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Abstract

Fatty acids have been used as plant and microbial biomarkers, and knowledge about their transformation pathways in
soils and sediments is crucial for interpreting fatty acid signatures, especially because the formation, recycling and decompo-
sition processes are concurrent. We analyzed the incorporation of free fatty acids into microbial fatty acids in soil by coupling
position-specific 13C labeling with compound-specific 13C analysis.

Position-specifically and uniformly 13C labeled palmitate were applied in an agricultural Luvisol. Pathways of fatty acids
were traced by analyzing microbial utilization of 13C from individual molecule positions of palmitate and their incorporation
into phospholipid fatty acids (PLFA).

The fate of palmitate 13C in the soil was characterized by the main pathways of microbial fatty acid metabolism: Odd posi-
tions (C-1) were preferentially oxidized to CO2 in the citric acid cycle, whereas even positions (C-2) were preferentially incor-
porated into microbial biomass. This pattern is a result of palmitate cleavage to acetyl-CoA and its further use in the main
pathways of C metabolism. We observed a direct, intact incorporation of more than 4% of the added palmitate into the PLFA
of microbial cell membranes, indicating the important role of palmitate as direct precursor for microbial fatty acids. Palmitate
13C was incorporated into PLFA as intact alkyl chain, i.e. the C backbone of palmitate was not cleaved, but palmitate was
incorporated either intact or modified (e.g. desaturated, elongated or branched) according to the fatty acid demand of the
microbial community. These modifications of the incorporated palmitate increased with time. Future PLFA studies must
therefore consider the recycling of existing plant and microbial-derived fatty acids.

This study demonstrates the intact uptake and recycling of free fatty acids such as palmitate in soils, as well as the high
turnover and transformation of cellular PLFA. Knowledge about the intact uptake and use of soil-derived free fatty acids is
crucial for interpreting microbial fatty acid fingerprints and their isotopic composition.
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1. INTRODUCTION

Lipids are an important constituent of plant biomass.
They comprise around 3–10% of aboveground and 0.5–
5% of belowground plant biomass and are thus an essential
component of plant-derived C input into soils (Bliss, 1962;
Ohlrogge and Browse, 1995; Wiesenberg et al., 2004). In
addition, microbial biomass contains around 10% lipids,
mainly in cell membranes and cell walls (Zelles et al.,
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1995; Lengeler et al., 1999), and significantly contributes to
the lipidic SOM pool. The long-term preservation of some
lipid classes, such as alkanes and fatty acids, qualifies them
as important biomarkers (White et al., 1997; Otto et al.,
2005), which can be used to differentiate vegetation types
(Schwark et al., 2002; Wiesenberg and Schwark, 2006;
Zech et al., 2012; Bush and McInerney, 2013). Cutin-
suberin-derived hydroxylated or poly-carboxylic acids
enable aboveground litter input to be differentiated from
belowground litter input (Mendez-Millan et al., 2011;
Spielvogel et al., 2014).

Microorganisms are able to use lipids as substrates and
decompose them to metabolites. They can also build up
their own lipids, significantly contributing to the lipid pool
of SOM and the modification of initial lipidic compounds
(Lichtfouse et al., 1995; Otto et al., 2005). Such transforma-
tions of lipid biomarkers need to be considered when apply-
ing lipids as biomarkers. Recent studies indicate that plant-
derived biomarkers can be modified and overprinted by rhi-
zomicrobial activity (Gocke et al., 2014). For some biomar-
ker classes such as sterols, microbial modifications of plant-
or animal-derived lipids are specifically used to trace the
microbial community impact (Arima et al., 1969; Bull
et al., 1999, 2002). For others classes, like alkanes,
approaches used to correct for microbial overprint of
plant-derived signals have been developed (Buggle et al.,
2010; Zech et al., 2013). Nonetheless, current knowledge
on the microbial utilization and transformation of lipids
in soils is scarce: It remains unclear whether microorgan-
isms prefer neosynthesis of lipids from low molecular
weight precursors or re-utilization of available lipidic com-
pounds, e.g. fatty acids. According to the biochemical prin-
ciple of the most economic pathways, cells tend to use
preformed building blocks for biomass synthesis (Lengeler
et al., 1999). This principle may be valid for the majority
of metabolites, but was rarely tested, especially not with
microorganisms in their natural environment. We therefore
hypothesize that lipid precursors released by the decomposi-
tion of plant or microbial biomass are the preferred sub-
strates for further lipid synthesis by microorganisms. We
traced the utilization of the most abundant fatty acid in
soil – palmitic acid (=hexadecanoic acid) – as a microbial
substrate for PLFA formation. Palmitic acid is a key com-
pound for plant and microbial fatty acid metabolism.
Investigating its microbial utilization and transformation
pathways provides a general view of the microbial modifi-
cation of soil lipids.

To elucidate the metabolic pathways of microbial fatty
acids, we used the approach of position-specific labeling.
This tool was originally developed in biochemistry to inves-
tigate metabolism pathways and has been increasingly used
in soil biogeochemistry over the last few years (Fischer and
Kuzyakov, 2010; Dijkstra et al., 2011a,b; Apostel et al.,
2013; Dippold and Kuzyakov, 2013). This approach
enables the fate of individual C positions to be traced
through various pools or metabolites and thus helps recon-
struct individual transformation steps. In the case of lipids
containing non-exchangeable hydrogen, similar metabolic
studies can be performed based on deuterium labeling
(Kahmen et al., 2011; Gao et al., 2012a,b).
Knowledge about fatty acid synthesis by microorgan-
isms has mainly been derived from experiments with pure
cultures (Lennarz, 1970; Rock et al., 1981; Zelles et al.,
1995). Fatty acids can be newly synthesized from precursors
such as acetate, or available lipid precursors can be modi-
fied by microorganisms (Lennarz, 1970; Rhead et al.,
1971; Rethemeyer et al., 2004). If palmitate is provided as
a substrate, there are three possible mechanisms by which
palmitate C can be used for PLFA synthesis: (1) the resyn-
thesis pathway, i.e. the complete degradation of the mole-
cule to acetyl-CoA units and the subsequent
reconstruction of new fatty acids from C2-moieties
(Rhead et al., 1971): this pathway is the conventional idea
on lipid formation by microorganisms in soils and sedi-
ments. (2) Partial step-by-step degradation of the C2-
units, starting from the carboxylic group, without total
breakdown of palmitate: subsequently, only parts of the
molecule are incorporated into newly formed fatty acids
(Rhead et al., 1971). (3) untransformed utilization of palmi-
tate because it is the most abundant fatty acid in microor-
ganisms (Rhead et al., 1971; Zelles et al., 1995). Recent
results strongly indicate the intact reuse of the core unit
of glycerol dialkyl glycerol tetraethers (GDGTs) in marine
sediments (Takano et al., 2010). This supports the idea that
the recycling of complex lipid metabolites plays a crucial
role in sediments and presumably also soils. This re-
utilization of intact alkyl chains by microorganisms would
preserve the original plant-derived isotopic signature in
microbial lipids. Position-specific isotope labeling is the
only tool that enables these three pathways of lipid forma-
tion and transformation to be distinguished. This approach
will deepen our understanding of the microbial transforma-
tion of fatty acids in soils and improve our interpretation of
lipid isotopic signatures in soils and sediments.

2. MATERIALS AND METHODS

2.1. Experimental site

The field experiment is located in Bavaria, close to
Hohenpölz (49.907 N, 11.152 E) at an elevation of 501 m.
a.s.l, a mean annual temperature of 6.7 �C and a mean
annual precipitation of 874 mm. The agriculturally used
field site is managed by a rotation of corn, barley, wheat
and triticale. Soil type is a loamy Luvisol with an Ap hori-
zon of 25 cm depth followed by a Bt-Horizon of 10 cm
depth and an illite-rich loess-loam as C horizon. It has a
pHKCl of 4.88, a pHH2O of 6.49, a total organic C (TOC)
content of 1.77%, a total nitrogen (TN) content of 0.19%
and a cation exchange capacity of 13 cmolC kg�1. Before
the experiment started in August 2010, triticale was har-
vested and the field site was tilled to 10 cm depth for soil
homogenization.

2.2. Experiment design

The 12 � 12 m field was subdivided into four quadrants.
PVC-tubes (diameter: 10 cm; height: 13 cm) were installed
10 cm deep into the Ap horizon, yielding a soil sample
weight between 1 and 1.5 kg for each column. Column
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location was randomized within the blocks and each of the
four blocks represented one of the four repetitions of each
treatment. Consequently, the block could be included as a
random variable in statistical evaluation to account for
the spatial heterogeneity within the field site.

Tracer-solution was applied with a multipette (Eppen-
dorf, Hamburg, Germany) at 5 injection points per column,
each of 2 ml. Uniformly 13C-labeled palmitate as well as
position-specific labeled isotopomers (1-13C palmitate,
2-13C palmitate and 16-13C palmitate) were applied (99%
13C, Biotrend Chemicals, Cologne, Germany). In addition,
an identical amount of palmitate-C with natural abundance
isotope signature was applied on non-labeled background
columns. The concentration of 13C was 50 lmol palmitate
per column and was identical for each treatment and the
backgrounds.

A 7-cm-long needle with closed tip and peripheral holes
allowed homogeneous lateral distribution of the tracer solu-
tion. Leaching was avoided by injecting the solution only
into the upper 2/3 of the column and excluding rainfall
by installing a roof above the plots.

2.3. Sampling and sample preparation

The sampling involved harvesting the entire soil column
three and ten days after labeling. At both times, the height
of the soil inside the column was measured to determine the
labeled soil volume. Then, soil was pressed out from the
column, fresh weight was determined and the entire soil
sample was homogenized manually. Afterwards, a subsam-
ple was taken to determine water content and the sample
was split: one subsample was freeze-dried and ball milled
for bulk isotope analysis, and another subsample was
sieved through 2 mm mesh and stored at <5 �C for chloro
form-fumigation-extraction (CFE) to extract microbial bio-
mass (Vance et al., 1987; Wu et al., 1990). The remaining
soil, also sieved through 2 mm mesh, was stored frozen
for analysis of microbial PLFA.

2.4. Bulk soil and microbial biomass analysis

For the analysis of bulk soil C content and d13C-
values, the samples were freeze-dried, ground in a ball mill
and 5–6 mg per sample were filled into tin capsules. The
samples were measured on the Euro EA Elemental Ana-
lyzer (Eurovector, Milan, Italy) coupled with a ConFlo
III interface (Thermo Fisher, Bremen, Germany) and the
Delta V Advantage IRMS (Thermo Fisher, Bremen, Ger-
many). Incorporation of 13C from the applied carboxylic
acids into soil was calculated according to the mixing
model (Eqs. (1) and (2)), where the C content of the back-
ground in Eq. (1) was substituted according to Eq. (2)
(Gearing et al., 1991)

½C�soil labeled � rsoil labeled ¼ ½C�soil BG � rsoil BG

þ ½C�Inc pal 13C � rInc pal 13C ð1Þ
½C�soil labeled ¼ ½C�soil BG þ ½C�Inc pal 13C ð2Þ
with:
[C]soil_labeled/soil_BG/inc_pal_13C C amount in labeled soil
sample/background sample/incorporated from applied
palmitate (mol gsoil

�1 ).
rsoil_labeled/soil_BG/inc_pal_13C

13C atom% of labeled soil
sample/background sample/applied palmitate (at.%).

The determination of microbial biomass C and 13C
incorporation was performed according to a modified pro-
tocol described in Gunina et al. (2014). Briefly, two subsets
of 15 g soil were taken to determine microbial C and its
d13C values. One subsample was directly extracted, contain-
ing the extractable SOC pool, whereas the other was first
fumigated with chloroform before extraction, and conse-
quently contained the extractable SOC and the microbial
biomass C pool (Malik et al., 2013). The C content of the
extracts was determined on a TOC analyser multi C/N�

2000 (Analytik Jena, Jena, Germany). The remaining
extracts were then freeze-dried for d13C measurements.
13C incorporation into fumigated and unfumigated samples
was calculated according to the mixing model (Eqs. (1) and
(2)). Microbial biomass and palmitate 13C incorporated
into microbial biomass was calculated according to Wu
et al. (1990) with an extraction factor of 0.45.

2.5. PLFA d13C analysis

Phospholipids were extracted and purified by a modified
method of Frostegård et al. (1991), which is described in
detail in Gunina et al. (2014). Modifications included the
use of 6 g of soil for extraction, a doubled liquid–liquid
extraction and a very slow elution of polar lipids from the
activated silica column with four times 5 ml methanol.
Before extraction, 25 ll of a 1 M solution of phosphatidyl
choline-dinonadecanoic acid was added as internal stan-
dard 1 (IS 1). For measurements on a gas chromatograph
(GC), the fatty acids were saponified to free fatty acids
and derivatized into fatty acid methyl esters (FAME) fol-
lowing the description by Knapp (1979). Before transfer-
ring the samples to autosampler vials, 15 ll of tridecanoic
acid methyl ester (1 lg ll�1 in toluene) was added as inter-
nal standard 2 (IS 2). External standards consisting of the
27 fatty acids listed in Supplementary Table 1 together with
the phospholipid IS 1 were prepared with fatty acid con-
tents of 1, 4.5, 9, 18, 24 and 30 lg, respectively, and deriva-
tized and measured together with each sample batch.

FAME-contents were measured on a GC–MS (GC 5890
with MS 5971A, Agilent, Waldbronn, Germany) with a
30 m DB1-MS column, in the selected ion mode. The rela-
tion between the area of each FAME and the area of the IS
2 was calculated and a linear regression based on the six
external standards was used for quantification. The recov-
ery of each sample was determined based on the area of
the initially added 25 lg of IS 1, and the amount of each
fatty acid was corrected by the recovery.

d13C-values were analyzed on a GC-C-IRMS consisting
of the autosampler unit AS 2000, the Trace GC 2000 by
ThermoQuest, the Combustion Interface III combustion
unit and the isotope-ratio mass spectrometer DeltaPlus

(Thermo Fisher, Bremen, Germany). Volumes of 1.5 ll
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were injected in splitless mode (splitless time: 1 min) into a
liner (Type TQ(CE) 3 mm ID TAPER) at 250 �C. Gas
chromatography was accomplished with a combination of
two capillary columns: a 30 m DB5-MS and a 15 m DB1-
MS (both: internal diameter 0.25 mm, film thickness
0.25 lm; Agilent), a constant He-flux (99.996% pure) of
2 ml min�1 and the temperature program presented in Sup-
plementary Table 2. CO2 reference gas (99.995% pure) was
injected for 20 s into the detector four times throughout the
measurement to identify any detection drift. The d13C-value
of the second reference gas peak was calibrated on IAEA
standards and fixed on the calibrated value (�40‰).
d13C-values of all PLFA samples were measured four times.
The chromatograms were integrated and the d13C-value
was generated by the software ISODAT NT 2.0.

Linear regressions were calculated from reference gas
peaks surrounding the fatty acid peaks for drift correction
within the chromatogram (Apostel et al., 2013) and chro-
matographic drift was corrected according to the slope of
this regression. To correct for amount-dependent 13C iso-
topic fractionation during measurements (Schmitt et al.,
2003) and for the addition of C during derivatization, we
calculated linear and logarithmic regressions of the external
standard d13C-values to their area. If both regressions were
significant, that with the higher significance was applied. As
the d13C-value for the derivatization agents was unknown,
the correction was performed according to Glaser and
Amelung (2002) (Eq. (5))

CFSðat%Þ ¼ NðCÞFAME

NðCÞFS
� ðCFAME�DKðat%Þ

� ðmlin= ln � AFAME þ tlin= lnÞÞ þ CEA�FSðat%Þ ð3Þ
with:

CFS(at.%) corrected 13C amount of the fatty acid [at.%].
CFAME(at.%) drift-corrected 13C amount of the FAME
[at.%].
mlin/ln slope of linear/logarithmic regression [at.% Vs�1].
tlin/ln y-intercept of linear/logarithmic regression [at.%].
AFAME area of FAME [Vs].
N(C)FAME number of C atoms in FAME.
N(C)FS number of C atoms in fatty acid.
CEA-FS(at.%) measured 13C-value of fatty acid [at.%].

2.6. Calculation of 13C incorporation into PLFA

The amount (mol) of 13C incorporated into an individ-
ual fatty acid was calculated according to the isotope mix-
ing model (Gearing et al., 1991):

½C�PLFA labeled � rPLFA labeled ¼ ½C�PLFA BG � rPLFA�BG

þ ½C�Inc pal 13C � rapp pal 13C ð4Þ
½C�PLFA labeled ¼ ½C�PLFA BG þ ½C�Inc pal 13C ð5Þ
with:

[C]PLFA_labeled/PLFA_BG/inc_pal_13C C amount of PLFA in
labeled sample/background sample/incorporated from
applied palmitate (mol gsoil

�1 ).
rPLFA_labeled/PLFA_BG/inc_pal_13C
13C atom% of PLFA in

labeled sample/background sample/applied palmitate
(at.%).

These equations can be solved for [C]inc_pal_13C, which
quantifies the mol of palmitate-derived 13C, which was
incorporated into the respective fatty acid. This mol of
incorporated 13C was then divided by the amount of
applied 13C and multiplied with 100%. This yields the per-
centage of 13C incorporation into the respective PLFA from
the applied palmitate, labeled at an individual position.
This division by the amount of applied 13C is crucial for
comparison between the individual positions: it corrects
for the minimal differences in 13C enrichment in the individ-
ual tracer solutions of the position-specific labeled iso-
topomeres. As, for intact incorporation of palmitate into
PLFA, all palmitate C positions need to be recovered in
the phospholipid bound palmitate, the position with the
lowest incorporation reflects the potential intact uptake
and incorporation of the applied fatty acid into the PLFA.

2.7. Statistics

The values presented show mean ± standard error of
mean (±SEM) of the four field replicates of each sample.
Measured values were tested for normal distribution using
the Kolmogorov Smirnoff test, for homogeneous variances
using Levene’s test and screened for outliers using the Nal-
imov test (Gottwald, 2000). Factorial ANOVA was calcu-
lated using Statistica (version 6.0, Statsoft GmbH,
Hamburg, Germany). If assumptions such as normal distri-
bution or homogeneous variances were not met, the result
of the ANOVA was confirmed by non-parametric Krus-
kal–Wallis ANOVA before performing a Tukey HSD post
hoc test for unequal sample size.

3. RESULTS

3.1. Incorporation of palmitate 13C in soil and microbial C

pools

At day 3 uniformly labeled palmitate 13C was decom-
posed to 30%, and 70% of the added 13C were recovered
in soil (see Fig. 1, uniformly labeled treatment shown as
line, respective pools see Table 1). From day 3 to day 10
half of that soil palmitate was furthermore decomposed
and only 33% of the palmitate 13C still remained in the soil
(Fig. 1).

At each sampling day, the C-1 position of palmitate was
preferentially oxidized but this phenomenon was more
strongly pronounced at day 10. The 13C loss from palmitate
between day 3 and day 10 was higher for the carboxylic C-1
position of palmitate compared to the alkyl-C positions C-2
and C-16 (see Fig. 1).

The position-specific pattern of soil incorporation was
similarly reflected by the 13C incorporation into microbial
biomass. The carboxylic group C-1 showed lowest incorpo-
ration, i.e. was preferentially oxidized (Fig. 1). In contrast,
the PLFA showed no clear preference for incorporation of
individual palmitate positions but seemed to incorporate all
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Table 1
Total organic C (TOC), microbial biomass C (Cmic) and the sum of
all measured PLFA in mg C per g soil (dry weight).

TOC Cmic RPLFA

Pool size (mg C g�1

soil)
Day 3 15.60

± 0.60
0.521
± 0.022

0.064
± 0.005

Day
10

16.39
± 0.30

0.463
± 0.038

0.051
± 0.003
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positions equally, indicating intact incorporation (Fig. 1).
There was, however, a strong decrease of 13C content incor-
porated in PLFA from day 3 to day 10 (Figs. 1 and 2),
which reflects the short half-life time of microbial PLFA
in soils (Rethemeyer et al., 2004; Frostegard et al., 2011).

3.2. Incorporation of C from palmitate into individual PLFA

At day 3, highest incorporation of palmitate 13C was
found in palmitate (Fig. 2). Comparing the 3 labeled posi-
tions of palmitate, lowest incorporation, and thus the max-
imum of intact palmitate uptake and incorporation is
around 4% of the applied palmitate (Fig. 3).

13C incorporation of the straight-chain fatty acids dom-
inated over 13C incorporation into more complex fatty
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(means ± SEM, n = 4) are presented.
acids (Fig. 2). With increasing time, the simple straight-
chain fatty acids decreased in their incorporation whereas
more complex fatty acids such as cyclopropyl or
10Methyl-branched fatty acids even increased their abso-
lute 13C incorporation (Fig. 2). However, this incorporation
of 13C occured mainly by renewal of the existing fatty acid
pool despite new formation of fatty acids due to microbial
growth, because most of the fatty acids showed no increase
of their concentration over time (Table 2).

This detailed information on individual fatty acids was
summarized by pooling the fatty acids into biochemical
classes in Fig. 3. Sixteen-carbon fatty acids, shorter fatty
acids (14 and 15 carbons) and longer fatty acids (17 to 20
carbons) were grouped into straight chain even, straight
chain odd, desaturated and branched fatty acids. This
grouped fatty acid pattern demonstrates that newly formed
fatty acids based on palmitate 13C became more diverse
from day 3 to day 10 after palmitate application. This
increase in diversity of newly formed fatty acids leads to
an approaching of the newly-formed 13C fatty acid pattern
to the pattern of microbial fatty acids in soil (Fig. 3).

In Fig. 4 the effect of decreasing 13C incorporation from
day 3 to day 10 was removed from the results by presenting
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Fig. 4 presents the transformations of incorporated palmi-
tate by microbial PLFA formation. The portion of desatu-
rated fatty acids was already high at day 3 and did not
increase significantly from day 3 to day 10 (Fig. 3). This
shows that palmitate desaturation is a fast process.
Nonetheless, incorporation of palmitate 13C into elongated
(and even more so into branched fatty acids) significantly
increased from day 3 to day 10 for each of the C positions
(Fig. 4). This reflects slower kinetics of complex elongation
or branching versus rather simple desaturation processes –
which can even occur if fatty acid is bound to the PLFA in
the membrane (Aguilar et al., 1998).

3.3. Incorporation of individual palmitate C positions into

various fatty acids

C-1 of palmitate is only negligibly incorporated into
fatty acids shorter than 16 carbons (Fig. 3 and Fig. 4). In
addition, the carboxylic C-1 position of palmitate was not
incorporated into any odd-numbered PLFA (Fig. 3 and
Fig. 4). This indicates the preference for palmitate as a
direct precursor for microbial phospholipid synthesis, i.e.
the even-numbered C-1 group was removed from the intact
fatty acid to shorten the alkyl chain.

Comparing C-2 and C-16 positions (both are even-
numbered C positions in the alkyl chain) showed that C-
16 was incorporated in significant amounts into even-
numbered fatty acids smaller than C16, but that this was
not the case for C-2 (Fig. 3 and Fig. 4). This supports the
view of splitting-off terminal positions of palmitate to
shorten the alkyl chain.

In general, palmitate was modified according to the
demand of the microbial community, i.e. the de novo
formed, 13C-derived fatty acid pattern aligned with the
PLFA fingerprint of the microbial community present in
soil.



Table 2
Amounts of PLFA in nmol fatty acid per g soil (dry weight) for day 3 and day 10 after label applications; means ± SEM (n = 4) of all labeled
columns are presented.

Abbreviation Fatty acid name Fatty acid amount (nmol g�1 soil)

Day 3 Day 10

i14:0 Iso-Tetradecanoic Acid 4.63 ± 0.49 4.19 ± 0.25
a14:0 Anteiso-Tetradecanoic Acid 1.27 ± 0.41 0.47 ± 0.10
14:1x5c 9-Tetradecenoic Acid 2.67 ± 1.37 2.58 ± 0.91
14:0 Tetradecanoic Acid 6.94 ± 1.01 5.09 ± 0.45
i15:0 Iso-Pentadecanoic Acid 18.67 ± 2.71 12.69 ± 1.50
a15:0 Anteiso-Pentadecanoic Acid 14.46 ± 1.80 10.70 ± 0.84
15:0 Pentadecdanoic Acid 2.90 ± 0.83 2.19 ± 0.36
i16:0 Iso-Hexadecanoic Acid 7.93 ± 1.28 5.61 ± 0.63
a16:0 Anteiso-Hexadecanoic Acid 3.20 ± 1.00 1.52 ± 0.49
16:1x7c 9-Hexadecenoic Acid 17.84 ± 2.05 12.64 ± 1.07
16:1x5c 11-Hexadecenoic Acid 11.62 ± 1.68 10.06 ± 1.30
16:0 Hexadecanoic Acid (Palmitic Acid) 39.45 ± 5.33 30.20 ± 2.39
10Me16:0 10-Methyl-Hexadecanoic Acid 9.00 ± 1.16 6.89 ± 0.72
i17:0 Iso-Heptadecanoic Acid 3.58 ± 0.93 2.80 ± 0.39
a17:0 Anteiso-Heptadecanoic Acid 3.93 ± 0.94 2.35 ± 0.30
cy17:0 Cyclopropyl-Heptadecanoic Acid 6.68 ± 1.08 4.53 ± 0.41
17:0 Heptadecanoic Acid 2.86 ± 0.89 1.19 ± 0.24
18:2x6,9 9,12-Octadecadienoic Acid 4.78 ± 0.94 4.25 ± 0.51
18:3x6,9,12 6,9,12-Octadecatrienoic Acid 3.92 ± 1.21 2.92 ± 0.80
18:1x9c 11-Octadecenoic Acid 20.39 ± 1.84 15.30 ± 0.55
18:1x7c 9-Octadecenoic Acid 31.02 ± 3.67 22.87 ± 1.09
18:0 Octadecanoic Acid 6.70 ± 1.09 5.92 ± 0.46
10Me18:0 10-Methyl-Octadecanoic Acid 5.79 ± 0.88 4.94 ± 0.44
cy19:0 Cyclopropyl-Octadecanoic Acid 8.77 ± 0.85 6.01 ± 0.69
20:4x6c 5,8,11,14-Eicosatetraenoic Acid 3.41 ± 0.93 2.26 ± 0.54
20:1x9c 11-Eicosenoic Acid 2.92 ± 0.95 2.24 ± 0.57
20:0 Eisocanoic Acid 2.66 ± 0.86 1.51 ± 0.38
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4. DISCUSSION

4.1. Utilization and turnover of palmitate by the soil

microbial community

Short-chain low molecular weight organic acids are well-
used microbial substrates (Jones et al., 2003). Our study
showed that long-chain carboxylic acids such as palmitate
are also good substrates in soils and are used in high pro-
portions by the microbial community (Fig. 1). In specific
pathways, such long-chain carboxylic acids can function
as direct precursors for lipid formation, which promotes
their incorporation into microorganisms (Fig. 1).

The preferential oxidation of C-1 palmitate is a result of
palmitate allocation into basic C metabolism, e.g. its use as
an energy source and general anabolic C source. Therefore,
it is successively oxidized by fatty acid b-oxidation to
acetyl-CoA (2 C atoms) units (Caspi et al., 2008; Keseler
et al., 2009). When the terminal C-1 and C-2 from palmitate
are cleaved off form the alkyl-chhain, they form an acetate
unit. Such an acetate unit is transformed similarly to acet-
ate taken up from soil via the citric acid cycle (Fischer
and Kuzyakov, 2010; Dippold and Kuzyakov, 2013), i.e.
C-1 is preferentially oxidized compared to C-2. C-2 gets
only oxidized after several rounds of cycling through the
citric acid cycle and can during many of these transforma-
tion steps be allocated towards the anabolism, which results
in a lower overall mineralization of this position to CO2.
The difference in 13C incorporation between microbial
biomass and soil constitutes the portion of 13C palmitate
which was not accessible for microbial uptake but
remained extracellular, e.g. as SOM-associated palmitate.
The increase of this extracellular 13C from day 3 to day
10 after label application, however, suggests that micro-
bial residues from dead cells containing incorporated
palmitate 13C contribute significantly to this extracellular
13C. The high discrimination between C-1 and C-2 at day
10 confirms this interpretation, because cellular metabo-
lism of acetyl-CoA causes a preferred C-2 incorporation
into microbial biomass (Fischer and Kuzyakov, 2010).
Extracellular terminal oxidation processes can further
contribute to this increasing discrimination between C-1
and C-2 from day 3 to day 10. This terminal oxidation of car-
boxylic acids to odd and even alkanes has been previously
described for plants and microorganisms (Dennis and
Kolattukudy, 1992; Park, 2005; Ladygina et al., 2006), and
specific as well as unspecific decarboxylases can contribute
to the decarboxylation of carboxylic acids in soils
(Hofrichter et al., 1998). Extracellular transformations are
less relevant for well available, lowmolecular weight organic
substances (Dippold and Kuzyakov, 2013). Whether
hydrophobic substances, such as palmitate, are modified
extracellularly remains open and can be clarified only by
combining selective inhibition of microbial, intracellular
processes with position-specific lipid 13C labeling (Dippold
and Kuzyakov, 2013).



Fig. 5. Microbial utilization of fatty acids: uptake, intact incorporation into PLFA and incorporation into PLFA after modification were
identified in this study and are illustrated in this scheme.
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4.2. Pathways of fatty acid formation and transformation in

soil

Gunina et al. (2014) compared incorporation of several,
well water dissolvable, low molecular weight organic sub-
stances and palmitate into microbial biomass and PLFA.
They found a much higher proportion of palmitate incor-
poration into PLFA than incorporation of 13C from low
molecular weight compounds. They interpreted this prefer-
ential fatty-acid derived 13C allocation into the PLFA as a
hint for an intact use of palmitate as a PLFA precursor. In
this study, the initially added 13C palmitate was successively
transformed to more diverse spectra of fatty acids. Com-
paring those transformed fatty acids with the PLFA profile
of the soil (Fig. 2) shows that within 10 days the newly
transformed fatty acids approached the composition of
the PLFA profile and consequently the demand of the
microbial community.

The utilization of intact palmitate and the following
modifications confirm the idea of a high recycling of exist-
ing fatty acids by soil microorganisms after intact uptake
and subsequent modification of the alkyl chain: (i) almost
no palmitate C-1 and C-2 is incorporated into even-
numbered fatty acids smaller than palmitate, e.g. tetrade-
canoic acid. This suggests that the terminal acetate (C-1
and C-2) of palmitate is merely cleaved off to form tetrade-
canoic acid, whereas the basic C skeleton containing the C-
16 position remains intact. (ii) No palmitate C-1 is present
in odd-numbered fatty acids (Fig. 4), suggesting that the
terminal C-1 is oxidized during the formation of odd-
numbered fatty acids from even-numbered palmitate. (iii)
C-1, C-2 and C-16 are incorporated in similar amounts into
desaturated fatty acids (Fig. 2c). This suggests that the
unsaturated, straight-chain palmitic acid is merely desatu-
rated – or elongated and desaturated – for the formation
of desaturated C16 and C18 fatty acids (Fig. 5).

Position-specific 13C labeling cannot distinguish whether
these modifications occur as free fatty acids or bound to the
PLFA. Therefore, the isotopic label in intact phospholipids
and free fatty acids has to be measured at much shorter
time intervals than those chosen for this study. Irrespective
of the detailed biochemical mechanism, this study proved:
(1) an intensive recycling of the present fatty acid pool in
soils and (2) intact uptake and subsequent modification of
the free fatty acids in soil. Similar results were suggested
for the recycling of isoprenoid unites by marine archeal
communities (Takano et al., 2010). Especially for non-
growing microbial communities under maintenance condi-
tions, like in this study (see Table 2), internal recycling of
fatty acids is likely: the utilization of direct precursors helps
save energy and C and is thus a biochemically preferred
mechanism, at least in C limited environments like soils
and sediments.

4.3. Consequences of recycling and reutilization of fatty acids

in soils and sediments for biomarker applications

Whereas n-alkanes can be corrected for microbial con-
tribution (Buggle et al., 2010; Zech et al., 2013), this step
is rarely performed for fatty acids. It is unclear whether
microbial enzymatic systems modifying n-alkanoic acids
such as palmitate are highly specific enzymes (working only
intracellularly), or whether unspecific modification of long-
chain plant-derived free fatty acids may occur as well. This
study cannot definitely conclude whether and to which
extent potential modifications of free fatty acids other than
palmitate take place and which conditions affect the rate of
such transformations. It is likely that in sediments, which
have a much lower microbial activity than topsoils, the
microbial utilization and modification of free fatty acids
is rather low and may be irrelevant compared to the micro-
bially active topsoil used in this study. Nonetheless, most
sedimentary archives contain microbial hotspots, e.g. close
to roots, where microbial transformations of synsedimen-
tary deposited fatty acids may occur (Gocke et al., 2014).
Clarifying the relevance of this post-sedimentary overprint



M.A. Dippold, Y. Kuzyakov /Geochimica et Cosmochimica Acta 174 (2016) 211–221 219
of fatty acid patterns will require further investigations in
soils and sediments by position-specific labeling of long-
chain plant-derived fatty acids and deuterium- and 13C-
based approaches checking for intramolecular variations
of the isotopic profile within fatty acids. Intensive recycling
and exchange of leaf waxes, revealed by deuterium labeling,
is already proven for plant waxes in living plant tissue (Gao
and Huang, 2013) but remains to be investigated for plant-
derived fatty acids in soils and sediments.

Position-specific palmitate labeling in this study demon-
strated that medium-chain fatty acids such as palmitate are
rapidly transformed and modified in soils. Pure culture
studies confirm that these fatty acid modifications occur
within living cells if environmental conditions (e.g. temper-
ature) change (Aguilar et al., 1998). This calls for further
information about the impact of internal fatty acid turn-
over to help interpret PLFA fingerprints (Frostegard
et al., 2011).

PLFA are assumed to have a half-life between one day
and one week (Ranneklev and Baath, 2003; Rethemeyer
et al., 2004; Kindler et al., 2009). In contrast, the turnover
of the bacterial microbial community in C-limited soils
and sediments is assumed to occur 2–3 times per year
(Moore et al., 2005; Rousk and Baath, 2007; Waring
et al., 2013). However, a broad range of turnover times
strongly deviating between fast-growing r-strategists and
slow-growing K-strategists (Blagodatsky et al., 1994;
Blagodatskaya et al., 2007) is stated and a novel
dual-isotope labeling approaches based on 13C-18O-DNA
analysis suggest deviating growth rates for individual
microbial groups depending on the C supply (Mau
et al., 2014). An intensive intracellular turnover of PLFA,
found in this study, explains the much faster turnover of
PLFA than of the entire cell. Malik et al. (2013) confirmed
this conclusion, showing that the turnover of microbial
biomass compounds decreased with increasing molecular
size. The high reutilization and recycling of C in this study
may also reflect the incubation conditions: the microbial
community studied here was under maintenance condi-
tions with rather low amounts of available C for microbial
growth. Alternating environmental conditions (pH, water
content,. . .) and especially a higher C availability may sig-
nificantly affect results and can decrease recycling and
increase neosynthesis of microbial fatty acids. Irrespective
of substrate and incubation conditions, non-homogeneous
13C incorporation into PLFA has to be considered for
pulse labeling studies.
5. CONCLUSIONS

This is the first study investigating the transformation of
fatty acids by soil microorganisms based on position-
specific labeling. Palmitate was partially cleaved to acetyl-
CoA and subsequently partially oxidized in the citric acid
cycle, but was also used for the formation of microbial
biomass. Transformations due to basic microbial C meta-
bolism caused preferential incorporation of palmitate C-2
into microbial biomass, whereas palmitate C-1 was oxidized
to a greater extent.
Compound-specific 13C analysis of microbial PLFA
revealed that palmitate was preferentially used as a precur-
sor for PLFA formation. This demonstrated the recycling
of the existing fatty acid pool in soils as intact precursors
for PLFA formation. After uptake fatty acids can be
incorporated unmodified or can be modified according to
the fatty acid demand of the microbial community. This
modification was increasingly observed from day three to
day ten after palmitate application, with desaturation out-
pacing elongation or branching. In summary, 13C labeling
of palmitate provides new evidence for an intensive recy-
cling of fatty acids, taken up intact by microorganisms,
but also shows the internal transformations of these fatty
acids. Such recycling and reutilization needs to be consid-
ered when interpreting microbial fatty acid profiles and
their 13C signature in soils. This calls for collecting further
data on fatty acid recycling and on the consequences for
13C and 2H isotopic signatures in various soils and sedi-
ments and under various environmental conditions to take
a step forward in understanding fatty acid biomarker
fingerprints.

This new view on fatty acid recycling and transforma-
tions improves the interpretation of labeling experiments
and microbial lipid transformations in soils. The final veri-
fication of the intact incorporation and transformations of
fatty acids needs a combination of position-specific 13C
labeling with position-specific analysis in the metabolites.
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