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a b s t r a c t

The most frequently used models simulating soil organic matter (SOM) dynamics are based on first-order
kinetics. Thesemodels fail to describe andpredict such interactions as priming effects (PEs), which are short-
term changes in SOM decomposition induced by easily available C or N sources. We hypothesized that if
decomposition rate depends not only on size of the SOMpool, but also onmicrobial biomass and its activity,
then PE can be simulated. A simple model that included these interactions and that consisted of three C
poolse SOM,microbial biomass, and easily available Cewas developed. Themodel was parameterized and
evaluated using results of 12CeCO2 and 14CeCO2 efflux after adding 14C-labeled glucose to a loamy Haplic
Luvisol. Experimentallymeasured PE, i.e., changes in SOMdecomposition induced by glucose,was compared
with simulated PE. The best agreement between measured and simulated CO2 efflux was achieved by
considering both the total amount of microbial biomass and its activity. Because it separately described
microbial turnover and SOM decomposition, the model successfully simulated apparent and real PE.

The proposed PE model was compared with three alternative approaches with similar complexity but
lacking interactions between the pools and neglecting the activity of microbial biomass. The comparison
showed that proposed new model best described typical PE dynamics in which the first peak of apparent
PE lasted for 1 day and the subsequent real PE gradually increased during 60 days. This sequential
decomposition scheme of the new model, with immediate microbial consumption only of soluble
substrate, was superior to the parallel decomposition scheme with simultaneous microbial consumption
of two substrates with different decomposability. Incorporating microbial activity function in the model
improved the fit of simulation results with experimental data, by providing the flexibility necessary to
properly describe PE dynamics. We conclude that microbial biomass should be considered in models of C
and N dynamics in soil not only as a pool but also as an active driver of C and N turnover.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Predicting the consequences of climate change on ecosystem
carbon (C) fluxes and their feedbacks depends on understanding
the co-limitation of the decomposition of soil organic matter (SOM)
by the quantity and quality of available substrate and by the activity
of decomposers (Fang et al., 2005; Wutzler and Reichstein, 2008).
SOM turnover models based on first-order kinetics that do not
consider such co-limitation fail to describe so-called priming
effects (PEs). According to Kuzyakov et al. (2000), PEs are strong
(up to 10-fold larger than in control soil) and generally short-term
ical and Biological Problems
ussian Federation. Tel.: þ49
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(up to several months) changes in the turnover of native soil
organic matter induced by comparatively moderate treatments
of the soil. Such treatments might be inputs of organic or mineral
fertilizer to the soil (Jenkinson et al., 1985; Olayinka, 2001; Leifeld
et al., 2002; Bol et al., 2003; Fanguelro et al., 2007), exudation of
organic substances by roots (Paterson, 2003; Cheng and Kuzyakov,
2005; Cheng, 2009), or inputs of plant residues (Bell et al., 2003;
Perelo and Munch, 2005). In the course of priming, large amounts
of C, N, and other nutrients can be released in soil very quickly,
generally over several days to weeks (Fu et al., 2000; Hamer and
Marschner, 2002, 2005; Bol et al., 2003; Fontaine et al., 2004).

The proposed definition of the PE presumes that the decompo-
sition rate of the SOM pool is not constant and depends not only on
environmental factors (i.e., soil temperature and moisture) but
also on the dynamics of other C pools (e.g., microbial biomass,
Blagodatskaya and Kuzyakov, 2008). It also presumes that the
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Fig. 1. Block-schemes of two alternative simulation models for describing priming
effects in soil: sequential (top) or parallel (bottom) utilization of substrateswith contrast
availability. Carbon flows are shown as arrows, colored (hatched) blocks and arrows
designate pools and fluxes labeled by 14C. The dotted lines shows the effect of microbial
biomass amount and activity on the rates of SOM decomposition and uptake of soluble
substrates. k1, k2 e rate coefficients, m e maintenance coefficient; Y1 and Y2 e the
efficiency (splitting) factors, determining which part of the C flow is respired as CO2. See
text for detailed explanations.
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decomposition of C pools is interdependent and not additive. Both
of these statements contrast with the traditional concept that
SOM decomposition is solely temperature- and moisture-driven,
a concept that is used in most models simulating C and N dynamics
in soil (reviewed by Molina and Smith, 1998; Smith et al., 1998;
Manzoni and Porporato, 2009). However, many experimental
studies have shown that the degradation rates of organic substances
depend on microbial community composition, size, and physiology
e the parameters that directly affect enzyme activity in soil (Schimel
and Gulledge, 1998; Balser and Firestone, 2005; Wall and Moore,
1999; Zogg et al., 1997; Griffiths et al., 2008; Paterson et al., 2009).
In the last decade, modelers have therefore considered microbial
biomass as a driving force of decomposition (Blagodatsky and
Richter, 1998; Gignoux et al., 2001; Schimel and Weintraub, 2003;
Müller and Höper, 2004; Fontaine and Barot, 2005), and they have
applied decomposition equations with non-linear rate dependen-
cies, as reviewed by Manzoni and Porporato (2009). These models
presented the theoretical possibility of simulating PEs but themodel
outputs have never been tested using experimentally measured
PE dynamics upon application of 14C or 13C label. The application of
14C or 13C label allows researchers to distinguish the CO2 that evolves
from the applied substrate and from native SOM pools.

Modeling approaches capable of predicting PE in soils have peri-
odically appeared in the literature since the 1970s (Parnas, 1976;
Smith, 1979). In recent years, this topic has been addressed more
frequently because of rising interest in feedbacks in the terrestrial C
cycle and in controls of soil heterotrophic respiration (Fontaine and
Barot, 2005; Moorhead and Sinsabaugh, 2006; Neill and Gignoux,
2006). The models capable of describing PE differ in concept as well
as in complexity (rate equations and number of model parameters;
reviewed by Wutzler and Reichstein, 2008; Manzoni and Porporato,
2009). Wutzler and Reichstein (2008) showed that the long-term
consequences of decomposition formulations differ qualitatively
depending on representation of the active decomposers. These
authors compared mathematical expressions that describe SOM
decomposition rates for their suitability for PE simulation. Studies of
Wutzler and Reichstein (2008) and Fontaine and Barot (2005) clearly
demonstrated that PE can be properly modeled if the decomposition
rate depends not only on the SOM amount, but also on a second
pool, namelymicrobial biomass. Therefore,wedeveloped and applied
a model based on biotic drivers of SOM decomposition and substrate
utilization bymicrobial biomass. The specific features and advantages
of the new model, which is described in this paper, can be best
illustrated by comparing the new model with known models. In the
current study, we have compared our new approach for PE modeling
with three other models of similar complexity. The models were
tested using experimental data on CO2 and microbial biomass
dynamics measured both for 12C and 14C pools.

The present study was designed to: 1) develop a simple model
allowing simulation of PEs, 2) parameterize the model based on the
experimental data on the PE induced by adding 14Ceglucose, and 3)
compare the proposed approach with three alternative models
analogous to those published previously. The models were tested
for their capability to describe the dynamics and size of experi-
mentally measured PE.

2. Materials and methods

2.1. Model description

The proposed model was kept as simple as possible, and in its
simplest version describes three pools of organic C (Fig. 1): soil
organic C (SOC), dissolved organic C (DOC), andmicrobial biomass C
(MB). The DOC pool is labeled using 14Ceglucose at the beginning of
the incubation. The other two pools (MB and SOC) are unlabelled.
The basic proposed model (referred to as model 1, Fig. 1, sequential
scheme) considers decomposition as a sequential process, i.e.,
organic substrates must first be solubilized before they become
available to microorganisms. According to this model, the decom-
position rate of SOC depends on the amount of microbial biomass
and the rate coefficient k1:

dSOC
dt

¼ �k1$MB (1)

This dependency assumes that decomposition is regulated by
extracellular enzymes, which, however, are not explicitly included
in the model for the sake of simplicity. The C flux by SOC decom-
position is divided to DOC and CO2 according to efficiency factor Y1.
Thus, corresponding portions of C enter the DOC and CO2 pools. The
rate of DOC change in time is:

dDOC
dt

¼ Y1$k1$MB� k2$DOC$ACT$MB (2)

The first part of the right side of Eq. (2) corresponds to the fixed
portion of decomposition flow (Eq. (1)). DOC can be directly taken up
by microorganisms (second part of the right side of Eq. (2)). The DOC
consumption rate depends on 1) microbial activity status (ACT, Eq.
(5), described in detail later), 2)microbial biomass amount (MB), and
3) the substrate amount (DOC)multiplied by the rate constant k2. The
consumedC is used formicrobial growth and respiration according to
the efficiency factor Y2 as described in Eq. (3) (first part of right side).

dMB
dt

¼ Y2$k2$DOC$ACT$MB�m$ACT$MB (3)

The active part of the microbial biomass (ACT � MB) decreases
due to maintenance respiration (second part of the right side of



Table 1
Initial conditions for the models describing priming effects in soil.

Variable, description and equation number Initial value, units Method of estimation (details are in the
Material and methods section)

t: time (1e5, 9, 11) 0, hours Independent variable
SOC: Insoluble soil organic matter (1) 21.3 (mg C g soil�1) Experiment, total soil C
DOC: Dissolved organic carbon (2) or (2a) 0.01 (mg C g soil�1)

1.01 (mg C g soil�1)
Experiment, unamended soil
Experiment, soil amended with labeled
glucose 1.0 mg C (g soil)�1

MB: Soil microbial biomass (3) 0.6 (mg C g soil�1) Experiment, unamended soil
CO2: Respired CO2 (4) 0 (mg C g soil�1) Zero at start
ACT: Microbial activity status (5)

(ACT is not included in models 1a and 2a)
0.0585 (undimensional) Adopted from Blagodatsky and Richter (1998)
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Eq. (3)). The replenishment of SOC by deadmicrobial residues is not
considered in our model for the sake of simplicity. This omission is
acceptable in the case of short-term experiments (such as in our
study). The mineralization of SOM (Eq. (1)), microbial growth and
maintenance (Eq. (3)) lead to CO2 production:

dCO2

dt
¼ ð1� Y1Þ$k1$MBþ ð1� Y2Þ$k2$DOC$MB$ACT

þm$ACT$MB (4)

The first part of right side of Eq. (4) is equal to the fixed portion
of the SOC decomposition rate (cf. Eq. (1)). The second part of right
side in Eq. (4) represents the microbial growth respiration and is
equal to the fixed portion of microbial uptake of DOC (cf. Eq. (2)).
Maintenance respiration is described by the third part of the right
side of Eq. (4), which corresponds to the second part of the right
side in Eq. (3).

The final equation (5) in our model describes the dynamics of
microbial activity (ACT), which depends on the DOC concentration:

dACT
dt

¼ k2$DOC$
�

DOC
DOCþ k3

� ACT
�

(5)

The activity function (for detailed description see Blagodatsky and
Richter,1998) takes values in the range 0< ACT< 1, if initial values of
ACT are in the range [0,1]. The current value of ACT shows the
proportion of the total microbial biomass that is actively growing.
The activity status of microbial biomass depends on amount of
available substrate (DOC), and its dynamical changes depend on
MichaeliseMenten type response function (DOC/(DOCþ k3)), where
parameter k3 (inhibition constant for C-dependentmicrobial activity)
determines the microbial reaction rate as a function of changes in
DOC amount.

The initial values for model variables (Table 1) were obtained
experimentally in the current study (Eqs. (1)e(4)) or borrowed from
literature (Eq. (5)). The describedmodel has a total of six parameters
(Table 2, model 1) applied without modifications for all tested
treatments, namely: 1) dynamics of C pools in control (unamended)
Table 2
Optimized parameters for the alternative models tested. Model versions 1a and 2a were
and remains constant in eqs. (1)e(4) for model versions 1a and 2a.

Parameter description Units

Decomposition constant for SOC, k1 day�1

Second-order rate constant for microbial C uptake, k2 g mg C�1 day�1

Inhibition constant for C-dependent microbial activity, k3 mg C g�1

Maintenance coefficient, m day�1

Efficiency of decomposition, Y1 mg C mg C�1

Efficiency of substrate uptake, Y2 mg C mg C�1

a Parameter Y1 violated its constraint range (0.0) during the optimization procedure.
soil, 2) dynamics of unlabelled 12C in soil amended with glucose as
described in the experimental design section, and 3) dynamics of
14C-labeled pools in amended soil (Fig. 1). In the latter case,
14C-glucose enters the system as a part of the DOC pool at the
beginning of the experiment, and then all reaction rates and 14C
transfer are calculated according to the same equations as for 12C.

To evaluate the advantages and shortcomings of the suggested
model, as well as to compare it with the previous formulations
(Fontaine and Barot, 2005; Neill and Gignoux, 2006), we also tested
an alternativemodel concept, which is referred to as model 2 (Fig.1,
bottom). In contrast to model 1, which has a sequential decompo-
sition scheme, model 2 has a parallel decomposition scheme in
which C flows directly from different organic sources to microbial
biomass without solubilization. All rate expressions in model 2 are
the same as in model 1. The only difference between model 2
and model 1 is the transfer of the first term on the right side of
Eq. (2) (soluble substrate input) to Eq. (3), i.e., direct input of C from
insoluble SOM to the microbial biomass. So, for the parallel
decomposition scheme in model 2, equations for DOC and for MB
are:

dDOC
dt

¼ �k2$DOC$ACT$MB (2a)

dMB
dt

¼ Y1$k1$MBþ Y2$k2$DOC$ACT$MB�m$ACT$MB (3a)

2.2. Calculation of the priming effect

Based on experimental data and model runs, we calculated PE
using several approaches. Cumulative PE, expressed in mg C per g
soil, was:

PE ¼ 12COamended
2 � CO0

2; (6)

where 12COamended
2 is unlabelled 12CeCO2 evolved from soil

amended with 14Ceglucose and nutrients, and CO0
2 is unlabelled
run without activity function (Eq. (5)). Correspondingly, the variable ACT equals to 1

Model tested

1 1a 2 2a

Parameter value

0.019 0.019 0.020 0.023
6.59 1.14 6.91 0.82
2.64 not included 4.72 not included
0.5 0.0082 0.2 0.0005
0.02 0.02a 0.02 0.02a

0.62 0.52 0.46 0.44
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12CeCO2 evolved from soil without substrate addition. The relative
intensity of PE was estimated as a percentage of changes relative
to the unlabelled CO2 production with and without substrate
addition by:

PE% ¼
12COamended

2 � CO0
2

CO0
2

$100% (7)

PE calculated using Eqs. (6) and (7) can be derived from both
experimental data and from model output. In addition, the
proposed model allows us to split CO2-based PE into apparent PE
and real PE (Blagodatskaya et al., 2007). Thus, the relative differ-
ence between the first parts of the right side of Eq. (4) for amended
and unamended soil is a real PE caused by changes in SOM
decomposition:

real PE% ¼ SOC derived12COamended
2 � SOC derivedCO0

2

SOC derivedCO0
2

$100%

(8)

where SOC-derived CO2 was calculated by integrating the first part
of equation (4) for the corresponding unlabelled pool of microbial
biomass:

dðSOC derived CO2Þ
dt

¼ Y1$k1$MB (9)

The relative difference between the third part of the right side of
Eq. (4) for amended and unamended soil (unlabelled C) is due to
intensification of microbial metabolism (maintenance respiration)
in amended soil or apparent PE:

apparent PE%¼maintenan12COamended
2 �maintenanCO0

2

maintenanCO0
2

$100%

(10)

where CO2 evolved due to maintenance respiration was calculated
by integratiing the third part of Eq. (4) for the corresponding
unlabelled pool of microbial biomass:

dðmaintenan CO2Þ
dt

¼ m$ACT$MB (11)

2.3. Model evaluation and statistics

The model described in Table 1 by Eqs. (1)e(5) was built
using MODELMAKER� Version 3.0.3 software (ModelMaker, 1997).
Parameters were optimized and goodness-of-fit statistics were
generated by procedures included in this software package. To
evaluate the capacity of the proposed models to simulate labeled
and unlabelled CO2 efflux from both control soil and soil amended
with glucose and nutrients, we compared the following statistical
criteria: (1) r2, the fraction of total variation explained by the model
defined as a ratio of model weighted sum of squares (WSS) to total
weighted sum of squares; and (2) variance ratio or F-value calcu-
lated as follows:

F ¼
�
model WSS

DF

�
�
residual WSS

DF

� (12)

where residual WSS was calculated as a difference between total
WSS and model WSS, and DF is degrees of freedom (DF ¼ n�1)
with n equal to the number of parameters in the model or the
number of data points for numerator and denominator in Eq. (12),
respectively.
2.4. Experimental design and analytical methods

For the model calibration, we used experimental data obtained
in an incubation study of the Ah of a loamy Haplic Luvisol
(Corg ¼ 2.4%; Ntotal ¼ 0.2%, pH (CaCl2) ¼ 5.1). Thirty-gram (dry
weight) sub-samples of moist soil were weighed and put into
250-ml Schott jars. After the soil was pre-incubated at 22 �C for
24 h, a solution containing glucose (1 mg C g�1 soil) and mineral
nitrogen as (NH4)2SO4 (C:N ¼ 10:1) was added to the soil so that
the final moisture content was 60% of water holding capacity.
After glucose and N were added to the soil, one small vial
containing 3 ml of 1 M NaOH was placed in each incubation jar to
trap CO2. The jars were then closed air-tight and incubated for 54
days at 22 �C and with the soil at 60% of WHC. At 2, 7, 12, and 24 h
after glucose addition and daily thereafter (with some exclu-
sions), the vials were removed and replaced by fresh vials
containing 3 ml of 1 M NaOH. After 1, 3, 7, 14, 33, and 54 days of
treatment with glucose, three replicate incubation jars were used
to estimate the microbial biomass by the fumigationeextraction
method.

The PE was measured as the difference between unlabelled
12CeCO2 efflux from soil with and without glucose addition (Eqs.
(6) and (7)). To distinguish between CO2 originating from SOM and
from added glucose, 14C uniformly labeled glucose (Amersham�)
was used. The CO2 that evolved from the soil was trapped in the
vials containing 3 ml of 1 MNaOH. The total amount of CO2 trapped
in the vials was analyzed by titration with 0.1 M HCl against
phenolphthalein. Glucose-derived CO2 was calculated according
to the 14C activity in NaOH, which was analyzed with a liquid
scintillation counting (MicroBeta, Perkin Elmer).

Microbial biomass was estimated by the fumigation-extraction
(FE) method (Vance et al., 1987) with small modifications. Briefly,
fumigated (24 h, ethanol-free CH3Cl) and non-fumigated soil
samples (5 g) were extracted with 20 ml of 0.05 M K2SO4, and the C
content was determinedwith a DOC/DON analyzer (Multi N/C 2100,
Analytik Jena, Germany). A kec-factor was calculated based on the
14C budget as described by Bremer and Van Kessel (1990):

kEC ¼
14Cfum � 14Csoluble

14Capplied � 14Csoluble � 14CO2
(13)

where the amount of 14C additionally extracted after chloroform
fumigation is represented by the nominator and the amount of 14C
in microbial biomass is represented by the denominator (indicates
applied 14C as glucose minus soluble C not consumed by microbial
biomass minus respired 14CeCO2). This equation is valid only for
short-term experiments (as in our study), when the incorporation
of 14C into humic substances can be ignored.

Labeled microbial biomass (in mg C g�1) was calculated using the
variable kec-factor determined for the corresponding incubation
time. The total microbial biomass C in both amended and
unamended soil was calculated with the constant kec-factor equal
to 0.27, which was the maximal experimentally determined value
for this soil when 100 mg C-glucose g�1 soil was applied.

The 14C activity of microbial biomass was determined as
described above after 2 ml of the K2SO4 extract was mixed with
4 ml of scintillation cocktail Rothiscint-Eco (Carl Roth, Germany).
The glucose-derived microbial C was calculated based on 14C
activity in the microbial biomass divided by the 14C specific activity
(14C/C) of the added glucose.
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The experiment was conducted with four replications. The
standard error of the means is presented in the figures.

3. Results

3.1. Measured and simulated CO2 production

The results showed typical CO2 efflux from soil amendedwith an
easily available substrate (Fig. 2): the cumulative curve of CO2 efflux
is shown in the upper panel of Fig. 2, and the calculated respiration
rates are shown in the lower panel of Fig. 2. The initial short-term
CO2 flush that peaked on the first day was mainly due to the fast
consumption of glucose and its decomposition to 14CO2. Only
about 1% of the added 14C was found as soluble C 1 day after glucose
addition. This CO2 flush was not observed in unamended soil; in
Fig. 2 (top), the thin dashed lines indicate simulation results, and
the triangles indicate measured data. The remarkable difference
between total and labeled CO2 efflux was evident even during the
first days after glucose amendment due to differences in total and
labeled CO2 production rates (Fig. 2, bottom). This rate difference
persisted during the duration of our 54-day experiment, leading to
0 10 20 30 40 50 60
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0.5

Fig. 2. Cumulative CO2 efflux (top) and CO2 efflux rate (bottom) from soil during 54 days
of incubation. Measured data are presented as symbols: diamonds indicate total C in soil
amended with glucose and nutrients, open circles indicate 14C in soil amended with
glucose and nutrients, and triangles indicate total C in unamended soil; lines indicate
simulation results (model 1, Eq. (4) run for 14C and 12C both in glucose-amended and
unamended soil). Embedded picture in bottom panel presents the longer-term rate
dynamics.
the large difference in cumulative curves (Fig. 2, top). For total CO2
efflux, slopes of cumulative curves and rates after 10 days clearly
differed between unamended (control) soil and soil amended with
glucose (Fig. 2). Therefore, glucose addition caused the changes in
mineralization rates of unlabelled C (i.e., glucose caused a PE).

3.2. Microbial biomass dynamics

The quantity of applied glucose (1 mg C per g of soil) was
approximately twice the microbial biomass in the original soil. This
made it possible to detect significant biomass increase after glucose
application (Fig. 3). Microbial biomass (as estimated by the FE
method) peaked after glucose amendment but did not peak in the
control soil (Fig. 3). The difference in microbial biomass was less
distinct than the difference in the respiration rate, and decreased
gradually after 10 days. This drop in microbial biomass was satis-
factorily reflected by the model. The measured biomass C was not
used for parameter optimization during model calibration and
comparison. Therefore, the model fit for biomass C was worse than
the fit for the cumulative CO2 data (cf. Fig. 2, top and Fig. 3). The best
correspondence between the simulation andmeasurements was for
14C biomass, where a variable kec-factor was applied. In this case, the
mismatch between model and measured data was observed mainly
in the first 3 days. Our simple model probably could not perfectly
reflect the rapid glucose transport inmicrobial cells, which proceeds
faster than the process of complete glucose utilization with 14C
incorporation into the structural cell constituents (Nguyen and
Guckert, 2001). The time lag between fast glucose uptake by
microbial biomass in the first 2 days and increase in respiration rate
cannot be perfectly simulated by applied models: this is the reason
for mismatch between data and simulation for respiration rates
during thefirst 36 h. The discrepancy betweenmodel prediction and
total biomass dynamics starting from the secondweek of incubation
might also be due to model simplification (i.e., the model does
not consider microbial mortality) or the assumption of a constant
kec-factor for the total biomass.

3.3. Apparent and real priming effect

The increase in unlabelled CO2 production after 14C-glucose
application over the short and long term (Fig. 2, bottom, the inset)
was modeled by considering two flux components of CO2 evolved
0 10 20 30 40 50 60
0

300

600

900

1200

1500

Fig. 3. Dynamics of microbial biomass measured by the fumigationeextraction method
(symbols) and simulated by model 1(lines) in soil amended with glucose and nutrients
(diamonds) and in control unamended soil (triangles). Dynamics of microbial biomass
labeled by 14C are indicated by filled symbols (measured) and straight line (simulated).



Fig. 5. Dynamics of C pools in soil simulated by model 1 (mass-balance data). 14C in
glucose-amended soil (top), 12C in glucose-amended soil (middle), and 12C in unamended
soil (bottom) are shown as dissolved organic carbon (DOC), microbial biomass (MB), CO2

respired by maintenance (CO2_maint), CO2 respired by growth (CO2_growth), and CO2

respired during SOM decomposition (CO2_decomp). DOC and CO2_decomp are not seen
in middle and bottom panels because of low values.
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from soil. The unlabelled short-term flux (CO2 peak during the first
day, Fig. 2, bottom)was caused by intensifiedmicrobial metabolism
(apparent PE, Eq. (10)), expressed in our model as higher mainte-
nance respiration (last term on the right side of Eqs. (3) and (4),
Fig. 4). This concept links maintenance respiration with actively
metabolizing microbial biomass (Blagodatsky and Richter, 1998;
van Bodegom, 2007).

The increase in unlabelled CO2 efflux from the glucose-amended
soil persists after the initial CO2 peak (Fig. 2, top) because of the
higher total microbial biomass in amended versus control soil
(Fig. 3, Eq. (3)). Thus, the increase in microbial biomass C caused by
adding glucose in the first days boosts the SOM decomposition
rate (Eq. (1) and first term on right side of Eq. (4), Fig. 5) and
consequently the efflux of unlabelled CO2 even when the glucose
was already exhausted. The higher microbial activity and the linked
increase in maintenance expenses stopped 4 days after glucose
amendment, so maintenance respiration in glucose-amended soil
fell even lower than the corresponding values for unamended soil
(Fig. 4). Thismeans that the PE after the 4th day is real PE, i.e., the PE
was caused by SOMdecomposition (compare decomposition curves
in Fig. 4) and not merely by the activated respiration of dormant
microbial biomass. The relative contribution of different fractions of
respired CO2 as well as microbial biomass and DOC dynamics are
presented asmodel outputs for labeled (top) and unlabelled C pools
both in glucose-amended (middle) and unamended (bottom) soil in
Fig. 5. The quantity of CO2 respired during SOM decomposition is
larger in glucose-amended versus unamended soil (cf. middle and
bottom panels), while the quantity of CO2 respired during mainte-
nance is larger in unamended soil. In the latter case, the difference
corresponds to the more distinct microbial biomass decrease in
unamended versus glucose-amended soil (Fig. 3).

Cumulative PE calculated according Eq. (6) and based on
experimental data was reasonably described by the model with
optimized parameters (Fig. 6, top; Table 2). The proposed model
untangles the typical two-stage dynamics of PE: apparent PE
dominated in the beginning and real PE dominated after about 14
days. The different contribution of apparent and real PE to the
dynamics of total PE can be better presented if the relative changes
of cumulative PE (Eqs. (7),(8),(10)) are expressed as percentages
and plotted against time (Fig. 6, bottom). Immediately after glucose
application, both real and apparent PE quickly increased, but
0 10 20 30 40 50 60
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Fig. 4. Rates of CO2 efflux from unamended soil and from soil amended with glucose
and nutrients divided according to model 1 (Eq. (4)) into decomposition flux from
insoluble organic matter and maintenance respiration of soil microorganisms.
apparent PE was much higher (220% of CO2 efflux in the control),
while real PE reached 50%. After the maximumwas reached on the
first day, apparent PE sharply decreased, approaching negative
values in 18 days. At the same time, real PE continued to increase,
but more gradually than in the first 3 days. As a result, real PE
dominated the total PE dynamics over the long term (weeks and
first months). Total relative PE reached a maximum (153% of
control) on the third day because of the peaking of apparent PE. On
the 6th day after glucose amendment, real PE reached the values of
apparent PE: all three curves on the lower part of Fig. 6 are crossed.
Thereafter, SOM decomposition was the main source of extra CO2
production because of real PE, which reached its relative maximum
values (139% of control) at the end of the experiment.

4. Discussion

4.1. Essentials of the proposed PE model: active microbial
biomass and microbial uptake of soluble substrates

CO2 production in soil, i.e., the final stage of decomposition, is
largely the result of microbial activity. Chemico-physical processes
such as absorptionedesorption and diffusion only modify the
temporal and spatial patterns of the final CO2 emission originally
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Fig. 6. Priming effect as measured experimentally and as simulated by different model
approaches: cumulative priming effect (Eq. (6), top) and relative cumulative priming
effect (bottom) expressed as a percentage of CO2 efflux in the unamended soil (Eq. (7))
and its fractions: 1) apparent priming effect calculated from maintenance respiration
(Eq. (8)), and 2) real priming effect caused by difference in decomposition of insoluble
SOM (Eq. (10)).
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produced by microorganisms (Kuzyakov et al., 2009). That is why
a biologically sound model should explicitly include microbial
biomass (or the active part of the biomass) in the rate regulation.We
include in the proposedmodel the biomass pool that has stable long
term behavior and does not disappear in the absence of available C.
This stability is provided by including the activity function ACT (r in
Blagodatsky and Richter, 1998), which slows microbial metabolic
processes (i.e., maintenance) by substrate exhaustion.

SOM decomposition (CO2 evolution) can be described mathe-
matically by the sum of first-order decay functions. The decompo-
sition rate of each separate SOM pool is a product of its size and
the constant rate coefficient in such models (Parton et al., 1987;
Whitmore, 1996b; Niklaus and Falloon, 2006; Manzoni and
Porporato, 2007). This approach, which has been applied in most
SOMmodels (reviewed by Manzoni and Porporato, 2009), assumes
that microbial biomass is constant, and microbial biomass is
implicitly included in the rate coefficient. In this case the decom-
position rate is determined by the quantity of organic substrate plus
a combination of at least three independent factors, each of which
can be modeled explicitly: 1) chemical structure and decompos-
ability of substrate (plant residues or SOM) (Moorhead and
Sinsabaugh, 2006), 2) amount of active microbial biomass associ-
ated with and degrading the defined pool (Grant et al., 1993;
Whitmore, 1996a), and 3) the physical probability that the micro-
organisms will interact with the defined SOM pool (Six et al., 2002;
Masse et al., 2007). In reality, all these factors are not constant in
time, and this makes it difficult to find a unique parameter value
applicable for various soils and to link a fitted parameter with
measured chemical and physical soil properties or with biological
features ofmicroorganisms associatedwith decomposing substrate.

If the biological nature of decomposition is modeled explicitly,
the model must include basic knowledge about micro-
organismesubstrate interactions. First, modelers should recognize
that microorganisms can take up and consume only dissolved
substances. Therefore, themain importance of DOC (orDOM in some
papers) is not because it can leach from the soil (as stated in many
studies) but because it is the only stage of organic matter available
for microorganisms. This leads to the emergence of an additional
new (but real!) pool of dissolved organic matter. This model
complication is more than compensated for by the possibility to use
all knowledge about quantitative microbiology in the SOM models.
Omitting this feature for the sake of simplicity corrupts the mech-
anistic (biological) background of the model. It also decreases the
flow/variable numbers that could be experimentally verified.

4.2. Comparison of concepts in PE modeling: sequential
versus parallel decomposition schemes

When modeling a complex system (such as a chain of biological
transformations in soil), several alternative concepts can be used
(Jans-Hammermeister and McGill, 1997). The final choice of the
most appropriate model can be made after assessing the adequacy
of model approaches against experimental data. Accordingly, our
proposed model (Fig. 1, top) was compared with three alternative
models by fitting model output to the same data set generated by
our incubation experiment. These simple alternative formulations
were extracted from published models based merely on evidence
from experimental observations. The selection was limited to
approaches that we considered to be as simple as possible, i.e.,
approaches that could be used in larger ecosystem models with
lower spatial and temporal resolution.Concepts with complicated,
fine interrelationships cannot be validated when used in models at
the regional and global scale.

Several models, e.g., that of Fontaine and Barot (2005), apply
parallel decomposition schemes. In this case, flows from substrates
of different decomposability go directly to microbial biomass,
allowing a constant portion of these fluxes to be evolved as CO2. In
the current paper, parallel decomposition is represented in models
2 and 2a (Fig. 1, bottom, Tables 2 and 3). The model of Schimel and
Weintraub (2003) applies sequential decomposition scheme, as do
models 1 and 1a in the current study (Tables 2 and 3). In this case,
microorganisms can take up only soluble C, which is released
during decomposition of insoluble SOM. The statistical comparison
of simulated and measured data for the our proposed model and
the three alternative models is shown in Table 3. The sequential
scheme (Fig. 1, top) performs better than the parallel scheme (Fig. 1,
bottom) in describing our experimental data (cf. 1 and 2 or 1a and
2a). Both r-squared and the F-factor, which account for the model
complexity, were the best for model version 1 (Table 3). When
optimizing parameters in models 2 and 2a, ModelMaker tends to
minimize parameter Y1, setting it to zero, i.e., it tends to mineralize
SOM without the inclusion of C in microbial biomass. This means
that according to the measured dynamics of labeled and total CO2,
SOM cannot serve as a direct growth substrate for microorganisms.
This simulation exercise confirms a basic fact from microbiology:
microorganisms consume substrates insoluble form. It shows the
conceptual advantage of the sequential decomposition scheme.

The model of Neill and Gignoux (2006) also describes decom-
position as a two-step sequential process. This is an essential
feature commonwith our approach (andwith themodel of Schimel
and Weintraub, 2003). There are substantial differences, however,



Table 3
Summarized evaluation of the approaches tested for priming effect modeling.

Decomposition concept Model Activity state of
microbial
biomass (ACT)

Priming effect features Goodness of fit for 3
measured CO2 poolsa

r2 F

SOM is decomposed to soluble OM, which is consumed
by microbial biomass (sequential scheme, Fig. 1, top)

1 Included Initial rate peak and second increase over the long term 0.999 22 022
1a Not included No rate peaks, the rate increase with saturation 0.982 1714

SOM is directly taken up by microbial biomass
(parallel scheme, Fig. 1, bottom)

2 Included Initial flat rate peak and second increase over the long term 0.974 839
2a Not included No rate peaks, the rate increase with saturation 0.959 723

a 14CeCO2 and total CO2 from glucose-amended soil and total CO2 from unamended soil.
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in the biochemical background of the rate equations used in these
models. The Neill and Gignoux (2006)model is based on concurrent
enzymeesubstrate interactions, in which soil microbial biomass is
treated as the enzymeunit building the complexwith SOM. The first
step (biomass complexing with substrate) is a reversible and faster
(not rate limiting) process, while the second step (product and
“biomasseenzyme” release) is irreversible and rate-limiting for the
whole decomposition process. The mathematical formulation
borrowed by these authors from microbial biochemistry is appli-
cable for describing intercellular substrate conversion by microor-
ganisms. From our point of view, however, it is inappropriate for
describing extracellular enzymatic decomposition of insoluble
SOM, leading to the production of soluble organics directly available
to microorganisms. Contrary to the concept of Neill and Gignoux
(2006), the initial step of SOM decomposition in soil is rate
limiting and irreversible (see for example Schimel and Weintraub
(2003) or Moorhead and Sinsabaugh (2006)). Our model approach
is a simplification of real soil biochemical dynamics, but it still
can be verified against experimental data if the dynamics of DOC
are measured together with extracellular enzymatic activity.
We believe that our model formulation (model version 1) combines
the best features of the previously publishedmodels and shows the
best fit among the tested simple approaches.

4.3. Excluded features and future development: accounting
for microbial mortality and an explicit exoenzyme pool

Developing a model is always directed at generalizing and
synthesizing known facts. The lateral features and dependencies
should be discarded, but the typical patterns of observed dynamics
must be reflected by model predictions. PE is a short-term
phenomenon. Accordingly, the suggested model neglects the
process of microbial mortality leading to insoluble SOM accumu-
lation. The relatively large size of SOM and the independence of the
SOM decomposition rate from the size of this pool as represented
in our formulation (as well as in some other models: Fontaine and
Barot, 2005; Lawrence et al., 2009) makes such simplification
reasonable. We observed no sharp decrease in microbial biomass
after substrate exhaustion (Fig. 3). Thus, consideration of biomass
losses due to maintenance respiration was sufficient to simulate
this decrease. The model flexibility necessary to describe PE was
obtained by including the physiological state variable. This entails
an inclusion of an additional parameter (k3) and a rate equation
(Eq. (5)), but the additional parameter would also have to be added
to describe mortality. Statistical estimation of best fit (Table 3)
shows that the model versions incorporating the microbial activity
factor describe experimental data better than the models that do
not, even if the degrees of freedom (including numbers of opti-
mized parameters) are taken into consideration (cf. F-values for
models 1 and 1a or for models 2 and 2a in Table 3).

Another possible development of the model e one we did not
include in our current formulations (model 1, Eqs. (1)e(5)) e is an
explicit description of extracellular enzyme dynamics in soil:
production, accumulation, and decay of enzymes as well as their
action on insoluble SOM decomposition, namely conversion of
SOM into soluble forms that are directly available to the microor-
ganisms. Several models apply amechanistic description of enzyme
turnover to simulate SOM decomposition (Schimel and Weintraub,
2003; Moorhead and Sinsabaugh, 2006; Lawrence et al., 2009).
However, such models have more variables (various SOM, biomass,
or enzyme pools) than those we tested here. It is difficult to
measure experimentally the pool of immobilized enzymes in soil,
or enzyme turnover, i.e., it is difficult to measure enzyme adsorp-
tion and decay. Because information necessary to build a realistic
conceptual scheme was lacking, we rejected the explicit inclusion
of extracellular enzymes in the simple PE model. Including the
microbial biomass (MB) in Eq. (1) and corresponding terms of
Eqs. (2) and (4) clearly presumes a microbial biomass effect on
SOM decomposition through microbial production of extracellular
enzymes and subsequent enzymatic action (hydrolysis, oxidation)
on high-molecular compounds of SOM. Further testing of the
proposed model on experimental data for soils with various
physico-chemical properties (i.e., clay content), and the inclusion of
temperature and moisture dependency, will be necessary if our
approach is to be applied to field conditions and for longer time
spans. In this case, appropriate dependencies can be added for the
first rate-limiting decomposition step, thus complicating Eq. (1).

A logical development of the model would be to incorporate N
limitation on the size and dynamics of PE. This is a topic of our
further investigations, which are combining model developments
and the experimental validation of possible relationships.

5. Conclusions and outlook

Consideration of the interactions between microbial biomass
and the decomposing SOM pool in a simple model of C dynamics
allows the simulation of the PE. These interactions include the
regulation of SOM decomposition by the amount of microbial
biomass and the regulation of microbial growth by the quantity of
released soluble C. The activity of microbial biomass was included
in the model as a state variable, which depends on the microbial
uptake of easily available organic substances (tested here by
14CeUeglucose). The activity of microbial biomass affects both
growth and maintenance respiration. This model feature allows
separation of the apparent and the real PE and facilitates the
description of interactions between microbial biomass and SOM at
different periods after substrate addition. This is the first model that
allows the simulation of the PE and its partitioning as apparent and
real priming. The model was validated based on experimental data.

Incorporating PEs into the current models of C and N dynamics
will increase the accordance between modeled and measured
data of C and N mineralization, especially for short time scales. It
will also facilitate the evaluation of the main model parameters
behind SOM decomposition and microbial biomass turnover.
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In contrast to most other models, our suggested model approach
does not consider microbial biomass as merely a passive pool
whose decomposition depends solely on environmental conditions.
Microbial biomass is a direct driver of the decomposition and
turnover of all other SOC pools, and its activity is a crucial parameter
affecting decomposition rates. Because the activity of microbial
biomass strongly depends on the presence and accessibility of
available substrates, these substrates indirectly affect SOM decom-
position. This calls for the inclusion of microbial biomass in the
models of C and N dynamics in soil not only as a self-decomposing
pool but especially as a process driver.
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