Nitrogen fertilization raises CO₂ efflux from inorganic carbon: A global assessment

Kazem Zamanian¹ | Mohsen Zarebanadkouki² | Yakov Kuzyakov^{1,3,4}

¹Department of Soil Science of Temperate Ecosystems, Georg-August University of Göttingen, Göttingen, Germany

PRIMARY RESEARCH ARTICLE

²Chair of Soil Physics, University of Bayreuth, Bayreuth, Germany

³Department of Agricultural Soil Science, Georg-August University of Göttingen, Göttingen, Germany

⁴Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia

Correspondence

Kazem Zamanian, Department of Soil Science of Temperate Ecosystems, Georg-August University of Göttingen, Göttingen, Germany. Email: zamanians@yahoo.com

Funding information

Deutsche Forschungsgemeinschaft, Grant/ Award Number: KU 1184/34-1

Abstract

Nitrogen (N) fertilization is an indispensable agricultural practice worldwide, serving the survival of half of the global population. Nitrogen transformation (e.g., nitrification) in soil as well as plant N uptake releases protons and increases soil acidification. Neutralizing this acidity in carbonate-containing soils (7.49 \times 10⁹ ha; ca. 54% of the global land surface area) leads to a CO2 release corresponding to 0.21 kg C per kg of applied N. We here for the first time raise this problem of acidification of carbonate-containing soils and assess the global CO₂ release from pedogenic and geogenic carbonates in the upper 1 m soil depth. Based on a global N-fertilization map and the distribution of soils containing CaCO₃, we calculated the CO₂ amount released annually from the acidification of such soils to be 7.48 \times 10¹² g C/year. This level of continuous CO2 release will remain constant at least until soils are fertilized by N. Moreover, we estimated that about 273×10^{12} g CO₂-C are released annually in the same process of CaCO3 neutralization but involving liming of acid soils. These two CO₂ sources correspond to 3% of global CO₂ emissions by fossil fuel combustion or 30% of CO₂ by land-use changes. Importantly, the duration of CO2 release after land-use changes usually lasts only 1-3 decades before a new C equilibrium is reached in soil. In contrast, the CO₂ released by CaCO₃ acidification cannot reach equilibrium, as long as N fertilizer is applied until it becomes completely neutralized. As the CaCO₃ amounts in soils, if present, are nearly unlimited, their complete dissolution and CO₂ release will take centuries or even millennia. This emphasizes the necessity of preventing soil acidification in N-fertilized soils as an effective strategy to inhibit millennia of CO_2 efflux to the atmosphere. Hence, N fertilization should be strictly calculated based on plant-demand, and overfertilization should be avoided not only because N is a source of local and regional eutrophication, but also because of the continuous CO₂ release by global acidification.

KEYWORDS

CO₂ efflux, global acidification assessment, global warming, mitigation policy, nitrogen fertilization, soil acidification mechanisms, soil inorganic carbon

Global Change Biology

1 | INTRODUCTION

Soils with about 6,000 Peta gram (10¹⁵ g) carbon (C) down to 3 m depth contain the largest terrestrial C stock (Le Quéré et al., 2016). Changes of CO₂ efflux from soils directly affect atmospheric CO₂ and subsequently global warming. Carbon is stored in soils in two main forms: organic and inorganic (Eswaran et al., 2000), and CO₂ efflux from soils originates from these two C sources. The agricultural sector is one of the main sources of atmospheric CO₂ (Lal, 2004; Tongwane et al., 2016). Agricultural management practices, such as tillage and fertilization, control the decomposition rates of soil organic matter (SOM) (Lal, 2004; Marguina et al., 2015; Sauerbeck, 2001; West & Marland, 2002), strongly influencing the CO₂ exchange between soil and atmosphere. Fertilization rate and type (Lal, 2004) also affect soil CO₂ efflux by controlling the quality and quantity of SOM (Khorramdel, Koocheki, Nassiri Mahallati, Khorasani, & Ghorbani, 2013) and thus its decomposition rate (Sauerbeck, 2001). While soil inorganic carbon (SIC) comprises most of the soil C pool, especially in arid and semiarid regions (Eswaran et al., 2000), the contribution of CaCO₃ to soil CO₂ efflux is usually neglected (Kuzyakov, 2006; Rey, 2015; Zamanian, Pustovoytov, & Kuzyakov, 2016). This is because (1) calcareous soils are mostly distributed in arid and semiarid regions, where water deficiency merely leads to redistribution of CaCO₃ in the soil profile (Zamanian et al., 2016). (2) Most CaCO₃ stocks are located in subsoil (Díaz-Hernández, Fernández, & González, 2003; Wang, Li, Ye, Chu, & Wang, 2010), which decreases the exchange of CaCO₃-C with atmospheric CO2. The SIC is also generally disregarded as a C stock compared to SOC because (1) SOC is closely connected with soil fertility and crop productivity, and (2) in contrast to SOC, SIC cannot be efficiently managed using organic fertilizers, crop rotation, and tillage practices.

 CO_2 efflux from CaCO₃ naturally takes place through CaCO₃ dissolution in weak acids i.e., H₂CO₃, produced by roots and microbial respiration Equation (1) (Sanderman, 2012; Zamanian et al., 2016). The CaCO₃ solubility is relatively low (0.013 g/L in pure H₂O at 25°C (Aylward, 2007), but increases by a factor of about 30 (~0.3 g/L) in CO₂-saturated water) and consumes the root and microbially respired CO₂ Equation (1). Therefore, CaCO₃ dissolution leads to CO₂ uptake (Equation (1) is shifted to the right), but only as long as C remains in the aqueous phase as HCO₃⁻ (Beaulieu, Goddéris, Donnadieu, Labat, & Roelandt, 2012; Monger et al., 2015). Increasing temperature and evapotranspiration as well as direct CO₂ discharge from streams cause CO₂ release into the atmosphere (Wallin et al., 2013) — the Equation (1) becomes shifted to the left. Thus, the processes described by Equation (1) are CO₂ neutral.

$$\mathsf{CaCO}_3 + \mathsf{CO}_2 + \mathsf{H}_2\mathsf{O} \leftrightarrow \mathsf{CaCO}_3 + \mathsf{H}^+ + \mathsf{HCO}_3^- \leftrightarrow \mathsf{Ca}^{2+} + 2\mathsf{HCO}_3^- \tag{1}$$

In agroecosystems, the CaCO₃ dissolution rate increases by up to one order of magnitude after organic and mineral fertilization, especially nitrogen (N) fertilizers – mostly urea, $CO(NH_2)_2$ (Chao, Changli, Junkun, Yun, & Hongbing, 2011; Rice & Herman, 2012)

Equations (2–6). Urea hydrolyzes to ammonium by microbially produced urease Equations (2 and 3). Thereafter, nitrifying bacteria oxidize ammonium to nitrate, release H^+ , and thus acidify the soil Equation (4) (Bolan, Hedley, & White, 1991).

$$CO(NH_2)_2 + H_2O \xrightarrow{Urease} 2NH_3 + CO_2^{\uparrow}$$
 (2)

$$2\times [NH_3 + H_2O \rightarrow NH_4^+ + OH^-] \tag{3}$$

$$2 \times [NH_4^+ + OH^- + 2O_2 \rightarrow NO_3^- + H^+ + 2H_2O]$$
(4)

In poorly aerated soils, NH_4^+ will be not converted to NO_3^- and will be taken up by roots in exchange for H^+ . Consequently, even in the absence of nitrification, N fertilization produces acidity Equation (4).

In calcareous soils, where various carbonate minerals – mostly $CaCO_3$ – are the main buffering system (Bloom, Skyllberg, & Sumner, 2005; Huang et al., 2015), the acidity induced via NH_4^+ uptake by plants and nitrification by microorganisms is neutralized through accelerating $CaCO_3$ dissolution Equation (5 and 6) (Sanderman, 2012).

$$2 \times [CaCO_3 + H^+ + NO_3^- \rightarrow Ca^{2+} + HCO_3^- + NO_3^-]$$
 (5)

$$2\times [HCO_3^- + H^+ \leftrightarrow CO_2^\uparrow + H_2O] \tag{6}$$

Dissolution of CaCO₃ via this anthropogenic source of acidity leads to CO₂ efflux Equation (6) (Chen, Wang, Luo, & Ye, 2013; Gandois, Perrin, & Probst, 2011) and loss of CaCO₃, i.e., Ca²⁺ leaching from the soil profile (Chmiel et al., 2016). For example, 46–95 kg CaCO₃ ha⁻¹ year⁻¹ has been lost following 12 years of application of 100 kg urea-N ha⁻¹ year⁻¹ (Conyers, Heenan, Poile, Cullis, & Helyar, 1996). Therefore, N fertilization changes the inorganic C stocks in soil (Dalal, Harms, Krull, & Wang, 2005), increases CO₂ efflux to the atmosphere and subsequently affects the world's C cycle and global warming (Drever & Stillings, 1997; Huang et al., 2015). This is the direct effect of N fertilization on CO₂ release from SIC.

In noncalcareous soils, in the absence of CaCO₃, the cations on the exchange sites of soil organic matter and clays (Bar-Yosef, Rosenberg, Kafkafi, & Sposito, 1988; Bloom et al., 2005) buffer the acidity produced by nitrification. Substitution of exchangeable cations with protons and their release in solution (Frank & Stuanes, 2003; Nohrstedt, Jacobson, & Sikström, 2000) cause the leaching of base cations, e.g., Ca²⁺, at a rate of 0.45 mol m²/year from the soil profile (Gandois et al., 2011) and thus promote soil acidification.

The acidification due to N fertilization depends on the type and amount of applied N fertilizer and plants' N-use efficiencies. The global average N fertilization exceeds 80 kg N ha^{-1} year⁻¹ to achieve optimal crop yields. N-fertilizer consumption is expected to increase at a rate of ca. 1% per year up to 2030 (FAO, 2000), following the increase in the human population and in food demand (Rice & Herman, 2012). The estimated N-use efficiency is between 25% and

60

30

WILEY Global Change Biology

65% (<50% on average) (Zhang et al., 2004). This means that more than 50% of the applied urea is lost from agricultural fields through leaching as NO_3^- and/or volatilization by denitrification (Smil, 2002). This leached fraction as NO_3^- , however, adds huge amounts of protons to the soil (Barak, Jobe, Krueger, Peterson, & Laird, 1997; Bolan et al., 1991). Note also that N-use efficiencies below 10% have been reported in regional scales (Guo et al., 2010), leading to an additional N loss and even greater soil acidification.

The acidity produced by N fertilization can be 25 times higher than that induced by acid rain (Vries & Breeuwsma, 1987). Hence, soil pH may decline significantly – 0.13–0.8 units –after only a few decades of N fertilization (Guo et al., 2010; Mahler, Wilson, Shafii, & Price, 2016); the rate is more than 0.03 unit pH per year (Conyers et al., 1996). Due to these effects of N fertilization on soil pH, and especially the CO₂ efflux from CaCO₃ and the subsequent effects on the C cycle and global warming, this study (1) estimates the contribution of soil CaCO₃ to CO₂ efflux by N fertilization-induced acidification, (2) predicts the regions vulnerable to acidification following CaCO₃ depletion due to excessive N fertilization, and (3) assesses the CO₂ efflux by liming of acidic soils.

2 | MATERIALS AND METHODS

120

To quantify the contribution of N fertilizers to CO_2 efflux due to $CaCO_3$ dissolution Equations (2-6), the following information was collected: (1) the global distribution of application rates of N

60

fertilizers, and (2) the global distribution of inorganic C in soil. The global application rate of N fertilizers was obtained from the data presented in (Potter, Ramankutty, Bennett, & Donner, 2010) (Figure 1).

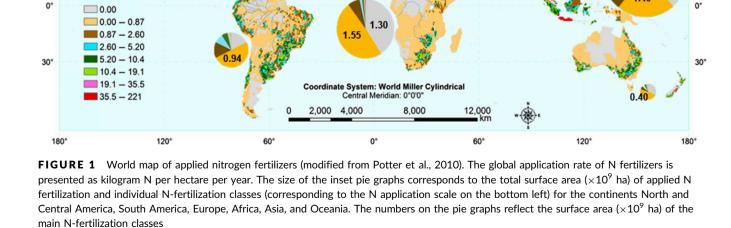
These data are provided in raster GeoTIFF formats with a raster grid cell size of 0.5 degrees in latitude and longitude at "http:// sedac.ciesin.columbia.edu/data/set/ferman-v1-nitrogen-fertilizer-application".

The global distribution of soil $CaCO_3$ was obtained from a soil inorganic C map (USDA-NRCS, 2000) (Figure 2). The map shows the distribution of $CaCO_3$ as kilograms C per hectare and refers to the inorganic C content for a depth of one meter.

For further quantifications, five assumptions were made. (1) The total N added to the soils (N fertilizer map, Figure 1) is in the form of urea, which is the most common N fertilizer used globally (Chao et al., 2011; Rice & Herman, 2012). (2) Ammonium volatilization is negligible (in irrigated corn it has been reported as 6.6% (Halvorson, Del Grosso, & Stewart, 2016), but usually less than 5% of N fertilizers is volatilized to the atmosphere (Butterbach-Bahl, Baggs, Dannenmann, Kiese, & Zechmeister-Boltenstern, 2013) and at least similar or even higher N amounts are deposited on the soil surface due to wet and dry deposition). (3) Denitrification is negligible because it takes place (i) mainly in soils with oxygen limitation, which are rare in the semiarid and arid areas where calcareous soils are mostly distributed or (ii) in irrigated calcareous soils, whose area, however, is small. (4) As long as $CaCO_3$ with 20,000 mmol_c/kg buffering capacity is present in the soil, the

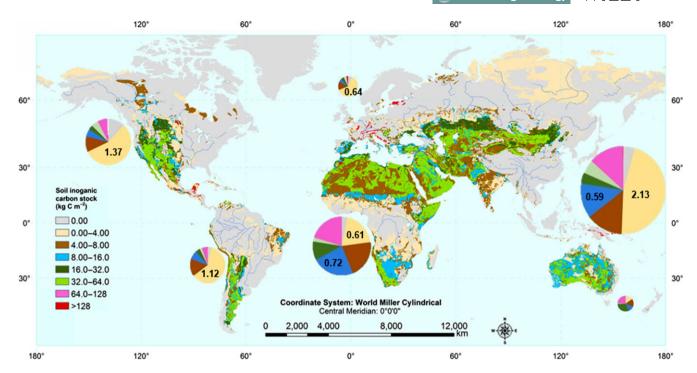
60°

120°


180

60

30


1.81

40

0

2813

FIGURE 2 World map of soil inorganic carbon (SIC) stocks, i.e., $CaCO_3$ (USDA-NRCS, 2000). Note that SIC stocks are presented as kilogram C per square meter down to a depth of one meter. The inset pie graphs show the surface area (×10⁹ ha) of each class for the continents North and Central America, South America, Europe, Africa, Asia, and Oceania. The numbers on the pie graphs reflect the surface area (×10⁹ ha) of the main SIC classes (scale in bottom left corner)

exchangeable cations on the exchange sites of soil organic matter (1,880 mmol_c/kg of SOM at pH = 7.5) and of the soil clay fraction (6–8 mmol_c/kg at pH = 6) (Bloom et al., 2005) are of minor importance and can be neglected. Finally, (5) the main source of uncertainty in the calculated CO₂ efflux from CaCO₃ by neutralization of N fertilization-induced acidity is the accuracy of the estimated CaCO₃ content (Figure 2). Here, the precise data about the amount of N fertilization, types of N fertilizers and N-use efficiencies at smaller scales, e.g., regions, reduce this uncertainty.

Based on these assumptions and according to Equations (2–6), theoretically one mole urea (60 g) will neutralize 1 mole CaCO₃ (100 g). Based on 50% N-use efficiency, however, only half of the applied N undergoes hydrolysis and releases protons to neutralize CaCO₃. Therefore, 1 mole of applied urea in soil neutralizes 0.5 mole CaCO₃ (Zhang et al., 2004). This calculation suggests that applying one kg N will dissolve 1.78 kg CaCO₃, which in turn produces 0.78 kg CO₂ or 0.21 kg CO₂-C for each kg of N. N-use efficiency, however, differs in various countries and ranges from about 65% in USA to 30% in India and 25% in China (Zhang et al., 2015). Therefore, applying one kg N in those countries will produce 0.15, 0.30, and 0.32 kg CO₂-C, respectively, due to CaCO₃ dissolution.

Data were analyzed in ArcMap 10.3. Both maps (Figures 1 and 2) were first georeferenced. A mask was prepared from the $CaCO_3$ map representing the regions containing inorganic C. In this mask, the pixel values of regions with inorganic C were set to one and the rest to zero. Then, a map showing CO_2 efflux was prepared following Equation (7):

Conversion factors are 0.32 for China, 0.30 for India, 0.15 for USA and West Europe, and 0.21 for the rest of the world.

To calculate the total CO_2 efflux (kg C), we multiplied the map of CO_2 efflux (kg C/ha) with its grid size and then summed the values up globally.

In addition to CO_2 efflux due to $CaCO_3$ dissolution, applying N fertilizers could result in soil acidification in the absence of $CaCO_3$. We prepared a map showing the risk of acidification based on the regions where $CaCO_3$ is absent in the soil. To this end, two masks were prepared from the maps of $CaCO_3$ and N application rate. The first mask (Mask1) represents the soils without $CaCO_3$. In this mask, the pixel values of regions without $CaCO_3$ were set to one and the rest to zero. The second mask (Mask2) represents the regions where N fertilizers are applied. In this mask, the pixel values of regions with N fertilization were set to one and the rest to zero. Then, a map showing the acidification risk was prepared by overlapping these two masks.

3 | RESULTS

The total soil CO₂ efflux due to CaCO₃ dissolution following N fertilization was calculated as 7.48 \times 10¹² g C/year (Table 1).

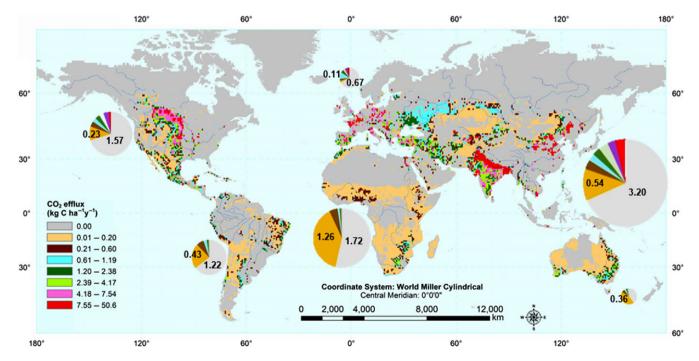
The areas with the highest CO_2 efflux induced by N fertilization are located in central USA, northern France and the Iberian

ILEY— Global Change Biology

TABLE 1 The contribution of $CaCO_3$ dissolution to CO_2 efflux from soil after nitrogen fertilization based on the applied N-fertilization classes and the respective surface area (only soils containing CaCO₃ considered)

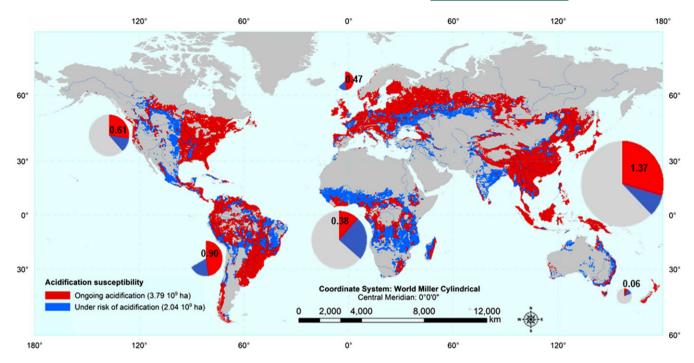
Applied N (kg N ha ⁻¹ year ⁻¹)	Surface area (10 ⁹ ha)	CO ₂ efflux (10 ¹² g C/year)
0.44	2.85	0.26
1.74	0.61	0.21
3.90	0.42	0.33
7.80	0.35	0.56
14.7	0.32	0.95
27.3	0.28	1.44
128	0.26	3.73
	5.09	7.48

Peninsula, eastern China, northern India along the Ganges River, and along the Nile River in Egypt (Figure 3).


The combined area of the mentioned regions (0.26×10^9 ha) comprises only 5.13% of the total surface area (5.09×10^9 ha) emitting CO₂ induced by N fertilization (Table 1), but their contribution to fertilization-induced CO₂ efflux is almost 50%. These areas are also among those vulnerable to acidification (Figure 4). The total area of soils under acidification risk is estimated at about 2.04 \times 10⁹ ha, which represents somewhat more than half of the already acidified soils (3.79×10^9 ha) worldwide (Figure 4).

The next step was to calculate the CO_2 efflux via agricultural lime dissolution. We calculated CO_2 efflux via agricultural lime dissolution based on the following assumptions: (1) the estimated surface

area of acidified soils is 3.79×10^{9} ha (Figure 4), (2) the average annual application of lime is 1 ton per hectare (Chmiel et al., 2016) and (3) ca. 60% of the applied lime will be released as CO₂ to the atmosphere (West & McBride, 2005). The remaining 40% may leach out from the soil, reach the oceans and precipitate again as CaCO₃. Accordingly, we calculated that the CO₂ efflux from agricultural lime dissolution is 273×10^{12} g C/year.


4 | DISCUSSION

The total contribution of CaCO₃ dissolution to CO₂ efflux from soil due to N fertilization was calculated to be 7.48×10^{12} g C/year $(27.4 \times 10^{12} \text{ g CO}_2/\text{year})$ (Table 1). This falls into the upper range of the previous estimation (3.24–7.91 \times 10¹² g C/year) (Perrin, Probst, & Probst, 2008). Perrin et al. (2008) generalized the measured acidity induced by N fertilization in a catchment in France to the whole world. France, however, is among the countries with the highest N-use efficiency (about 65%, Zhang et al., 2015) and thus the lowest acidity induced by N fertilization compared with other countries such as China and India, with average N-use efficiencies of 25% and 30%, respectively (Zhang et al., 2015). Hence, the much lower N-use efficiency in most regions of the world, along with the higher surface area of such regions compared with France, explains the higher estimation of CO2 emission due to N fertilization (Table 1). Importantly, this significant CO₂ flux (Perrin et al., 2008) is a continuous process that can last not only for decades but probably for centuries and longer. This is because of (1) the very high CaCO₃ stocks in soil (695–748 Pg C down to 1 m depth (Batjes, 1996) and

FIGURE 3 Map of CO₂ efflux intensity from soil via CaCO₃ dissolution due to nitrogen fertilization. The inset pie graphs show the surface area ($\times 10^{9}$ ha) of each CO₂ efflux class for the continent North and Central America, South America, Europe, Africa, Asia, and Oceania. The numbers on the pie graphs reflect the surface area ($\times 10^{9}$ ha) of the main CO₂ efflux classes (scale in bottom left corner)

2815

FIGURE 4 Map of soil acidification due to N fertilization. Red areas: ongoing acidification, i.e., N fertilization in carbonate-free soils. Blue areas: soils highly susceptible to acidification, i.e., areas with the lowest $CaCO_3$ content (<4 kg C m²) in Fig. 2. The inset pie graphs show the surface area (×10⁹ ha) of soils that are acidified or under acidification risk for each continent (North and Central America, South America, Europe, Africa, Asia, and Oceania). The numbers on the red pie graphs reflect the surface area (×10⁹ ha) of the ongoing acidification. Lime is used in some parts of these areas to neutralize soil acidification and therefore contributes to CO_2 fluxes into the atmosphere

(2) the absence of equilibrium between CaCO₃ production and its dissolution. In contrast, CO₂ efflux from land-use changes is limited to 1-3 decades (Don, Schumacher, & Freibauer, 2011; Guillaume, Holtkamp, Damris, Brummer, & Kuzyakov, 2016; Poeplau et al., 2011). After this period, the new equilibrium between the plant C input, organic C stocks in soil and CO₂ losses is nearly reached and no further CO₂ losses from SOC are expected, at least until new major land-use changes. Furthermore, in contrast to SOC pools with a comparatively short turnover rate of years to decades (Hsieh, 1993; Neff et al., 2002; Zang et al., 2018), the long turnover rate of SIC (ca. 85,000 year - without anthropogenic impact) (Schlesinger, 1985) makes CaCO₃ dissolution due to acidity induced by N fertilization, a unidirectional source of CO₂ efflux during human history. Nonetheless, N fertilization is necessary to maintain sustainable agriculture and secure food production. Accordingly, plant-demand N-fertilization management strategies should be taken to prevent soil acidification and help reduce CO₂ efflux from SIC dissolution. Note also that the global N fertilization in 2018 is anticipated to reach 11.9 \times 10 10 kg N (FAO, 2015), i.e., a 1.7-fold increase compared to the 7.09 \times 10¹⁰ kg N in 2010 (Potter et al., 2010) considered in our study. Therefore, assuming an equal increase in N fertilization worldwide, the CO₂ efflux from SIC due to N fertilization will boost to 12.7 \times 10^{12} g C/year (46.6 \times 10^{12} g CO_2/year).

Liming of acidified soils, is a usual practice to increase the pH, to improve nutrient availability, and thus to increase crop productivity. Dissolution of lime (mainly CaCO₃) applied on agricultural soils with pH <6.5 also produces CO₂. Despite a lack of information about the global amounts of lime added to agricultural soils, its contribution to

the CO₂ efflux has been estimated at about 85×10^{12} g C/year (based on actual liming rates in the USA) (Suarez, 2000). Suarez (2000) mentioned that if the potential liming demand (i.e., all the limestone needed) was applied, the result in the USA, would be about three times higher. Applying this factor to the global estimation by Suarez (2000) yields 253×10^{12} g C/year. Our estimation $(273 \times 10^{12} \text{ g C/year})$ based on potential liming rates to treat all acid soils (Figure 4), therefore closely agrees with the 253×10^{12} g C/year suggested by Suarez (2000). This amount corresponds to ca. 3% of the CO₂ efflux from fossil fuel burning (8.3 Pg C/year) or about 30% of the CO₂ from land-use changes (0.9 Pg C/year) (IPCC, 2007). This calls for considering CO₂ efflux from CaCO₃ dissolution in atmospheric CO₂ reduction policies. Improving N-fertilization management to decrease CO_2 efflux from $CaCO_3$ and prohibiting soil acidification are effective strategies for decision makers to reduce long-term greenhouse gases emissions not only for N₂O - as previously accepted (Dalal, Wang, Robertson, & Parton, 2003; Meng, Ding, & Cai, 2005; Shcherbak, Millar, & Robertson, 2014; Stehfest & Bouwman, 2006) - but also for CO₂ from CaCO₃ dissolution. Furthermore, decalcification of soils by N fertilization also decreases SOM stability, because binding of organic matter on Ca²⁺ is one of the most important mechanisms of C stabilization and sequestration in soils containing CaCO₃ (Rowley, Grand, & Verrecchia, 2018). Therefore, N fertilization will affect CO2 efflux not only directly by acidification and release of CO_2 from $CaCO_3$ — but also indirectly by decreasing SOM stability (and consequently its faster microbial decomposition) by removing Ca²⁺. This process is important not only in CaCO3-containing soils, but also in soils with neutral ILEY— Global Change Biology

or slightly acidic pH, where Ca^{2+} is the dominating cation on exchange sites. Hence, N fertilization should be strictly calculated based on plant-demand and should avoid any overfertilization not only because N is a source of local and regional eutrophication, but also because of the continuous CO_2 release by global acidification.

ACKNOWLEDGEMENTS

We acknowledge German Research Foundation (DFG) for their support (KU 1184/34-1).

ORCID

Kazem Zamanian (D http://orcid.org/0000-0002-9536-9251 Yakov Kuzyakov (D http://orcid.org/0000-0002-9863-8461

REFERENCES

Aylward, G. H. (2007). *SI chemical data*, Auflage: 6. Auflage edn. (p. 232). Milton, QLD: John Wiley & Sons.

- Barak, P., Jobe, B. O., Krueger, A. R., Peterson, L. A., & Laird, D. A. (1997). Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. *Plant and Soil*, 197, 61–69. https://doi.org/10. 1023/A:1004297607070
- Bar-Yosef, B., Rosenberg, R., Kafkafi, U., & Sposito, G. (1988). Phosphorus adsorption by kaolinite and montmorillonite: I. Effect of time, ionic strength, and pH. Soil Science Society of America Journal, 52, 1580– 1585. https://doi.org/10.2136/sssaj1988.03615995005200060011x
- Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. *European Journal of Soil Science*, 47, 151–163. https://doi.org/10. 1111/j.1365-2389.1996.tb01386.x
- Beaulieu, E., Goddéris, Y., Donnadieu, Y., Labat, D., & Roelandt, C. (2012). High sensitivity of the continental-weathering carbon dioxide sink to future climate change. *Nature Climate Change*, *2*, 346–349. https://doi.org/10.1038/nclimate1419
- Bloom, P. R., Skyllberg, U. L., & Sumner, M. E. (2005). Soil acidity. Chemical processes in soils. In M. A. Tabatabai, & D. L. Sparks (Eds.), *Soil science of America book series, no.* 8 (pp. 411–460). Madison, WI: Soil Science Society of America, Inc.
- Bolan, N. S., Hedley, M. J., & White, R. E. (1991). Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. *Plant and Soil*, 134, 53–63. https://doi.org/10.1007/BF00010717
- Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: How well do we understand the processes and their controls? *Philosophical transactions of the Royal Society of London. Series B, Biological sciences*, 368, 20130122. https://doi.org/10.1098/rstb.2013.0122
- Chao, S., Changli, L., Junkun, W., Yun, Z., & Hongbing, H. (2011). Impact of the addition of a compound fertilizer on the dissolution of carbonate rock tablets: A column experiment. *Applied Geochemistry*, 26(Supplement), S170–S173. https://doi.org/10.1016/j.apgeochem.2011.03.095
- Chen, X., Wang, W., Luo, G., & Ye, H. (2013). Can soil respiration estimate neglect the contribution of abiotic exchange? *Journal of Arid Land*, 6, 129–135.
- Chmiel, S., Hałas, S., Głowacki, S., Sposób, J., Maciejewska, E., & Trembaczowski, A. (2016). Concentration of soil CO2 as an indicator of the decalcification rate after liming treatment. *International Agrophysics*, 30, 143–150.
- Conyers, M. K., Heenan, D. P., Poile, G. J., Cullis, B. R., & Helyar, K. R. (1996). Influence of dryland agricultural management practices on the

acidification of a soil profile. *Soil and Tillage Research*, *37*, 127–141. https://doi.org/10.1016/0167-1987(95)01005-X

- Dalal, R. C., Harms, B., Krull, E., & Wang, W. (2005). Total soil organic matter and its labile pools following mulga (Acacia aneura) clearing for pasture development and cropping 1. Total and labile carbon. *Soil Research*, 43, 13–20. https://doi.org/10.1071/SR04044
- Dalal, R. C., Wang, W. J., Robertson, G. P., & Parton, W. J. (2003). Nitrous oxide emission from Australian agricultural lands and mitigation options: A review. Australian Journal of Soil Research, 41, 165– 195. https://doi.org/10.1071/SR02064
- Díaz-Hernández, J. L., Fernández, E. B., & González, J. L. (2003). Organic and inorganic carbon in soils of semiarid regions: A case study from the Guadix–Baza basin (Southeast Spain). *Geoderma*, 114, 65–80. https://doi.org/10.1016/S0016-7061(02)00342-7
- Don, A., Schumacher, J., & Freibauer, A. (2011). Impact of tropical land-use change on soil organic carbon stocks - a meta-analysis. *Global Change Biol*ogy, 17, 1658–1670. https://doi.org/10.1111/j.1365-2486.2010.02336.x
- Drever, J. I., & Stillings, L. L. (1997). Aquatic colloid and surface chemistry the role of organic acids in mineral weathering. *Colloids and Surfaces* A: Physicochemical and Engineering Aspects, 120, 167–181. https://d oi.org/10.1016/S0927-7757(96)03720-X
- Eswaran, H., Reich, P. F., Kimble, J. M., Beinroth, F. H., Padmanabhan, E., & Moncharoen, P. (2000). Global carbon stocks. In R. Lal, J. M. Kimble, H. Eswaran, & B. A. Stewart (Eds.), *Global climate change and pedogenic carbonates* (pp. 15–25). Boca Raton, FL: CRC Press.
- FAO (2000). Fertilizer requirements in 2015 and 2030 (p. 44). Rome, Italy: Food & Agriculture Org.
- FAO (2015). World fertilizer trends and outlook to 2018 (p. 66). Rome, Italy: FAO.
- Frank, J., & Stuanes, A. O. (2003). Short-term effects of liming and vitality fertilization on forest soil and nutrient leaching in a Scots pine ecosystem in Norway. *Forest Ecology and Management*, 176, 371– 386. https://doi.org/10.1016/S0378-1127(02)00285-2
- Gandois, L., Perrin, A.-S., & Probst, A. (2011). Impact of nitrogenous fertiliser-induced proton release on cultivated soils with contrasting carbonate contents: A column experiment. *Geochimica et Cosmochimica Acta*, 75, 1185–1198. https://doi.org/10.1016/j.gca.2010.11.025
- Guillaume, T., Holtkamp, A. M., Damris, M., Brummer, B., & Kuzyakov, Y. (2016). Soil degradation in oil palm and rubber plantations under land resource scarcity. Agriculture Ecosystems & Environment, 232, 110– 118. https://doi.org/10.1016/j.agee.2016.07.002
- Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., ... Zhang, F. S. (2010). Significant acidification in major Chinese croplands. *Science*, 327, 1008–1010. https://doi.org/10.1126/science.1182570
- Halvorson, A. D., Del Grosso, S. J., & Stewart, C. E. (2016). Manure and inorganic nitrogen affect trace gas emissions under semi-arid irrigated corn. Journal of Environmental Quality, 45, 906–914. https://doi.org/ 10.2134/jeq2015.08.0426
- Hsieh, Y.-P. (1993). Radiocarbon signatures of turnover rates in active soil organic carbon pools. Soil Science Society of America Journal, 57, 1020. https://doi.org/10.2136/sssaj1993.03615995005700040023x
- Huang, P., Zhang, J. B., Xin, X. L., Zhu, A. N., Zhang, C. Z., Zhu, Q. G., ... Wu, S. J. (2015). Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain. *Journal of Integrative Agriculture*, 14, 148–157. https://doi.org/10.1016/S2095-3119(14)60750-4
- IPCC (2007) Fifth assessment report Working group i report "Climate change 2013: The physical science basis."
- Khorramdel, S., Koocheki, A., Nassiri Mahallati, M., Khorasani, R., & Ghorbani, R. (2013). Evaluation of carbon sequestration potential in corn fields with different management systems. *Soil and Tillage Research*, 133, 25–31. https://doi.org/10.1016/j.still.2013.04.008
- Kuzyakov, Y. (2006). Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry, 38, 425–448. https://d oi.org/10.1016/j.soilbio.2005.08.020

- Lal, R. (2004). Carbon emission from farm operations. Environment International, 30, 981–990. https://doi.org/10.1016/j.envint.2004.03.005
- Le Quéré, C., Andrew, R., Canadell, J., Sitch, S., Korsbakken, J., Peters, G., ... Zaehle, S. (2016). Global Carbon Budget 2016. *Earth System Science Data*, *8*, 605–649. https://doi.org/10.5194/essd-8-605-2016
- Mahler, R. L., Wilson, S., Shafii, B., & Price, W. (2016). Long-term trends of nitrogen and phosphorus use and soil pH change in Northern Idaho and Eastern Washington. *Communications in Soil Science and Plant Analysis*, 47, 414–424.
- Marquina, S., Pérez, T., Donoso, L., Giuliante, A., Rasse, R., & Herrera, F. (2015). NO, N2O and CO2 soil emissions from Venezuelan corn fields under tillage and no-tillage agriculture. *Nutrient Cycling in Agroecosystems*, 101, 123–137. https://doi.org/10.1007/s10705-014-9659-0
- Meng, L., Ding, W. X., & Cai, Z. C. (2005). Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. *Soil Biology & Biochemistry*, 37, 2037– 2045. https://doi.org/10.1016/j.soilbio.2005.03.007
- Monger, H. C., Kraimer, R. A., Khresat, S., Cole, D. R., Wang, X., & Wang, J. (2015). Sequestration of inorganic carbon in soil and groundwater. *Geology*, 43, 375–378. https://doi.org/10.1130/G36449.1
- Neff, J. C., Townsend, A. R., Gleixner, G., Lehman, S. J., Turnbull, J., & Bowman, W. D. (2002). Variable effects of nitrogen additions on the stability and turnover of soil carbon. *Nature*, 419, 915–917. https://d oi.org/10.1038/nature01136
- Nohrstedt, H.-Ö., Jacobson, S., & Sikström, U. (2000). Effects of repeated urea doses on soil chemistry and nutrient pools in a Norway spruce stand. Forest Ecology and Management, 130, 47–56. https://doi.org/ 10.1016/S0378-1127(99)00186-3
- Perrin, A.-S., Probst, A., & Probst, J.-L. (2008). Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: implications for weathering CO2 uptake at regional and global scales. *Geochimica et Cosmochimica Acta*, 72, 3105–3123. https://doi.org/10. 1016/j.gca.2008.04.011
- Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B., Schumacher, J., & Gensior, A. (2011). Temporal dynamics of soil organic carbon after land-use change in the temperate zone - carbon response functions as a model approach. *Global Change Biology*, 17, 2415–2427. https://doi.org/10.1111/j.1365-2486.2011.02408.x
- Potter, P., Ramankutty, N., Bennett, E. M., & Donner, S. D. (2010). Characterizing the Spatial Patterns of Global Fertilizer Application and Manure Production. *Earth Interactions*, 14, 1–22. https://doi.org/10. 1175/2009EI288.1
- Rey, A. (2015). Mind the gap: Non-biological processes contributing to soil CO2 efflux. *Global Change Biology*, 21, 1752–1761. https://doi. org/10.1111/gcb.12821
- Rice, K. C., & Herman, J. S. (2012). Acidification of Earth: An assessment across mechanisms and scales. *Applied Geochemistry*, 27, 1–14. https://doi.org/10.1016/j.apgeochem.2011.09.001
- Rowley, M. C., Grand, S., & Verrecchia, E. P. (2018). Calcium-mediated stabilisation of soil organic carbon. *Biogeochemistry*, 137, 27–49. https://doi.org/10.1007/s10533-017-0410-1
- Sanderman, J. (2012). Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia. Agriculture, Ecosystems & Environment, 155, 70–77. https://doi.org/10.1016/j.agee.2012.04.015
- Sauerbeck, D. R. (2001). CO2 emissions and C sequestration by agriculture – perspectives and limitations. Nutrient Cycling in Agroecosystems, 60, 253–266. https://doi.org/10.1023/A:1012617516477
- Schlesinger, W. H. (1985). The formation of caliche in soils of the Mojave Desert, California. Geochimica et Cosmochimica Acta, 49, 57–66. https://doi.org/10.1016/0016-7037(85)90191-7
- Shcherbak, I., Millar, N., & Robertson, G. P. (2014). Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer

nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 111, 9199–9204. https://doi.org/10.1073/pnas. 1322434111

- Smil, V. (2002). Nitrogen and food production: Proteins for human diets. AMBIO: A Journal of the Human Environment, 31, 126–131. https://d oi.org/10.1579/0044-7447-31.2.126
- Stehfest, E., & Bouwman, L. (2006). N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74, 207–228. https://doi.org/10.1007/ s10705-006-9000-7
- Suarez, D. L. (2000). Impact of agriculture on CO2 as affected by changes in inorganic carbon. In R. Lal, J. M. Kimble, H. Eswaran, & B. A. Stewart (Eds.), *Global climate change and pedogenic carbonates* (pp. 15–25). Boca Raton, FL: CRC Press.
- Tongwane, M., Mdlambuzi, T., Moeletsi, M., Tsubo, M., Mliswa, V., & Grootboom, L. (2016). Greenhouse gas emissions from different crop production and management practices in South Africa. *Environmental Development*, 19, 23– 35. https://doi.org/10.1016/j.envdev.2016.06.004
- USDA-NRCS (2000). Soil inorganic carbon map.
- Vries, W. D., & Breeuwsma, A. (1987). The relation between soil acidification and element cycling. Water, Air, and Soil Pollution, 35, 293– 310. https://doi.org/10.1007/BF00290937
- Wallin, M. B., Grabs, T., Buffam, I., Laudon, H., Agren, A., Oquist, M. G., & Bishop, K. (2013). Evasion of CO2 from streams - The dominant component of the carbon export through the aquatic conduit in a boreal landscape. *Global Change Biology*, 19, 785–797. https://doi.org/10.1111/gcb.12083
- Wang, Y., Li, Y., Ye, X., Chu, Y., & Wang, X. (2010). Profile storage of organic/inorganic carbon in soil: From forest to desert. *Science of The Total Environment*, 408, 1925–1931. https://doi.org/10.1016/j.scitote nv.2010.01.015
- West, T. O., & Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agriculture, Ecosystems & Environment, 91, 217–232. https://doi.org/10.1016/S0167-8809(01)00233-X
- West, T. O., & McBride, A. C. (2005). The contribution of agricultural lime to carbon dioxide emissions in the United States: Dissolution, transport, and net emissions. Agriculture, Ecosystems & Environment, 108, 145–154. https://doi.org/10.1016/j.agee.2005.01.002
- Zamanian, K., Pustovoytov, K., & Kuzyakov, Y. (2016). Pedogenic carbonates: Forms and formation processes. *Earth-Science Reviews*, 157, 1– 17. https://doi.org/10.1016/j.earscirev.2016.03.003
- Zang, H., Blagodatskaya, E., Wen, Y., Xu, X., Dyckmans, J., & Kuzyakov, Y. (2018). Carbon sequestration and turnover in soil under the energy crop Miscanthus: Repeated 13C natural abundance approach and literature synthesis. GCB Bioenergy, 10, 262–271. https://doi.org/10. 1111/gcbb.12485
- Zhang, Y.-M., Chen, D.-L., Zhang, J.-B., Edis, R., Hu, C.-S., & Zhu, A.-N. (2004). Ammonia volatilization and denitrification losses from an irrigated maize-wheat rotation field in the North China Plain. *Pedosphere*, 14, 533–540.
- Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P., & Shen, Y. (2015). Managing nitrogen for sustainable development. *Nature*, 528, 51.

How to cite this article: Zamanian K, Zarebanadkouki M, Kuzyakov Y. Nitrogen fertilization raises CO₂ efflux from inorganic carbon: A global assessment. *Glob Change Biol*. 2018;24:2810–2817. https://doi.org/10.1111/gcb.14148