived from the general

representation in sections 2 and 3. In the case of regression analysis, however, the

assumptions of section 2 imply a repeated application of m fixed sets of predictors.

Zusammenfassung

Nach einer kurzen Darstellung von STEIN’S Zweistufentest wird analog zu der von STEIN angege-
benen Verbesserung des Zweistufen-t-Tests auch ein verbessertes Verfahren fiir allgemeine lineare
Hypothesen angegeben. Das Beispiel einer einfaktoriellen Varianzanalyse demonstriert die Durch-
fithrung des Verfahrens sowie die Probleme, die bei der Bestimmung der Testparameter n, und 2
auftreten. Hierfiir wird schlieBlich ein praktikabler Losungsweg vorgeschlagen.
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Appendix I

We reduce the problem by an orthogonal transformation C to the canonical form (LEEMANN
(1959)):

Y;=C'X¢ b=C-a bk+1,...,bm=0
that is
k
Yi~N(, 0%1,) und |di(a) @)= 3 b}
=h4

(Y;, b, a, X; are vectors).
Now the general linear hypothesis can be expressed by

H: bh+1 =a.=b=

and STEIN (1945) shows that

k 1 /N8 b 12
T=7_%-1 [V_ (g c.Y;,-—b) ﬁ]
61282 ~x%(n) n=ngm-—k
1 ¥
T ‘gi (Y45 —b5) ~N(0, 0?)
and

2

=

1 »
., — Yy—-b
5 7E 2 (2 T) -, 3 W& e,

n82 N(8) 1=‘§+1 <l bt Yn 8 * Yn 8

)
As 82, Z Y, Y4145 - - - are independent random functions Z (Y;;—b;) and S have the same
property From StrIN’s definition of the F’-distribution follows

2

1
Y R AN N2
i=h+1 Ya 8 AR 7w (k—h,n) nz |

]E_]_ and R ‘E‘,-’;:
ns v

f'(a, 62 =Prob (T’ >k—"—h Fo(k—h, n))

2
=Prob (F (k—h, n)(zb)>u Fo (k—h, n)) =f(a).
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Appendix II

Assumed V.4, ... Vi, 8 are independent random functions and Vi ~N(0, 02), then

k 1 VJ 2~ _

j=h+1
and hypothesis H implies
1o \ 1 e
YN’ ; i YN’ ; 4 a?
———————— S =8 = P e —— .:N 0, —2)
8 8 8

o (2)-» ]

due to the independence of 3 ¥;; and S.
(P (Z |V =v) denotes the conditional distribution of Z given V =v.)
This completes the proof of

T’ ~F (k—h, n).



