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A B S T R A C T

Soil aggregation and microbial activities within the aggregates are important factors regulating soil carbon (C)
turnover. A reliable and sensitive proxy for microbial activity is activity of extracellular enzymes (EEA). In the
present study, effects of soil aggregates on EEA were investigated under three maize plant densities (Low,
Normal, and High). Bulk soil was fractionated into three aggregate size classes (> 2000 μm large macro-
aggregates; 2000–250 μm small macroaggregates; < 250 μm microaggregates) by optimal-moisture sieving.
Microbial biomass and EEA (β-1,4-glucosidase (BG), β-1,4-N-acetylglucosaminidase (NAG), L-leucine amino-
peptidase (LAP) and acid phosphatase (acP)) catalyzing soil organic matter (SOM) decomposition were mea-
sured in rooted soil of maize and soil from bare fallow. Microbial biomass C (Cmic) decreased with decreasing
aggregate size classes. Potential and specific EEA (per unit of Cmic) increased from macro- to microaggregates. In
comparison with bare fallow soil, specific EEA of microaggregates in rooted soil was higher by up to 73%, 31%,
26%, and 92% for BG, NAG, acP and LAP, respectively. Moreover, high plant density decreased macroaggregates
by 9% compared to bare fallow. Enhanced EEA in three aggregate size classes demonstrated activation of mi-
croorganisms by roots. Strong EEA in microaggregates can be explained by microaggregates' localization within
the soil. Originally adhering to surfaces of macroaggregates, microaggregates were preferentially exposed to C
substrates and nutrients, thereby promoting microbial activity.

1. Introduction

Intensive agriculture often leads to decreases in soil carbon (C)
stocks and reduces the quality of soil organic matter (SOM) (Paz-
Ferreiro and Fu, 2016). The alterations to soil C stocks could have
further impacts on the global C cycle (Nie et al., 2014). Soil micro-
organisms are one of the important biotic drivers regulating the soil C
cycle. In terrestrial ecosystems, microbially mediated SOM decom-
position constitutes a major part of soil C losses along with abiotic
factors (Kaiser et al., 2010). Therefore, even minor changes in microbial
decomposition of SOM due to intense agricultural practices may sub-
stantially impact the global climate via carbon dioxide (CO2) efflux to
the atmosphere.

Extracellular enzyme activities (EEA) are good indicators of mi-
crobially mediated SOM decomposition and are highly sensitive to
environmental changes (Burns et al., 2013; Mganga et al., 2015;
Sinsabaugh et al., 2005). Depending on their functions, enzymes are
divided into several groups, of which oxidoreductases and hydrolases
are especially relevant for SOM decomposition (Tischer et al., 2015).
Among these enzymes, β-1,4-glucosidase (BG) cellulose de-poly-
merization, releasing two moles of glucose per mole of cellobiose

(disaccharide of cellulose) (Turner et al., 2002). Degradation of various
organic N compounds in soil, including proteins and chitin, are cata-
lyzed by the hydrolyzing activities of L-leucine aminopeptidase (LAP)
and β-1,4-N-acetylglucosaminidase (NAG), respectively (Sanaullah
et al., 2011), releasing N for microbial and plant uptake. Extracellular
activity of acid phosphatase (acP) in soil is associated with P miner-
alization through hydrolysis of organic phosphate compounds
(Goldstein et al., 1988; Nuruzzaman et al., 2006).

Activities of extracellular enzymes are triggered by the presence of
plants and are usually higher than in bulk soil. Release of labile sub-
strates (i.e. root exudation) by living roots into soil enhances EEA
(microbial activation hypothesis; Cheng and Kuzyakov, 2005, Kumar
et al., 2016, Zhu et al., 2014). Availability of labile C from root exu-
dation increases the microbial demand for other nutrients such as ni-
trogen (N) and phosphorus (P). The microbial activation enhances SOM
decomposition via mining for N and P (Kuzyakov and Xu, 2013).

Soil aggregation is another factor affecting SOM decomposition as
well as nutrient cycling because microbial communities and their ac-
tivities differ between aggregate size classes (Caravaca et al., 2005;
Duchicela et al., 2012; Gupta and Germida, 2015). Soil aggregation
physically protects SOM by making it inaccessible for microbial
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mineralization. Aggregation strongly regulates aeration, nutrient re-
tention, and erosion (Blankinship et al., 2016) and controls the se-
questration of plant-derived organic matter by occlusion into macro-
and microaggregates (Lagomarsino et al., 2012; Tian et al., 2015).
Based on observations, it has been identified that C content increase
with increasing aggregate size classes from micro- to macroaggregates.
Moreover, microaggregates constitute relatively old and recalcitrant C
than macroaggregates (Six et al., 2004). Therefore, the quality of C
contained within microaggregates or macroaggregates regulates the
microbial community structure and associated activity (Bach and
Hofmockel, 2014; Hattori, 1988).

Soil macro- (> 250 μm) and microaggregates (< 250 μm) are re-
sponsible for the heterogeneous distribution of microorganisms (Blaud
et al., 2012) and therefore may affect the associated EEA. The impact of
aggregate size class on EEA is inconsistent: increase, decrease or no
change have been obtained. One of the possible reasons may be the
methods of aggregate size fractionation (Allison and Jastrow, 2006;
Dorodnikov et al., 2009a; Fang et al., 2016; Shahbaz et al., 2016). For
instance, application of conventional wet- and dry sieving may sub-
stantially modify easily soluble and desiccation-sensitive enzyme mo-
lecules, and cause their redistribution from one aggregate size class to
another (Dorodnikov et al., 2009a). In contrast, the proposed ‘optimal
moisture sieving’ method was developed to minimize biases from the
above-mentioned factors on EEA. The method is based on a moisture
content that limits mechanical stress, to induce maximum brittle failure
along natural planes of weakness in the bulk soil (Dorodnikov et al.,
2009a; Kristiansen et al., 2006). This technique involves neither com-
plete drying nor water saturation, which are respectively necessary for
dry and moist sieving. Due to the optimal moisture level, macro-
aggregates do not disrupt completely and the microaggregates located
on surfaces of macroaggregates or along natural planes of weakness are
preferentially separated. This fraction comprises the free micro-
aggregate size class, distinct from the microaggregates located inside
macroaggregates (Bossuyt et al., 2005; Six et al., 2004).

In the present study, the response of EEA catalyzing the decom-
position of C (BG and NAG), N (NAG and LAP), and P (acP) compounds
was determined in three aggregate size classes. For this, a modified
‘optimal moisture sieving’ technique was used to separate bulk soil into
large macroaggregates (> 2000 μm), small macroaggregates
(2000–250 μm), and free microaggregates (< 250 μm). Our previous
findings have shown increased enzymes activities in the rhizosphere
soil as compared to bare fallow, driven by labile C inputs from roots
(Kumar et al., 2016). Increase in root density will also change the
distribution of the three aggregate size classes. Therefore, the following
research question was addressed: could the optimally fractionated ag-
gregates explain the effects of rhizosphere on microbial biomass dis-
tribution and measured EEA? We hypothesized that (i) EEA is higher in
aggregates of planted soil than that of bare fallow, as microorganisms
are fueled with C and energy-rich labile substrates by rhizodeposition;
(ii) EEA is higher in free microaggregates than macroaggregates as the
former should be preferentially exposed to root exudates, water and
oxygen flows.

2. Materials and methods

2.1. Experimental setup

The experiment was established on a haplic Luvisol in an agri-
cultural field (51°29′37.2″N and 9°55′36.9″E), which belongs to the
research station “Reinshof” of the Georg-August-University Göttingen,
Germany. Soil properties are as follow: total C (1.41 ± 0.04%), total N
(0.16 ± 0.002%), pH (7.2 ± 0.01), soil bulk density
(1.2 ± 0.2 g cm−3).The experimental field was divided into 16 plots,
each with an area of 5 × 5 m. To avoid any neighboring effects, the
plots were separated by 2 m-wide buffer strips, which were kept ve-
getation-free throughout the experiment. A gradient of three plant

densities (low, normal and high) was established in the field with
completely randomized design. For this, maize was sown in plots with a
plant density of 16 plants m−2. When the plants were approximately
10 cm high, the plots were thinned according to the plant density
gradient. Plots were thinned to 6 plants m−2 for low plant density;
10 plants m−2 for normal plant density; and 16 plants m−2 were left as
high plant density. Four plots were kept vegetation-free throughout the
experiment as control.

2.2. Soil and plant sampling

Soils were collected when the plants entered into the reproductive
state (72 days after planting (DAP)) from a depth of 5–15 cm assuming
maximum root growth and root exudation during plant vegetative stage
(Kumar et al., 2016). This soil depth corresponded to the highest root
biomass (data not presented). For soil sampling, the upper 0–5 cm soil
layer was carefully removed and soil from 5 to 15 cm was collected
between maize rows with a border spade. After delivery to the la-
boratory, soils were immediately sieved through an 8-mm sieve. A 5 g
sub-sample was dried at 60 °C for 3 days to determine soil moisture
content. The remaining soil was used for aggregate size fractionation.
To determine shoot biomass, two plants from each plot were cut at the
base, dried at 60 °C for 3 days, and weighed. Based on plot size and
plant density of the respective treatment, shoot biomass was scaled up
to g dry weight m−2. For the total root biomass, which could not be
directly quantified, the root-to-shoot ratio was used to scale measured
shoot biomass to root biomass in units per area (i.e. g dry weight m−2).
The root-to-shoot ratio under normal plant density was 0.11 (97 DAP)
and did not differ significantly between low, normal, and high plant
densities at the end of the field experiment (130 DAP). The ratio was
within the range of the data reported by Amos and Walters (2006),
showing that the main changes of root-to-shoot ratio in maize occur
within the first 60 days after planting.

2.3. Aggregate size fractionation

Aggregates of three size classes were isolated by the method de-
scribed by Dorodnikov et al. (2009a) with modifications. In order to
minimize disturbance to microbial activities, soils were cold dried at
4 °C to approximately 10% gravimetric water content (Bach and
Hofmockel, 2015). For this, soil samples were placed in a container and
spread into a thin layer. All stones and visible roots were hand-picked.
Once the desired condition was achieved, approximately 700 g soil was
transferred to a nest of sieves (2 mm and 0.25 mm). The nest was bolted
onto a vibratory sieve shaker AS200 (Retsch, Germany) and shaken for
3 min, 2 times. Aggregates remaining on the 2 mm sieve were classified
as large macroaggregates (> 2000 μm), aggregates passing through the
2 mm sieve but remaining on the 0.25 mm sieve were classified as small
macroaggregates (2000–250 μm), and the remaining soil materials
which passed through the 0.25 mm sieve were classified as micro-
aggregates (< 250 μm) (Fig. 1). From each aggregate size class, soil
was weighed to determine the mass distribution and mean weight
diameters (MWD) of aggregates. Mean weight diameter was calculated
after John et al. (2005):

∑= ×

− ÷

MWD Weight of sample remaining on sieve Mean inter

sieve size

( %

) 100

where mean inter-sieve size is the average of the two sieve sizes through
which the aggregates have passed and on which the aggregates have
remained after sieving.

Thereafter, post-sieving moisture content, total C and N, microbial
biomass C and N, and maximal potential extracellular enzyme activities
of C-, N-, and P-degrading enzymes were measured. For moisture con-
tent, a soil subsample was dried at 60 °C for 3 days. Total C and N
contents were estimated with an Elementar Vario EL analyzer

A. Kumar et al. Geoderma 306 (2017) 50–57

51



(Elementar Analysensysteme GmbH, Germany).

2.4. Soil microbial biomass

The chloroform fumigation-extraction method was used to de-
termine soil microbial biomass C (Cmic) and N (Nmic) (Vance et al.,
1987) with slight modifications. Before microbial biomass determina-
tion, aggregates were moisten to field moisture level of 12–15% and
incubated for 24 h to assure field conditions. Briefly, an 8 g soil sample
(non-fumigated) was extracted with 32 ml of 0.05 M K2SO4 for 1 h by
continuously shaking (150 rpm) on a reciprocating shaker (Laboratory
shaker, GFL 3016). Afterwards, the soil suspension was filtered (grade:
3 hw, diameter 110 mm, Sartorius) and stored at 4 °C until further
analyses. The same extraction procedure was used for fumigated soil.
Fumigation was done with 80 ml of ethanol-free chloroform in a de-
siccator at room temperature for 24 h. The organic C and total N con-
tent of the filtered solution was measured with a multi N/C analyzer
(multi N/C analyzer 2100S, Analytik, Jena).

Differences between extracted C and N from fumigated and non-
fumigated soil were used to calculate microbial biomass C and micro-
bial biomass N. We used KEC and KEN factors of 0.45 and 0.54 for mi-
crobial C and N, respectively (Joergensen and Mueller, 1996; Wu et al.,
1990).

2.5. Enzyme assays

Extracellular enzyme activities were measured with fluorogenically
labeled artificial substrates according to Marx et al. (2001). Fluorogenic
4-methylumbelliferone (MUB)-based substrates were used to determine
the activities of β-1,4-glucosidase, β-1,4-N-acetylglucosaminidase and
acid phosphatase. Fluorogenic 7-amino-4-methylcoumarin (AMC)-
based substrate was used to determine the activity of L-leucine amino-
peptidase. EEA was determined separately in distinct aggregate size
class. For this, distinct aggregates (1 g) were used to make soil sus-
pension by dissolving it in 50 ml distilled and autoclaved water. To
release the enzymes trapped on soil clay particles, low-energy sonica-
tion (50 Js−1) was applied for 2 min (Loeppmann et al., 2016; Razavi

et al., 2015). 50 μl of soil suspension was dispensed into a black 96-well
microplate (PureGrade™, GMBH+ Co KG, Wertheim, Germany) while
stirring the suspension on a magnetic stirrer to maintain uniformity.
Thereafter, for MUB-based substrates, 50 μl of MES (C6H13NO4SNa0.5)
buffer (pH 6.5) and for AMC-based substrate, 50 μl of TRIZMA
(C4H11NO3·HCl, C4H11NO3) buffer (pH 7.2) was added to each well
(Hoang et al., 2016). Finally, 100 μl of substrate solutions of 4-methy-
lumbelliferyl-β-D-glucoside, 4-methylumbelliferyl-N-acetyl-β-D-gluco-
saminide, L-leucine-7-amido-4-methylcoumarine hydrochloride and 4-
methylumbelliferyl phosphate were added to the wells. A substrate
concentration of 400 μmol g−1 soil was used for the substrate-un-
limited maximal potential reaction, as determined in a preliminary
experiment using Michaelis-Menten kinetics (by using increasing sub-
strate concentrations to reach Vmax). Just after substrate addition, the
microplate was gently shaken to mix the well contents and measure-
ments were taken fluorometrically (excitation 360 nm; emission
450 nm) at 0, 30, 60, and 120 min after substrate addition with an
automated fluorometric plate reader (Victor3 1420–050 Multi-label
Counter, PerkinElmer, USA). Fluorescence was converted to amount of
AMC or MUB, according to standards. Enzyme activities were expressed
as MUB or AMC released in nanomol per gram aggregate dry weight
and hour (nmol g−1 aggregate h−1).

2.6. Statistics

The experiment was conducted with 4 field replicates. The values
presented in figures are means of 4 field replicates± standard errors
(mean ± SEM). The data set was checked for normality (Shapiro-Wilk
test, P > 0.05) and homogeneity of variance (Levene test, P > 0.05)
prior to analysis of variance (ANOVA). For β-1,4-glucosidase and β-1,4-
N-acetylglucosaminidase, the data did not meet the requirement for
normality. Therefore, data were square-root transformed and retested
for normal distribution with the Shapiro-Wilk test. Afterwards, two-
factor ANOVA was performed to test the effects of aggregate size class
and plant density on Cmic and Nmic, and potential and specific EEA. One-
factor ANOVA was used to test the effect of plant density on MWD,
relative distribution of aggregates within each aggregate size class, and
root biomass. Post-hoc tests for multiple comparisons using least sig-
nificant differences (Tukey-test, P < 0.05) were performed on each
measured parameter after ANOVA. STATISTICA for Windows (version
7.0, StatSoft Inc., OK, USA) was used to perform ANOVA analyses.
Figures were drawn with OriginPro 8.5G (OriginLab Corporation.,
Northampton, MA 01060, USA). The level of significance was defined at
P < 0.05 for all statistical analyses, if not mentioned specifically.

3. Results

3.1. Aggregate size class distribution and mean weight diameter

Large and small macroaggregates dominated in the bare and planted
soil, whereas microaggregates accounted for only a small part (Fig. 2).
The relative distribution (in %) of aggregate size classes were: large
macroaggregates (48–54%)> small macroaggregates (40–45%)> mi-
croaggregates (6–8%). The C and N content was 1.17 to 1.22% C and
0.13% N, respectively and did not differ significantly across the ag-
gregate size classes.

Plant density had a minor effect on the relative distribution of ag-
gregate size classes. The percentage of large macroaggregates in high
plant density was significantly lower (P < 0.05) than bare fallow and
low- and normal plant density. The percentage of microaggregates
showed an increasing trend with increasing plant density. The MWD did
not vary between bare fallow and various plant densities, except that
high plant density had a minor decrease when compared to normal
maize density (Fig. 3).

Fig. 1. Schematic diagram showing soil preparation and aggregate size fractionation.
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3.2. Plant and microbial biomass

Aboveground biomass was 362 g m−2 under low plant density and
increased by 88% and 149% under normal and high plant density, re-
spectively. However, the increase was not significantly different
(P > 0.05) between normal and high plant density (Supplementary
Table 1). As total root biomass could not be accurately determined in
the field, root biomass per area was calculated based on the measured
root-to-shoot ratio. Root biomass increased from 41.2 ± 6.0 g m−2 for
low plant density to 80.2 ± 6.1 g m−2 for high plant density.

Microbial biomass C decreased with decreasing aggregate size and
ranged from 106.4 ± 18.5 to 138.7 ± 12.8 mg C kg−1 aggregate
(large macroaggregates), 79.5 ± 5.4 to 121.1 ± 3.9 mg C kg−1 ag-
gregate (small macroaggregates), and 77.8 ± 14.8 to 95.4 ± 8.7 mg
C kg−1 aggregate (microaggregates) (Fig. 4). Planting had minor effects
on Cmic relative to bare fallow. Comparing between the aggregate size
classes, large macroaggregates comprised higher Cmic. Microbial

biomass N had a tendency to decrease with decreasing aggregate size
classes. The content of Nmic was on average 27.3 ± 2.6 mg N kg−1

aggregate in large macroaggregates, 22.8 ± 0.8 mg N kg−1 aggregate
in small macroaggregates, and 20.9 ± 1.1 mg N kg−1 aggregate in
microaggregates under low plant density (Supplementary Table 1).

3.3. Extracellular enzyme activities

In contrast to microbial biomass, the potential activities of C, N, and
P degrading enzymes (BG, LAP, NAG, and acP) tended to increase with
decreasing aggregate size in planted soil (Fig. 5). Under bare fallow, the
potential activities of BG and LAP were lower in microaggregates than
macroaggregates, whereas the potential activity of NAG remained
constant and that of acP was higher in microaggregates than in mac-
roaggregates. Additionally, under bare fallow and low, normal and high
plant densities, specific activities of BG, LAP, NAG, and acP remained
similar, with a slight increase under high plant density (Fig. 6). Effects
of planting on specific enzyme activities were strongest in micro-
aggregates (Fig. 6). In microaggregates, the specific activity of BG was
0.47 nmol h−1 mg−1 Cmic in bare fallow and increased by 21–73% in
the presence of roots. The specific activity of NAG was
0.57 nmol h−1 mg−1 Cmic in bare fallow and increased by 5–31%;
specific activity of acP was 6.1 ± 0.3 nmol h−1 mg−1 Cmic in bare
fallow and varied by −2% and 26%; and the specific activity of LAP
was 0.35 nmol h−1 mg−1 Cmic in bare fallow and increased by about
35–92% in presence of roots under various plant densities. The specific
enzyme activities were similar in each of the three aggregate size
classes of the bare fallow.

4. Discussion

4.1. Aggregate fractionation

According to the aggregate hierarchy concept (Elliott and Coleman,
1988), microaggregates are located inside macroaggregates and com-
prise older C pools (Six et al., 2004). As shown by Dexter (1988), the
maximum soil friability (tendency toward segregation of unconfined
soil into smaller fragments under certain mechanical stress) occurs at
about 38% of water content (field capacity). Soil colloids shrink and
cracks appear, defining the boundaries of aggregates. These cracks re-
main as points of weakness for physical breakdown. Therefore, at this

Fig. 2. The relative distribution of large and small macroaggregates (left y-axis;
mean ± SEM) (n = 4) and microaggregates (right y-axis; mean ± SEM) (n = 4) in bare
fallow soil and soils with Low, Normal and High maize plant densities. Letters indicate
significant differences (Post-hoc LSD test, P < 0.05) between bare fallow and three plant
densities within the same aggregate size class.

Fig. 3. Mean weight diameter (± SEM) (n = 4) in bare fallow soil and soils with Low,
Normal and High maize plant densities. Letters indicate significant differences (Post-hoc
LSD test, P < 0.05) in MWD between bare fallow soil and soils with low, normal and
high maize plant densities.

Fig. 4. Microbial biomass (mg C kg−1 aggregate; mean ± SEM) (n = 4) in bare fallow
soil and soils with Low, Normal and High maize plant densities. Letters indicate sig-
nificant differences (Post-hoc LSD test, P < 0.05) in microbial biomass C between ag-
gregate size classes in bare fallow soil and soils with Low, Normal and High maize plant
densities.
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soil water content, aggregate fractionation results in breakdown of
macroaggregates along the planes of weakness, releasing the micro-
aggregates located on surfaces of macroaggregates and along their
planes of weakness. Thus, the procedure adopted by Dorodnikov et al.
(2009a) for aggregate size fractionation, termed as ‘optimal moisture
sieving’, accounted for free microaggregates as described in the ag-
gregate hierarchy concept (Bossuyt et al., 2004; Oades, 1984; Simpson
et al., 2004; Six et al., 2004). According to the method used in this
study, the proportion of micro- to macroaggregates size classes strongly
depends on the soil moisture level. Generally, the lower the moisture,
the lower would be slicking and therefore, the proportion of macro-
aggregates is higher (Chenu et al., 2000). However, we aimed to keep
the moisture under which EEA would be close to field conditions and
the proportion of micro- to macroaggregates in the tested soil corre-
sponded to field moisture conditions. In the present study, the soil
moisture content was around 7 to 10% of total weight after sieving. We
assume the breakdown of macroaggregates along the planes of weak-
ness was minimal as shown by Dexter (1988). Therefore, we assume
that with the aggregate fractionation technique we applied, mainly the
free microaggregates and the microaggregates adhering on the surface
of macroaggregates were isolated (Fig. 1). The small portion of isolated
microaggregates in the present study (6–8% of total soil) further sup-
ports this concept.

4.2. Root effects on aggregate size distribution

The influence of roots on aggregate stabilization is well known
(Erktan et al., 2016; Six et al., 2004), but very few studies have focused
on aggregate disintegration by living roots (Materechera et al., 1994).

In our field study, a gradual increase in the proportion of micro-
aggregates and a decrease in large macroaggregates with increasing
plant density may be due to disintegration of large macroaggregates by
growing roots (Fig. 2). Also, the mean weight diameter, which is an
indicator of aggregate stability (Tripathi et al., 2014) tended to de-
crease with increasing plant density. This also confirmed the redis-
tribution of aggregate size classes in the presence of growing roots.
Mechanistically, the aggregate redistribution may occur through the
penetration of living roots into macroaggregates along planes of
weakness and through the pores within macroaggregates, thereby de-
creasing their stability (Materechera et al., 1994). Hence, root mor-
phology (root thickness, root length density, root branching, etc.) is one
of the main drivers affecting aggregate redistribution (Carter et al.,
1994).

4.3. Microbial biomass C in micro- and macroaggregates

Microbial biomass C decreased with decreasing aggregate size. The
hierarchical aggregate concept (Elliott and Coleman, 1988) integrates
the aggregate categories with the pore structure, which defines micro-
sites of habitability for microorganisms (Gupta and Germida, 2015).
Literature is replete with studies showing increased fungal abundance
with increasing aggregate size (Poll et al., 2003; Zhang et al., 2015).
The preferential colonization by fungal communities may occur in
macroaggregates (Harris et al., 2003) by expanding their biomass
through extensive hyphal growth in large pores (De Gryze et al., 2005;
Dorodnikov et al., 2009b). In turn, microaggregates are inhabited
predominately by bacterial communities (Ranjard and Richaume, 2001;
Six et al., 2006). Higher Cmic / Nmic ratio in macroaggregates than

Fig. 5. Potential activity of: β-1,4-glucosidase; L-leucine aminopeptidase; acid phosphatase; and β-1,4-N-acetylglucosaminidase (nmol h−1 g−1 soil) (± SEM) (n = 4) in distinct ag-
gregate size classes in bare fallow soil and soils with Low, Normal and High maize plant densities. Upper-case letters indicate significant differences (Post-hoc LSD test, P < 0.05) in
potential activity within the same aggregate size class. Lower-case letters indicate significant differences (Post-hoc LSD test, P < 0.05) in potential activity between distinct aggregate
size classes.
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microaggregates (although significant only in low plant density) in the
present study indicates fungal dominance in macroaggregates as com-
pared to microaggregates (Supplementary Table 2) (Dorodnikov et al.,
2009b). The lower microbial biomass in the microaggregates in com-
parison with large and small macroaggregates could reflect the dis-
tribution of fungal and bacterial communities (Gupta and Germida,
2015) as a result of different habitats.

In the short term, labile C inputs from roots did not change overall
microbial growth. Such inputs predominantly activate fast-growing
microbial communities (Blagodatskaya and Kuzyakov, 2008). The same
amounts of microbial biomass in bare fallow and in planted soils
(Fig. 4) are in line with other studies (Duineveld et al., 1998; Fontaine
et al., 2007), highlighting the regulatory effect of living plants on ac-
tivities rather than on the abundance of microorganisms in agricultural
soil.

4.4. Effects of roots and aggregate sizes on extracellular enzyme activities

Extracellular enzyme production by microorganisms, which reg-
ulates microbially mediated SOM decomposition, may occur under
nutrient limitations. In addition, root exudation may trigger extra-
cellular enzyme production (Kumar et al., 2016; Kuzyakov and
Blagodatskaya, 2015) via microbial activation. In the presence of root-
released organics, which are characterized by higher C/N ratios, the
microbial demand for other nutrients (especially N and P) increases
(Fontaine et al., 2011). Further, plants exacerbate the nutrient limita-
tions due to competition with microorganisms (Kuzyakov and Xu,
2013). In order to fulfill these extra nutritional demands, microorgan-
isms produce N- and P-degrading enzymes to mine for them from SOM.

Along with the P demand, acP activity reflects the overall microbial
activity (as it participates in phosphorylation processes within cells and
by lysis appears extracellular), which differ between macro- and mi-
croaggregates and was the highest among all enzymes tested. The re-
sults from the present study corroborate the reported increase in ex-
tracellular activities of C-, N- and P-degrading enzymes with decreasing
aggregate size class (Nie et al., 2014). Similarly to the potential EEA,
the specific EEA for C-, N-, and P-degrading enzymes also increased in
the order: large macroaggregates < small macroaggregates <
microaggregates (Fig. 6). Overall higher total and specific EEA in free
microaggregates can result from the location of the latter within soil
where plant root exudations as well as water, nutrient and oxygen flows
are higher than in the interior of macroaggregates (Burns et al., 2013;
Phillips et al., 2011). Similarly, an absence of labile substrate inputs in
bare fallow soil resulted in lower enzyme activities. In summary, con-
sidering microbial activation (Cheng and Kuzyakov, 2005) by growing
roots, the present study provides evidence that the influence of roots on
microorganism's activities persists in different soil aggregates and such
influences are more pronounced in free microaggregates (Fig. 7).

5. Conclusions

Pronounced effects of aggregate size on Cmic, Nmic as well as on EEA
were demonstrated. Higher EEA in rooted soil than in bare fallow soil
for three aggregate size classes highlights plant-mediated microbial
activation. The presence of roots stimulated microbial activity (poten-
tial and specific EEA), which governs the catalytic reactions of SOM
decomposition. Markedly higher specific EEA in free microaggregates
than in large- and small macroaggregates may result from the better

Fig. 6. Specific activity (ratio of potential activity and microbial biomass C) of: β-1,4-glucosidase; L-leucine aminopeptidase; acid phosphatase; and β-1,4-N-acetylglucosaminidase
(nmol h−1 g−1 soil) (± SEM) (n = 4) in bare fallow soil and soils with Low, Normal and High maize plant densities in distinct aggregate size classes. Upper-case letters indicate
significant differences (Post-hoc LSD test, P < 0.05) in specific activity within the same aggregate size class. Lower-case letters indicate significant differences (Post-hoc LSD test,
P < 0.05) in specific activity between distinct aggregate size classes.
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supply of root exudates, water, nutrients and oxygen to microorgan-
isms. Minimal or no effect of aggregate size on specific EEA under bare
fallow indicated microbial inefficiency in enzyme synthesis in the ab-
sence of root-released organics.
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