Soil Biology & Biochemistry 43 (2011) 579-589

Contents lists available at ScienceDirect

Soil Biology & Biochemistry

journal homepage: www.elsevier.com/locate/soilbio

C and N in soil organic matter density fractions under elevated atmospheric CO₂: Turnover vs. stabilization

Maxim Dorodnikov^{a,*}, Yakov Kuzyakov^a, Andreas Fangmeier^b, Guido L.B. Wiesenberg^a

^a Department of Agroecosystem Research, University of Bayreuth, Universitätstr. 30, D-95440 Bayreuth, Germany ^b Institute of Landscape and Plant Ecology (320), University of Hohenheim, August-von-Hartmann-Str. 3, D-70599 Stuttgart, Germany

ARTICLE INFO

Article history: Received 31 May 2010 Received in revised form 17 November 2010 Accepted 25 November 2010 Available online 14 December 2010

Keywords: Elevated atmospheric CO₂ FACE SOM density fractions C and N turnover SOM stabilization MRT

ABSTRACT

Turnover of C and N in an arable soil under Free Air Carbon Dioxide (FACE) experiment was studied by the use of ¹³C natural abundance and ¹⁵N-labeled fertilizers. Wheat was kept four growing seasons under ambient and elevated CO₂ concentrations and fertilized for three growing seasons. Density fractionation of soil organic matter (SOM) allowed to track ¹³C and ¹⁵N in free particulate organic matter (fPOM; < 1.6 g cm⁻³), particulate organic matter occluded within aggregates with two densities (oPOM 1.6, oPOM 1.6–2.0 g cm⁻³), and in mineral-associated organic matter (>2.0 g cm⁻³) fractions. Elevated CO₂ and N fertilization did not significantly affect C and N contents in the bulk soil. Calculated mean residence time (MRT) of C and N revealed the qualitative differences of SOM density fractions: (i) the shortest MRT_C and MRT_N in fPOM confirmed high availability of this fraction to decomposition. Larger C/N ratio of fPOM under elevated vs. ambient CO2 indicated an increasing recalcitrance of FACE-derived plant residues. (ii) There was no difference in MRT of C and N between lighter and heavier oPOMs probably due to short turnover time of soil aggregates which led to oPOM mixing. The increase of MRT_C and MRT_N in both oPOMs during the experiment confirmed the progressive degradation of organic material within aggregates. (iii) Constant turnover rates of C in the mineral fraction neither confirmed nor rejected the assumed stabilization of SOM to take place in the mineral fraction. Moreover, a trend of decreasing of C and N amounts in the Min fraction throughout the experiment was especially pronounced for C under elevated CO2. Hence, along with the progressive increase of CFACE in the Min fraction the overall losses of C under elevated CO₂ may occur at the expense of older "pre-FACE" C.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

During the past two centuries, the CO₂ concentration in the atmosphere increased by 35%, mainly because of fossil fuel combustion and land-use changes (IPCC, 2007). Studies exploring ecosystem responses to elevated CO₂ have gained widespread attention in the last few decades (reviewed in: Ainsworth and Long, 2005; De Graaff et al., 2006; Jastrow et al., 2005). Most investigations have been focused on forest (Hoosbeek and Scarascia-Mugnozza, 2009; Lichter et al., 2008; Miglietta et al., 2001) and grassland ecosystems (De Graaff et al., 2008; Niklaus et al., 2001; van Kessel et al., 2006). Agricultural ecosystems (Giesemann and Weigel, 2008; Leavitt et al., 1996) are scarcely investigated, although crop-based agriculture (i.e. excluding grazing land)

occupies around 1.7 billion hectares globally (Paustian et al., 2000) and has higher potential for sink of atmospheric C because of lower soil organic C content when compared to e.g. grassland ecosystems (Marhan et al., 2010; Niklaus et al., 2001).

Regardless of ecosystem type the most efficient technique to study the pathways of carbon (C) and nitrogen (N) incorporation to soil organic matter (SOM) under elevated atmospheric CO₂ is the Free Air CO₂ Enrichment (FACE) approach (Ainsworth and Long, 2005; Miglietta et al., 2001). Since most FACE experiments use CO₂ deriving from fossil fuel, which is depleted in ¹³C when compared to atmospheric CO₂, this stable C isotope composition can be used as a tracer and allows to study the fate of C in soils under elevated CO₂ (Dorodnikov et al., 2007, 2008; van Kessel et al., 2006; Wiesenberg et al., 2008). Additionally, the application of N fertilizers labeled with ¹⁵N in FACE experiments provides an opportunity to study N turnover under elevated atmospheric CO₂ (De Graaff et al., 2008; van Kessel et al., 2006). The mini-FACE experiment in Hohenheim, Stuttgart, Germany was initiated in 2002 to investigate the effect of elevated atmospheric CO₂ on an agricultural ecosystem of summer wheat. The use of stable C

^{*} Corresponding author. Present address: Ecosystem Dynamics, Institute of Botany and Landscape Ecology, University of Greifswald, Grimmer Str. 88, D-17487 Greifswald, Germany.

E-mail address: maxim.dorodnikov@uni-greifswald.de (M. Dorodnikov).

^{0038-0717/\$ —} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.soilbio.2010.11.026

isotope tracers under CO₂ enrichment and labeled ¹⁵N-fertilizers allows to track C and N in soil organic matter (SOM). This enables assessment whether newly assimilated FACE-derived C (C_{FACE}) and fertilizer-derived N ($N_{fertil.}$) enter inert and recalcitrant SOM pools hereby increasing the potential for SOM sequestration. In turn, C sequestration in soil has been considered an important issue, since this process may partly counterbalance anthropogenic CO₂ emissions and decrease the rise of CO₂ in the atmosphere (van Kessel et al., 2006; Hoosbeek and Scarascia-Mugnozza, 2009; IPCC, 2007; Lichter et al., 2008).

One of the prerequisites for SOM sequestration under elevated atmospheric CO₂ is the stabilization of C_{FACE} and N_{fertil}, in inert or protected SOM pools. To reveal the fate of the new C and N in SOM different fractionation techniques based on physical (reviewed in von Lützow et al., 2007), chemical (Ellerbrock and Kaiser, 2005), thermal (Dorodnikov et al., 2007, 2008; Kuzyakov et al., 2006) or biological properties of SOM, as well as combinations of methods (Balesdent, 1996; Flessa et al., 2008; Marschner et al., 2008) have been widely used. Among others, physical fractionation techniques such as particle size, aggregate and density fractionations are considered less destructive than chemical fractionation procedures, and their results are assumed to be more directly related to the structure and function of SOM in situ (Balesdent, 1996; Christensen, 2001). These techniques have been applied to determine the association of SOM with primary particles and to quantify the amount of particulate organic matter (POM) between and within soil aggregates (Golchin et al., 1997; John et al., 2005; von Lützow et al., 2007). Golchin et al. (1997) proposed a conceptual model linking POM decomposition and association with soil mineral particles. Following their hierarchical concept these authors assumed that the protection of organic matter increases with increasing density of SOM, i.e. with increasing association to soil mineral particles. Thus, the level of association between the free light POM (fPOM; density < 1.6 g cm⁻³) and the soil mineral matrix is low and fPOM corresponding to fresh plant litter is the most available for decomposition. In turn, occluded POM (oPOM) separated by densities of 1.6 and 2.0 g cm⁻³ derives from microaggregates. The decomposability of organic matter in microaggregates decreases with the increasing density of oPOM (from 1.6 to 2.0 g cm $^{-3}$). However, the oPOM 2.0 fraction also partly derives from macroaggregates where it acts as a binding agent between microaggregates. Organic matter in the residual mineral fraction (Min; $>2.0 \text{ g cm}^{-3}$) has the largest association with mineral particles, i.e. the highest protection against decomposition and so, the strongest stabilization (Golchin et al., 1997). Accordingly, the turnover time of SOM increases with the increase in density of SOM fractions, because of decreasing availability for soil microbial biomass (Flessa et al., 2008; John et al., 2005; Marschner et al., 2008). The concept of SOM turnover in density fractions was applied in studies investigating the effects of elevated atmospheric CO₂ on forest (Hoosbeek and Scarascia-Mugnozza, 2009; Lichter et al., 2005) or grassland ecosystems (Niklaus et al., 2001; Six et al., 2001), but has never been used, to our knowledge, for agricultural ecosystems. In the current study we tracked the CFACE and N_{fertil}, in free, occluded within aggregates and mineral-associated SOM fractions and we calculated turnover rates of C and N in density fractions to test whether an intensively tilled agroecosystem with wheat could sequester extra C and N under elevated atmospheric CO₂. We hypothesized that (i) the contribution of C_{FACE} and N_{fertil.} will decrease with the increasing density of SOM fractions showing the highest portion of CFACE and Nfertil. in fPOM and the lowest in mineral-associated OM; (ii) accordingly, the turnover time of C and N should be shorter in light and longer in heavy fractions of SOM demonstrating the increasing stabilization of the latter with the increase of association to soil mineral particles.

2. Materials and methods

2.1. Experimental set-up and soil sampling

The set-up of the mini-FACE experiment "Heidfeldhof", Hohenheim, Stuttgart, Germany, is described in details elsewhere (Erbs and Fangmeier, 2006; Högy et al., 2009; Marhan et al., 2008, 2010). In brief, the mini-FACE experiment was started in spring 2002 and included plots (diameter 2 m) with elevated atmospheric CO₂ level (540 ppm, δ^{13} C –19‰, because of using CO₂ at –48‰ for fumigation), ambient plots (380 ppm, $\delta^{13}C - 8_{\infty}^{\circ}$), and control plots (ambient CO₂ level, no frames). Each treatment was replicated five times. Beginning in 2003, inorganic NPK fertilizers including KNO₃ labeled with ${}^{15}N$ ($\delta^{15}N$ of the fertilizer was 333.75%) were applied in equal amounts of 140 kg N ha⁻¹, 60 kg K ha⁻¹, 13 kg P ha⁻¹ to each plot under ambient and elevated CO₂ treatments. No organic fertilizers were applied. All the plots have been manually tilled twice per year: before planting in February-March and after the harvest in September-October to the depth of ca. 25 cm. The aboveground plant biomass (summer wheat Triticum aestivum cv. Triso) was harvested after each growing season (except the first one in 2002, when only weeds have been grown on the site). The wheat stubble and root residues remained in the soil after harvest.

The soil is a semi-stagnic Luvisol (9% sand, 69% silt, 22% clay) without carbonates, pH 6.8 and mean bulk density of 1.2 g cm⁻³ (Marhan et al., 2010). Soil samples were taken annually two times before tillage from the depth of 0–10 cm. The samples were airdried at room temperature and sieved through 2 mm mesh. All visible roots and plant remains were carefully removed with tweezers. Five replications of bulk soil each of ambient and elevated CO₂ treatments were available for analysis. To obtain sufficient soil amount for density fractionation and subsequent analytical procedures, the soil samples from October (Oct.) 2002-March (Mar.) 2006 from replicate plots were combined according to date and CO₂ treatment. Even then, two analytical replications were available for soil under ambient and elevated CO₂ treatment for Oct. 2002, and Mar. 2004, whereas for Oct. 2004, Mar.-Oct. 2005 and Mar. 2006 only one replication was available. No soil was available for Mar.-Oct. 2003. Samples of plant residues (straw of summer wheat T. aestivum L. cv. Triso) were available from two rings each of ambient and elevated CO₂ treatments taken in 2004 and 2006.

2.2. Separation by density fractionation

The isolation of soil density fractions was carried out according to John et al. (2005) and was only slightly modified. Eight grams of air-dried soil (sieved through 2 mm) were placed in a centrifugation tube and 35 ml of sodium polytungstate solution (Sometu, Berlin, Germany) of a density of 1.6 g cm $^{-3}$ was added. The tube was gently turned upside down by hand about five times and the solution was centrifuged at 4000 rpm for 1 h in Eppendorf Centrifuge 5810R at room temperature. The supernatant with floating particles was filtered (cellulose acetate, 0.45 µm; Sartorius) using a stainless steel pressurized filtration device (Sartorius) and washed with distilled water to gain the free particulate organic matter < 1.6 g cm⁻³ (fPOM; Fig. 1a). Then, the pellet was dispersed with 35 ml of sodium polytungstate solution (1.6 g cm⁻³) and 5 glass beads with a diameter of 5 mm were added. The solution was shaken for 16 h with a frequency of 60 movements per minute to crack the soil aggregates (John et al., 2005). After disaggregation, the soil suspension was centrifuged for 1 h at 4000 rpm. The supernatant with floating particles (light occluded particulate organic matter with a density <1.6 g cm⁻³, oPOM 1.6; Fig. 1b) was filtered (0.45 μ m) using the pressurized filtration cylinder (Sartorius) and washed with distilled water. Again, the pellet was dispersed but using sodium

Fig. 1. (a) Free particulate organic matter (fPOM, density $< 1.6 \text{ g cm}^{-3}$), (b) occluded particulate organic matter (oPOM_{1.6}, $< 1.6 \text{ g cm}^{-3}$), (c) occluded particulate organic matter (oPOM_{1.6-2.0}, 1.6-2.0 \text{ g cm}^{-3}) and (d) mineral fraction (Min, $> 2.0 \text{ g cm}^{-3}$).

polytungstate solution of a density 2.0 g cm⁻³. The supernatant with floating particles (dense occluded particulate organic matter with a density of 1.6–2.0 g cm⁻³, oPOM 2.0; Fig. 1c) was filtered as described above and washed. To remove the salt, the pellet containing the mineral fraction (>2.0 g cm⁻³, Min fraction; Fig. 1d) was washed four times with distilled water, each time centrifuging and discarding the supernatant. We did not isolate fine silt and clay fraction in this study. The dissolved organic matter was discarded with supernatant hence not measured. Bulk unfractionated soil and all fractions were dried at 40 °C, weighed and ground to powder by means of a ball mill (MM2, Fa Retsch) for 15 s.

2.3. Elemental (C, N) and stable isotope (δ^{13} C, δ^{15} N) analyses

Ten to forty milligrams of milled bulk soil samples and isolated density fractions were weighed in tin capsules to determine stable carbon (δ^{13} C) and stable nitrogen (δ^{15} N) isotope composition, as well as C and N contents. The samples were measured at the Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bavreuth, using an elemental analyzer in a dual-element analysis mode (Carlo Erba 1108, Milano, Italy) for Dumas combustion. This was followed by gas chromatographic separation of the gaseous combustion products, which were then fed into a gas-isotope ratio mass spectrometer (delta S Finnigan MAT, Bremen, Germany) via a ConFlo III open-split interface (Finnigan MAT). Standard gases were calibrated with respect to international standards (N2 in the air and CO_2 in PeeDee belemnite) by use of the reference substances N1 and N2 for nitrogen isotope ratios and Australian National University (ANU) sucrose and NBS 19 for the carbon isotopes. Relative isotope abundances are denoted as δ -values, which were calculated according to the following equation: $\delta^{15}N$ or $\delta^{13}C = (R_{sample})/($ $R_{standard} - 1) \times 1000_{00}^{\circ}$, where R_{sample} and $R_{standard}$ are the ratios of heavy isotope to light isotope of the samples and the respective standards. Samples of bulk soil were measured in one replication, and samples of plant residues, as well as isolated SOM density fractions were measured in two replications.

2.4. Calculations and statistics

Calculations of new C portions (% new C) in soil due to the incorporation of fresh plant-derived deposits under elevated and 13 C-depleted CO₂ can be calculated as follows:

new C =
$$(\delta_{FACEsoil} - \delta_{AMBIENTsoil}) / (\delta_{FACEplant} - \delta_{AMBIENTplant}) \times 100[\%]$$
 (1)

where $\delta_{FACEplant}$ $(-38.03 \pm 0.69_{00}^{\circ})$ and $\delta_{AMBIENTplant}$ $(-27.61 \pm 0.54_{00}^{\circ})$ are the average isotope signatures of plants grown under FACE or ambient atmospheric conditions, respectively; $\delta_{FACEsoil}$ and $\delta_{AMBIENTsoil}$ are the isotope signatures of the soil under FACE and under a reference site kept with ambient conditions, respectively (Wiesenberg et al., 2008). Average δ^{13} C of plants were calculated from respective isotope signatures of plants grown under FACE or ambient atmospheric conditions for the period of the experiment (2002–2006) (Table 1).

A similar equation was used to calculate the portion of N (new N) deriving from labeled fertilizers:

new N =
$$(\delta^{15}N_{soil actual} - \delta^{15}N_{soil initial})/$$

 $(\delta^{15}N_{fertil.} - \delta^{15}N_{soil initial}) \times 100 [\%]$ (2)

where $\delta^{15}N_{soil\ actual}$ was the $\delta^{15}N$ value of the bulk SOM and density fractions after fertilization, $\delta^{15}N_{soil\ initial}$ was the $\delta^{15}N$ value of the bulk SOM and density fractions before fertilization with labeled N, and $\delta^{15}N_{fertil.}$ was the $\delta^{15}N$ signature of ^{15}N labeled fertilizers.

To calculate the contribution of new C and N from fertilizers in SOM for a particular period of the FACE experiment and annual turnover rates (k) of SOM, a simple exponential approach was selected (Balesdent and Mariotti, 1996):

$$k = -\ln(1 - M/100)/t \text{ [year}^{-1}\text{]}$$
 (3)

Table 1

Amount of C, N, and δ^{13} C, δ^{15} N values in plant tissues* under ambient and elevated CO₂ concentrations within four years (2002–2006) of the FACE experiment. Errors are standard errors of measurement (n = 4). Treatments followed by the same letters are not significantly different between elevated and ambient CO₂ of one sampling date (uppercase letters) and between sampling dates of each CO₂ treatments (lowercase letters) at $p \le 0.05$ (according to two-way-ANOVA and Fischer LSD test).

Date/treatment	$C (mg g^{-1} dry weight)$	N (mg g ⁻¹ dry weight)	δ ¹³ C (‰ PDB)	$\delta^{15}N$ (‰ air $N_2)$	C/N
2002**					
ambient	n.a.	n.a.	-29.85 ± 0.19^{Ad}	not applicable	n.a.
elevated	n.a.	n.a.	$-40.38 \pm 0.28^{ m Bc}$	not applicable	n.a.
2003**					
ambient	n.a.	n.a.	$-28.26 \pm 0.26^{\text{Ac}}$	$108.81 \pm 9.16^{\text{Aa}}$	n.a.
elevated	n.a.	n.a.	-36.20 ± 0.54^{Ba}	$104.98 \pm 5.70^{\text{Aa}}$	n.a.
2004					
ambient	$444.8 \pm 1.8^{\text{Aa}}$	3.39 ± 0.04^{Bb}	$-25.34 \pm 0.15^{\text{Aa}}$	$223.75 \pm 6.09^{\text{Ad}}$	131.1 ± 1.1^{Aa}
elevated	446.4 ± 0.4^{Aa}	2.66 ± 0.14^{Aa}	-36.53 ± 0.23^{Ba}	$235.27 \pm 12.19^{\text{Ad}}$	168.0 ± 8.6^{Ba}
2005**					
ambient	n.a.	n.a.	-26.58 ± 0.21^{Ab}	206.59 ± 3.99^{Ac}	n.a.
elevated	n.a.	n.a.	$-38.10 \pm 0.15^{\text{Bb}}$	197.34 ± 8.14^{Ac}	n.a.
2000					
2006	117 2 ·	277 × 010 ^B		100.00 × 0.00 ^{Bb}	1616 b 2 7Ab
alinplent	447.2 ± 2.8	2.77 ± 0.18	-28.01 ± 0.26^{10}	100.22 ± 0.08^{-2}	101.0 ± 3.7^{m}
CIEVALEU	440.5 ± 5.5	2.10 ± 0.23	-30.90 ± 0.00	140.70 ± 0.34	203.3 ± 10.2

*Straw of summer wheat Triticum aestivum L. cv. Triso.

**Data provided by M. Erbs (personal communications) included only isotopic composition of plants (n = 5).

where M was the % of new C or N (Eqs. (1) and (2)) in bulk SOM and SOM density fractions, and t was the time of soil exposure to elevated CO₂ concentration and the period of N fertilization.

The mean residence time (MRT) of C and N in bulk soil and in SOM fractions was calculated as a reciprocal to the turnover rates (Gregorich et al., 1995):

$$MRT = 1/k \ [years] \tag{4}$$

The C isotope signatures of bulk SOM, density fractions and plants growing under ambient and elevated CO₂ conditions, the duration of CO₂ enrichment and duration of N fertilization used for calculations are presented in Tables 1–5. The C and N contents in unfractionated soil and isolated density fractions were calculated for 1 g of bulk soil.

The determination of statistically significant differences (where possible) between values for bulk soil and isolated SOM density fractions under ambient and elevated CO₂ treatments within one

sampling period as well as between sampling periods from Oct. 2002 to Mar. 2006 were performed via two-way-ANOVA and Fischer LSD test (p < 0.05) using STATISTICA 7.0 software (StatSoft, USA).

3. Results

3.1. Elemental (C, N) amounts and stable isotope $(\delta^{13}C, \delta^{15}N)$ composition of bulk SOM

The amount of C and N in bulk soil did not differ significantly between ambient and elevated CO₂ treatments for any of the sampling dates (Table 2). The highest amount of C was observed for soil sampled in Oct. 2002 (p = 0.0011) as compared to the subsequent dates of sampling. The amount of N did not differ significantly (p = 0.148) between the sampling dates except of the significantly higher N in Oct. 2002 vs. Mar. 2004 (p = 0.032) (Table 2). The C-to-N ratio (C/N) of the bulk soil showed slightly

Table 2

Amount of C, N, and δ^{13} C, δ^{15} N values in bulk soil under ambient and elevated atmospheric CO₂ within four years (2002–2006) of the FACE experiment. Errors are standard errors of measurement (n = 5). Treatments followed by the same letters are not significantly different between elevated and ambient CO₂ of one sampling date (uppercase letters) and between sampling dates of each CO₂ treatment (lowercase letters) at $p \le 0.05$ (according to two-way-ANOVA and Fischer LSD test).

Date/treatment	C (mg g ⁻¹ soil)	N (mg g ⁻¹ soil)	δ ¹³ C (‰ PDB)	$\delta^{15}N~(\%~air~N_2)$	C/N
Oct. 2002 ambient elevated	$\begin{array}{c} 18.3 \pm 0.5^{Ab} \\ 18.5 \pm 0.2^{Ab} \end{array}$	$\begin{array}{c} 1.81 \pm 0.03^{Ab} \\ 1.80 \pm 0.02^{Ab} \end{array}$	$\begin{array}{l} -25.72\pm 0.07^{Aa}\\ -26.46\pm 0.13^{Ba}\end{array}$	6.91 ± n.a.* 6.83 ± n.a.	$\begin{array}{c} 10.1 \pm 0.3^{Ab} \\ 10.3 \pm 0.1^{Ab} \end{array}$
Mar. 2004 ambient elevated	$\begin{array}{c} 15.9 \pm 0.3^{Aa} \\ 16.5 \pm 0.6^{Aa} \end{array}$	$\begin{array}{l} 1.68 \pm 0.05^{Aa} \\ 1.70 \pm 0.06^{Aa} \end{array}$	$\begin{array}{l} -25.64\pm 0.04^{Aa}\\ -26.47\pm 0.15^{Ba}\end{array}$	$\begin{array}{l} 12.32 \pm n.a. \\ 12.87 \pm n.a. \end{array}$	$\begin{array}{l} 9.5\pm0.1^{Aa}\\ 9.7\pm0.2^{Aa}\end{array}$
Oct. 2004 ambient elevated	$\begin{array}{c} 16.0 \pm 0.8^{Aa} \\ 16.5 \pm 0.2^{Aa} \end{array}$	$\begin{array}{l} 1.74 \pm 0.07^{Aab} \\ 1.73 \pm 0.05^{Aab} \end{array}$	$\begin{array}{l} -25.72\pm0.08^{Aa}\\ -26.62\pm0.07^{Ba}\end{array}$	$\begin{array}{l} 16.82\pmn.a.\\ 16.43\pmn.a. \end{array}$	$\begin{array}{l}9.2\pm0.2^{\text{Aa}}\\9.5\pm0.3^{\text{Aa}}\end{array}$
Mar. 2005 ambient elevated	$\begin{array}{c} 16.0 \pm 0.2^{Aa} \\ 16.3 \pm 0.2^{Aa} \end{array}$	$\begin{array}{l} 1.72 \pm 0.03^{Aab} \\ 1.74 \pm 0.04^{Aab} \end{array}$	$\begin{array}{l} -25.67\pm 0.07^{Aa} \\ -26.55\pm 0.08^{Ba} \end{array}$	$\begin{array}{l} 15.40 \pm 0.62^{Aa} \\ 16.98 \pm 1.51^{Aa} \end{array}$	$\begin{array}{l} 9.3\pm0.1^{Aa}\\ 9.4\pm0.1^{Aa}\end{array}$
Oct. 2005 ambient elevated	$\begin{array}{c} 16.6 \pm 0.5^{Aa} \\ 16.4 \pm 0.2^{Aa} \end{array}$	$\begin{array}{l} 1.81 \pm 0.05^{Aab} \\ 1.76 \pm 0.04^{Aab} \end{array}$	$\begin{array}{l} -26.81 \pm 0.06^{Ac} \\ -27.70 \pm 0.09^{Bc} \end{array}$	$\begin{array}{l} 19.60\pm0.49^{Ab}\\ 19.40\pm0.35^{Aa} \end{array}$	$\begin{array}{l}9.2\pm0.2^{Aa}\\9.3\pm0.1^{Aa}\end{array}$
Mar. 2006 ambient elevated	$\begin{array}{c} 15.8 \pm 0.6^{Aa} \\ 16.2 \pm 0.7^{Aa} \end{array}$	$\begin{array}{l} 1.76 \pm 0.07^{Aab} \\ 1.79 \pm 0.07^{Aab} \end{array}$	$\begin{array}{l} -26.46 \pm 0.06^{Ab} \\ -27.31 \pm 0.08^{Bb} \end{array}$	$\begin{array}{l} 20.04 \pm n.a. \\ 19.19 \pm n.a. \end{array}$	$\begin{array}{l} 9.0\pm0.2^{\text{Aa}}\\ 9.1\pm0.2^{\text{Aa}}\end{array}$

*One replication available.

Table 3

Amount of C, N, and δ^{13} C, δ^{15} N values in free particulate organic matter (fPOM), occluded in aggregates density fractions (oPOM 1.6 and oPOM 2.0) of SOM and soil mineral residue (Min) under ambient and elevated CO₂ treatments during four years (2002–2006) of the FACE experiment. Errors are standard errors of measurement (n = 4: 2 "real" × 2 analytical replications). Treatments followed by the same letters are not significantly different between elevated and ambient CO₂ (uppercase letters) and SOM density fractions of one sampling date (lowercase letters) at $p \le 0.05$ (according to two-way-ANOVA and Fischer LSD test). Stars show the significance of differences ($p \le 0.05$) between SOM density fractions under each of the CO₂ treatments of two sampling dates Oct. 2002 and Mar. 2004, where replications were available (according to *t*-test).

Date/SOM fraction	CO ₂ treatment	C (mg g ⁻¹ soil)	N (mg g ⁻¹ soil)	δ^{13} C (‰ PDB)	$\delta^{15}N$ (‰ air N_2)	C/N
Oct. 2002						
fPOM	ambient	$2.3 \pm \text{n.a.}^{\#}$	$0.09 \pm n.a.$	$-25.99 \pm n.a.$	$8.19 \pm n.a.$	$\textbf{25.6} \pm \textbf{n.a.}$
	elevated	$2.4\pm0.0^{b_{\ast}}$	$0.08 \pm 0.00^{b_{\ast}}$	$-29.73 \pm 0.27^{c_{\ast}}$	$8.12 \pm 0.31^{b_{st}}$	$\textbf{30.0} \pm \textbf{0.6}^{d_{*}}$
oPOM 1.6	ambient	0.9 ± 0.1^{Aa}	$0.04 \pm 0.00^{Aa*}$	$-26.08 \pm 0.06^{Ab_{\ast}}$	$6.68 \pm 0.16^{Aa*}$	$22.5\pm0.4^{\text{Ac}*}$
	elevated	$1.2\pm0.1^{Ba\ast}$	$0.05 \pm 0.00^{Ba*}$	$-26.89 \pm 0.07^{\text{Bb}*}$	$6.52 \pm 0.14^{Aa*}$	$24.0\pm0.2^{Bc*}$
oPOM 2.0	ambient	2.6 ± 0.1^{Ab}	$0.17 \pm 0.01^{Ab*}$	$-26.39 \pm 0.08^{\text{Ac}*}$	$7.54 \pm 0.39^{Ab_{\ast}}$	$15.3\pm0.2^{Ab*}$
	elevated	3.8 ± 0.2^{Bc}	0.24 ± 0.02^{Bc}	$-27.16 \pm 0.09^{Bb*}$	$6.58 \pm 0.28^{Aa_{\ast}}$	15.8 ± 0.5^{Ab}
Min	ambient	$10.4\pm0.5^{\text{Ac}}$	$1.34\pm0.08^{\text{Ac}}$	$-25.73 \pm 0.02^{Aa_{\ast}}$	$7.65 \pm 0.17^{Ab_{\ast}}$	$7.8\pm0.9^{\text{Aa}}$
	elevated	$9.6\pm0.2^{Ad_{\ast}}$	$1.27 \pm 0.05^{Ad}{\ast}$	-25.88 ± 0.01^{Ba}	$7.52 \pm 0.12^{Ab_{\ast}}$	7.6 ± 0.1^{Aa}
Mar. 2004						
fPOM	ambient	1.2 ± 0.1^{Ba}	$0.05\pm0.00^{\rm Ba}$	-26.61 ± 0.12^{Ab}	36.97 ± 0.59^{Ac}	$24.0\pm0.4^{\text{Ad}}$
	elevated	0.7 ± 0.1^{Aa}	0.03 ± 0.00^{Aa}	-31.21 ± 0.08^{Bd}	39.33 ± 1.94^{Ac}	$23.3\pm0.2^{\text{Ac}}$
oPOM 1.6	ambient	$1.1\pm0.1^{\mathrm{Ba}}$	0.06 ± 0.01^{Ba}	-26.69 ± 0.01^{Ab}	$14.45\pm1.56^{\rm Ab}$	18.3 ± 0.4^{Bc}
	elevated	0.6 ± 0.0^{Aa}	$0.04\pm0.00^{\text{Aa}}$	-27.43 ± 0.08^{Bb}	12.24 ± 0.30^{Aa}	15.0 ± 0.3^{Ab}
oPOM 2.0	ambient	2.9 ± 0.1^{Ab}	0.23 ± 0.01^{Ab}	-27.03 ± 0.03^{Ac}	$13.51 \pm 0.20^{\text{Bb}}$	12.6 ± 0.1^{Ab}
	elevated	3.3 ± 0.2^{Ab}	0.24 ± 0.01^{Ab}	-27.88 ± 0.00^{Bc}	12.68 ± 0.32^{Aa}	13.8 ± 0.2^{Bb}
Min	ambient	$9.8\pm0.2^{ m Bc}$	$1.28\pm0.05^{\rm Bc}$	-25.39 ± 0.00^{Aa}	$12.74\pm0.30^{\rm Aa}$	7.7 ± 0.1^{Aa}
	elevated	7.3 ± 0.2^{Ac}	0.84 ± 0.01^{Ac}	-25.80 ± 0.07^{Ba}	14.85 ± 0.48^{Bb}	8.7 ± 0.1^{Ba}
Oct. 2004						
fPOM	ambient	$0.4\pm$ n.a.	$0.03 \pm n.a.$	$-26.87 \pm n.a.$	$66.46 \pm n.a.$	$13.3 \pm$ n.a.
	elevated	$0.6 \pm n.a.$	$0.03 \pm n.a.$	$-31.68 \pm n.a.$	$111.72 \pm n.a.$	$20.0 \pm$ n.a.
oPOM 1.6	ambient	$0.7 \pm n.a.$	$0.05 \pm n.a.$	$-26.91 \pm n.a.$	$24.09 \pm \text{n.a.}$	$14.0 \pm$ n.a.
	elevated	$1.1 \pm n.a.$	$0.06 \pm n.a.$	$-27.72 \pm n.a.$	25.78 ± n.a.	$18.3 \pm n.a.$
oPOM 2.0	ambient	$3.0 \pm n.a.$	$0.23 \pm n.a.$	$-27.03 \pm n.a.$	$19.42 \pm n.a.$	$13.0 \pm n.a.$
	elevated	$2.2 \pm n.a.$	$0.19 \pm n.a.$	$-27.81 \pm n.a.$	$20.32 \pm n.a.$	$11.6 \pm$ n.a.
Min	ambient	$9.0 \pm n.a.$	$1.07 \pm n.a.$	$-25.50 \pm n.a.$	$18.09 \pm n.a.$	$8.4 \pm n.a.$
	elevated	$7.4 \pm$ n.a.	$0.87 \pm n.a.$	$-26.15 \pm n.a.$	$16.93 \pm n.a.$	$8.5 \pm n.a.$
Mar. 2005						
fPOM	ambient	$0.7 \pm n.a.$	$0.04 \pm n.a.$	-27.27 + n.a.	71.01 + n.a.	$17.5 \pm n.a.$
	elevated	$0.8 \pm n.a$	$0.04 \pm n.a$	$-32.27 \pm n.a.$	$95.87 \pm n.a$	$20.0 \pm n.a$
0POM 1.6	ambient	$0.5 \pm n.a.$	$0.03 \pm n.a.$	$-26.89 \pm n.a.$	$15.48 \pm n.a$	$16.7 \pm n.a.$
	elevated	$0.5 \pm n.a$	$0.03 \pm n.a.$	$-27.79 \pm n.a$	$20.13 \pm n.a$	$167 \pm n.a.$
oPOM 2.0	ambient	$31 \pm n3$	$0.05 \pm n.a.$	-27.19 ± 0.3	$17.02 \pm n.a.$	$12.4 \pm n.a.$
01 0111 2.0	elevated	3.1 ± 1	$0.25 \pm n.a.$	$-28.07 \pm n.a.$	$20.98 \pm n.a.$	$12.1 \pm 11.0.1$
Min	ambient	10.0 ± 0.2	1.25 ± 0.25	$25.55 \pm n.2$	$14.64 \pm n.2$	70 ± 0.2
IVIIII	aliniticit	$94 \pm p_{2}$	$1.27 \pm 11.a.$	$-25.55 \pm 11.a.$	17.04 ± 0.04	$7.3 \pm 11.a$
	elevaleu	$0.4 \pm 11.d.$	$1.03 \pm 11.d.$	$-20.27 \pm 11.d.$	17.24 ± 11.4 .	$0.2 \pm 11.d.$
Oct. 2005						
fPOM	ambient	$0.5 \pm n.a.$	$0.03 \pm n.a.$	$-26.94 \pm$ n.a.	$64.40 \pm n.a.$	$16.7 \pm n.a.$
	elevated	$0.6 \pm$ n.a.	$0.03 \pm n.a.$	$-33.07 \pm n.a.$	112.34 \pm n.a.	$20.0 \pm$ n.a.
oPOM 1.6	ambient	$0.6 \pm$ n.a.	$0.03 \pm n.a.$	$-26.55 \pm n.a.$	$21.51 \pm n.a.$	$20.0 \pm$ n.a.
	elevated	$0.4 \pm$ n.a.	$0.02 \pm n.a.$	$-27.84\pm$ n.a.	$23.14 \pm$ n.a.	$20.0 \pm$ n.a.
oPOM 2.0	ambient	$2.9 \pm$ n.a.	$0.23 \pm n.a.$	$-27.14 \pm$ n.a.	$21.25 \pm n.a.$	$12.6 \pm$ n.a.
	elevated	$3.0 \pm n.a.$	$0.24 \pm n.a.$	$-28.04 \pm n.a.$	$21.73 \pm n.a.$	$12.5 \pm n.a.$
Min	ambient	$8.4 \pm n.a.$	$1.20 \pm n.a.$	$-25.41 \pm n.a.$	$23.99 \pm n.a.$	$7.0 \pm$ n.a.
	elevated	$8.0 \pm n.a.$	$1.00 \pm$ n.a.	$-26.27 \pm n.a.$	$\textbf{22.35} \pm \textbf{n.a.}$	$8.0 \pm n.a.$
Mar. 2006						
fPOM	ambient	$0.3 \pm n.a.$	$0.02 \pm n.a.$	$-27.48 \pm$ n.a.	$81.29 \pm n.a.$	$15.0 \pm n.a.$
	elevated	$0.5 \pm$ n.a.	$0.03 \pm n.a.$	$-32.01 \pm n.a.$	$91.15 \pm n.a.$	$16.7 \pm n.a.$
oPOM 1.6	ambient	$0.7 \pm$ n.a.	$0.04 \pm n.a.$	$-26.71 \pm n.a.$	$20.52 \pm \text{n.a.}$	$17.5 \pm n.a.$
	elevated	$0.7 \pm$ n.a.	$0.04 \pm n.a.$	$-27.26 \pm n.a.$	$21.45 \pm n.a.$	$17.5 \pm$ n.a.
oPOM 2.0	ambient	$3.3 \pm$ n.a.	$0.26 \pm n.a.$	$-26.78 \pm n.a.$	$\textbf{20.62} \pm \textbf{n.a.}$	$12.7 \pm \text{n.a.}$
	elevated	$3.1 \pm n.a.$	$0.26 \pm n.a.$	$-28.27\pm$ n.a.	$22.75 \pm \text{n.a.}$	$11.9 \pm n.a.$
Min	ambient	$10.3 \pm \text{n.a.}$	$1.20 \pm n.a.$	$-25.44 \pm$ n.a.	$20.13 \pm \text{n.a.}$	$8.6 \pm n.a.$
	elevated	$6.9 \pm n.a.$	$1.09 \pm n.a.$	$-26.31 \pm n.a.$	$\textbf{20.24} \pm \textbf{n.a.}$	$\textbf{6.3} \pm \textbf{n.a.}$

[#] One replication available.

higher values under elevated vs. ambient CO_2 and decreased under both CO_2 treatments throughout the experiment (Table 2).

initial +6.8 and +6.9 to +19.0 and +20.0% under elevated and ambient CO₂, respectively (Table 2).

Application of ¹³C-depleted CO₂ significantly (p = <0.01) shifted δ^{13} C in plants growing under elevated CO₂ by about -10.5% (Table 1) and by -0.7% in bulk SOM (Table 2) after the first growing period already. In the following seasons the average shift in δ^{13} C under elevated vs. ambient CO₂ treatments was about -10.4% for plants (Table 1) and -085% for SOM (Table 2). The δ^{15} N of SOM substantially increased after the start of fertilization in 2003 from

3.2. Elemental (C, N) amounts and stable isotope ($\delta^{13}C$, $\delta^{15}N$) composition of SOM density fractions

Density fractionation allowed isolating free, occluded and mineral-associated organic matter with different amounts of C and N. The Min fraction dominated by weight (90–96% from the initial

Table 4

Portion of replaced C in total C_{org} (new C) and turnover rates of C (TR) in bulk soil and in free particulate organic matter (fPOM), occluded in aggregates density fractions (oPOM 1.6 and oPOM 2.0) of SOM and in soil mineral residue (Min). Errors are standard errors of measurement (bulk soil: n = 5; density fractions: n = 4: 2 "real" × 2 analytical replications). Treatments followed by the same letters are not significantly different between bulk soil and SOM density fractions of one sampling date (uppercase letters) and between sampling dates for each bulk soil and SOM density fractions (where possible) at $p \le 0.05$ (according to two-way-ANOVA and Fischer LSD test).

Date/SOM fraction	New C [#] (%)	Duration of CO ₂ enrichment (years)	TR^* (year ⁻¹)
Oct. 2002			
FPOM	36.0 ± 2.6^{Ca}	0.7	$0.671 \pm 0.060^{\mathrm{Cb}}$
OPOM 1.6	7.9 ± 0.0^{Bb}	0.7	$0.122 \pm 0.001^{Bb}*$
OPOM 2.0	$7.4 \pm 0.7^{\text{Ba}}$	0.7	$0.115 \pm 0.011^{Bb}{*}$
Min	$1.4\pm0.1^{\text{Aa}}$	0.7	$0.021 \pm 0.002^{\text{Aa}}$
Bulk soil	7.1 ± 0.4^{Ba}	0.7	$0.111 \pm 0.06^{Bd}*$
Mar. 2004	442 . 0 oCh	2	0.000
FPOM	44.3 ± 0.8^{cb}	2	0.292 ± 0.007 Ca
OPOM 1.6	$7.1 \pm 0.4^{\text{Ba}}$	2	$0.037 \pm 0.002^{\text{Ba}}$
OPOM 2.0	7.1 ± 0.2^{ba}	2	$0.037 \pm 0.001^{\text{ba}}$
Min	$3.9 \pm 0.4^{\text{AD}}$	2	$0.020 \pm 0.002^{\text{Aa}}$
Bulk soil	7.8 ± 0.6^{10}	2	$0.041 \pm 0.003^{\text{bc}}$
Oct. 2004			
FPOM	$46.2 \pm n.a.**$	2.7	$0.233 \pm n.a.$
OPOM 1.6	$7.8 \pm n.a.$	2.7	$0.030 \pm n.a.$
OPOM 2.0	$7.5 \pm n.a.$	2.7	0.029 + n.a.
Min	$6.2 \pm n.a.$	2.7	$0.024 \pm n.a.$
Bulk soil	8.8 ± 1.1^{a}	2.7	0.035 ± 0.004^{bc}
Mar.2005			
FPOM	$48.1 \pm n.a.$	3	$0.218 \pm n.a.$
OPOM 1.6	$8.6 \pm$ n.a.	3	$0.030 \pm n.a.$
OPOM 2.0	$8.4 \pm n.a.$	3	$0.029 \pm n.a.$
Min	$6.9 \pm n.a.$	3	$0.024 \pm n.a.$
Bulk soil	8.5 ± 1.1^{a}	3	$0.030 \pm 0.004^{\circ}$
Oct. 2005			
FPOM	$58.9 \pm n.a.$	3.7	$0.242 \pm n.a.$
OPOM 1.6	$12.4 \pm n.a.$	3.7	$0.036 \pm n.a.$
OPOM 2.0	$8.6 \pm$ n.a.	3.7	$0.025 \pm n.a.$
Min	$8.3 \pm$ n.a.	3.7	$0.024 \pm n.a.$
Bulk soil	8.6 ± 0.9^a	3.7	0.024 ± 0.003^{ab}
Mar. 2006			
Mar. 2006	42.5		0142
FPUM	$43.5 \pm n.a.$	4	$0.143 \pm n.a.$
OPOIN 1.6	$5.3 \pm n.a.$	4	$0.014 \pm n.a.$
OPOM 2.0	$14.4 \pm n.a.$	4	$0.039 \pm n.a.$
Min Dulla a il	$8.3 \pm n.a.$	4	$0.022 \pm n.a.$
BUIK SOII	8.2 ± 0.6^{-1}	4	$0.021 \pm 0.001^{\circ}$

New C was calculated based on the Eq. (1).

*TR's were calculated based on the Eq. (3).

**One replication available.

soil) and contained the largest C pool, ranging from 6.85 to 10.42 mg g⁻¹ soil and N (0.84–1.34 mg g⁻¹ soil) under both ambient and elevated CO₂ treatments (Table 3). Carbon and N amounts in POM decreased with decreasing density: oPOM 2.0 > oPOM 1.6 \geq fPOM, except for Oct. 2002, when fPOM was substantially larger than oPOM 1.6 under both CO₂ treatments (Table 3).

There was no pronounced effect of elevated CO_2 on the amount of C and N in POM density fractions. In contrast to POM fractions, Min fraction showed higher C and N contents under ambient vs. elevated CO_2 for all sampling dates (Table 3).

The C-to-N ratios of isolated fractions generally decreased with the increasing density. The highest values corresponded to fPOM (up to 30) and the lowest to the Min fraction (6.3-8.7) (Table 3). The fPOM had higher values of C/N under elevated vs. ambient CO₂ (except for Mar. 2004), coinciding with the trend of C/N in plant residues (Table 1). After initiation of N fertilization,

Table 5

Portion of fertilizer-derived N (new N) in total N_{min} and turnover rates of N (TR) in bulk soil and in free particulate organic matter (fPOM), occluded in aggregates density fractions (oPOM 1.6 and oPOM 2.0) of SOM and in soil mineral residue (Min). Errors are standard errors of measurement (bulk soil: n = 5; density fractions: n = 4: 2 "real" × 2 analytical replications). Treatments followed by the same letters are not significantly different between ambient and elevated CO_2 in bulk soil and SOM density fractions of one sampling date (uppercase letters) and between sampling dates for each bulk soil under both CO_2 treatments (lowercase letters) of March and October 2005 at $p \le 0.05$ (according to *t*-test).

Date/SOM fraction	CO ₂ treatment	New N [#] (%)	Duration of N fertilization (years)	TR^* (year ⁻¹)
Mar 2004				
FPOM	ambient	8.84 ± 0.18^{A}	1	0.093 ± 0.002^{A}
11 OW	elevated	$9.59 \pm 1.85^{\text{A}}$	1	0.000 ± 0.002 0.101 + 0.020 ^A
OPOM 1.6	ambient	$3.33 \pm 0.48^{\text{A}}$	1	0.101 ± 0.020
010101110	elevated	$1.75 \pm 0.00^{\text{A}}$	1	0.024 ± 0.003
OPOM 2.0	ambient	1.73 ± 0.03 $1.83 \pm 0.01^{\text{A}}$	1	0.018 ± 0.001
01 0101 2.0	allovated	1.05 ± 0.01	1	0.010 ± 0.000
Min	ambiont	1.57 ± 0.10 1.56 $\pm 0.00^{\text{A}}$	1	0.013 ± 0.001
IVIIII	allovated	1.30 ± 0.03	1	0.017 ± 0.000^{B}
Pulk coil	ambiont	2.23 ± 0.13	1	0.023 ± 0.003
Duik Soli	allipicit	$1.00 \pm 11.a.$	1	$0.017 \pm 11.a$.
	cicvatcu	$1.03 \pm 11.a$.	1	$0.015 \pm 11.a.$
Oct. 2004				
FPOM	ambient	$17.90 \pm n.a.^{**}$	1.7	$0.118 \pm n.a.$
	elevated	$31.82 \pm n.a.$	1.7	$0.230 \pm n.a.$
OPOM 1.6	ambient	$5.32 \pm n.a.$	1.7	$0.033 \pm n.a.$
	elevated	$5.88 \pm n.a.$	1.7	$0.036 \pm n.a.$
OPOM 2.0	ambient	$3.64 \pm n.a.$	1.7	$0.022 \pm n.a.$
	elevated	$4.20 \pm n.a.$	1.7	$0.026 \pm n.a.$
Min	ambient	$3.20 \pm n.a.$	1.7	$0.020 \pm n.a.$
	elevated	$2.88 \pm n.a.$	1.7	$0.018 \pm n.a.$
Bulk soil	ambient	$3.03 \pm n.a.$	1.7	$0.019 \pm n.a.$
	elevated	$2.94 \pm n.a.$	1.7	$0.018 \pm n.a.$
Mar. 2005				
FPOM	ambient	$19.30 \pm n.a.$	2	$0.107 \pm n.a.$
	elevated	$26.95 \pm n.a.$	2	$0.157 \pm n.a.$
OPOM 1.6	ambient	$2.69 \pm n.a.$	2	$0.014 \pm n.a.$
	elevated	$4.16 \pm$ n.a.	2	$0.021 \pm n.a.$
OPOM 2.0	ambient	$2.91 \pm n.a.$	2	$0.015 \pm n.a.$
	elevated	$4.40 \pm n.a.$	2	$0.023 \pm n.a.$
Min	ambient	$2.16 \pm n.a.$	2	$0.011 \pm n.a.$
	elevated	$2.98 \pm n.a.$	2	$0.015 \pm n.a.$
Bulk soil	ambient	2.60 ± 0.19^{Aa}	2	0.013 ± 0.001^{Aa}
	elevated	3.11 ± 0.46^{Aa}	2	0.016 ± 0.002^{Aa}
Oct 2005				
EPOM	ambiont	19.90 n.2	27	0.078 n a
IFOIVI	allipient	$10.00 \pm 11.d.$	2.7	$0.078 \pm 11.a.$
OPOM 1.6	ambient	$32.00 \pm 11.a.$	2.7	$0.145 \pm 11.a.$
0101011.0	allovated	4.00 ± 11.0	2.7	0.017 ± 0.020
OPOM 2.0	ambient	4.20 ± 0.2	2.7	0.020 ± 0.020
0101012.0	allovated	$4.20 \pm 11.a.$	2.7	0.010 ± 0.01
Min	ambiont	$4.03 \pm 11.a.$	2.7	0.010 ± 0.010
IVIIII	allipient	$3.01 \pm 11.a.$	2.7	$0.019 \pm 11.a$.
Pulk coil	ambiont	$4.34 \pm 11.a.$	2.7	$0.017 \pm 0.001^{\text{Aa}}$
Bulk Soli	alipicit	3.88 ± 0.13	2.7	0.015 ± 0.001
	elevaleu	5.64 ± 0.11	2.7	0.013 ± 0.000
Mar. 2006				
FPOM	ambient	$22.45 \pm n.a.$	3	$0.085 \pm n.a.$
	elevated	$25.50 \pm n.a.$	3	$0.098 \pm n.a.$
OPOM 1.6	ambient	$\textbf{4.23} \pm \textbf{n.a.}$	3	$0.014 \pm n.a.$
	elevated	$4.56 \pm n.a.$	3	$0.016 \pm n.a.$
OPOM 2.0	ambient	$4.01 \pm n.a.$	3	$0.014 \pm n.a.$
	elevated	$4.94 \pm n.a.$	3	$0.017 \pm n.a.$
Min	ambient	$3.83 \pm n.a.$	3	$0.013 \pm n.a.$
	elevated	$3.90 \pm n.a.$	3	$0.013 \pm n.a.$
Bulk soil	ambient	$4.02 \pm n.a.$	3	$0.014 \pm n.a.$
	elevated	$3.78 \pm n.a.$	3	$0.013 \pm n.a.$

New N was calculated based on the Eq. (2).

*TR's were calculated based on the Eq. (x).

**One replication available.

the C/N ratios decreased in POM fractions, but not in the mineral fraction, where C/N did not vary substantially throughout the experiment (Table 3).

Corresponding to the bulk soil, δ^{13} C of all density fractions under elevated CO₂ decreased starting from the first growing season. The largest shift in δ^{13} C of -3.7 to -6.1% under elevated vs. ambient CO₂ treatment was observed for the fPOM fraction and the smallest shift (-0.1 to -0.9%) was detected in the Min fraction. The depletion in ¹³C under elevated CO₂ with time occurred in all fractions except fPOM and oPOM 1.6 for the last sampling date (Mar. 2006) (Table 3). The application of labeled ¹⁵N-fertilizers that started in 2003 significantly (p = <0.0001) increased δ^{15} N of all SOM density fractions from initial +6.5 and +8.2‰ (Oct. 2002) to +9.6 and +112.3‰ for subsequent sampling dates. The largest increase in δ^{15} N was observed in fPOM under elevated CO₂ (Table 3).

3.3. Amount of replaced C and fertilizers-derived N in bulk soil and SOM density fractions

The portion of new C reached 7% in bulk soil after the first growing season (Oct. 2002) and increased up to 8.6% after three growing seasons (Oct. 2005) (Table 4). The distribution of new C in SOM density fractions followed, as hypothesized, the pattern of density increase: the highest % of new C was observed in fPOM and the lowest in the Min fraction with intermediate portions in oPOM 1.6 and oPOM 2.0. However, this trend changed, when the portion of new C in SOM fractions was recalculated into mass units based on weight of the density fractions (C_{FACE}) (Fig. 2). Here, the highest amount of C_{FACE} in fPOM occurred only in the very first growing season, whereas its amount decreased in subsequent periods of the experiment. A similar trend was observed also for the oPOM 1.6 fraction (Fig. 2). In contrast to fPOM and oPOM 1.6, oPOM 2.0 showed no change and Min fractions showed a progressive increase in C_{FACE} during the experiment (Fig. 2). Starting from Oct. 2004 the largest pool of C_{FACE} was found in the Min fraction.

The portion of fertilizer-derived N (new N) increased in bulk soil from the initial 1.7% in Mar. 2004 to 4% in Mar. 2006 under ambient CO₂ and from 1.8 to 3.8% within the same period under elevated CO₂, respectively (Table 5). The highest fraction of new N was observed in fPOM, and this was especially pronounced under elevated vs. ambient CO₂ treatment. The total amount of new N (N_{fertil.}) progressively increased in bulk soil mainly due to the increase in the Min fraction (Fig. 3). The increase in N_{fertil.} in the Min fraction during the growing seasons 2004 and especially 2005 was more pronounced under ambient than under elevated CO₂ (Fig. 3). However, the significance of the observed trend could not be determined. No difference in the pattern of N_{fertil} distribution among POM fractions was observed between ambient and elevated CO₂ treatments (Fig. 3).

3.4. Mean residence time of C and N in bulk soil and SOM density fractions

The mean residence time of C (MRT_C) assessed for elevated CO_2 treatment had increased in bulk soil from 10 to 50 years during 4 years of the experiment (Fig. 4). Such an increase in bulk MRT_C was determined for the occluded POM (oPOM 1.6 and oPOM 2.0). Mean RT_C of fPOM was the shortest (1.5–7 years) and MRT_C of Min fraction was the longest (41–52 years) of all fractions (Fig. 4). Mean RT_C of fPOM demonstrated a slight increase with time (Fig. 4).

Mean residence times of N (MRT_N) in bulk soil and density fractions were calculated for both CO_2 treatments, because ¹⁵N-labeled fertilizer was applied equally under ambient and elevated CO_2 . Mean

Fig. 2. Amount of replaced C in bulk soil (\pm SE, n = 5) and in isolated free particulate organic matter (fPOM), occluded particulate OM with density up to 1.6 g cm⁻³ (oPOM 1.6), occluded particulate OM with density up to 2.0 g cm⁻³ (oPOM 2.0) and mineral fraction (\pm SE, n = 4: 2 "real" \times 2 analytical replications) during 4.5 years of Free Air CO₂ Enrichment.

RT_N of the bulk soil under ambient CO₂ increased from 60 to 73 years and from 54 to 78 years under elevated CO₂ during 3 years (Mar. 2003–Mar. 2006). The pronounced effect of elevated CO₂ on MRT_N was observed in fPOM: MRT_N was 45–48% shorter under elevated vs. ambient CO₂ in Oct. 2004 and Oct. 2005 and 5–30% shorter in Mar. 2004–2006 as compared to respective values under ambient CO₂ treatment (Fig. 4b,c).

4. Discussion

4.1. C and N dynamics in bulk soil under ambient and elevated atmospheric CO₂: "FACE-derived" vs. "pre-FACE" SOM

Atmospheric CO_2 enrichment during four growing seasons as well as NPK fertilization during three growing seasons did not significantly affect total C and N of bulk soil of an agricultural site

Fig. 3. Amount of replaced N (dots) in bulk soil (\pm SE, n = 5) and in isolated free particulate organic matter (fPOM), occluded particulate OM with density up to 1.6 g cm⁻³ (oPOM 1.6), occluded particulate OM with density up to 2.0 g cm⁻³ (oPOM 2.0) and mineral fraction under ambient (top) and elevated (bottom) CO₂ treatments (\pm SE, n = 4: 2 "real" × 2 analytical replications) during 3 years of fertilization.

cropped with summer wheat (Table 1). This is in agreement with the results of many FACE studies including the current experimental site (Marhan et al., 2008, 2010) and other agricultural field experiments (Dorodnikov et al., 2008; Giesemann and Weigel, 2008; Leavitt et al., 1996), as well as grassland (De Graaff et al., 2008; Niklaus et al., 2001; van Kessel et al., 2006) and forest experiments (Lichter et al., 2005; Norby et al., 2002). The lack of total C and N change under elevated CO₂ could be explained, on the one hand, by the short magnitude (and/or low amount) of CO₂-stimulated C inputs relative to the duration of the experiment (Jastrow et al., 2005). On the other hand, the process of SOM sequestration could be counterbalanced by the increasing decomposition of SOM by soil microbial biomass under elevated atmospheric CO₂ (Blagodatskaya et al., 2010; Heath et al., 2005; Lagomarsino et al., 2009). The increasing activity of soil microorganisms under elevated vs. ambient CO₂ was previously reported for the current FACE experiment (Blagodatskaya et al., 2010; Dorodnikov et al., 2009). Using the approach of the assessment of new C turnover rates (van Kessel et al., 2006) we estimated

Fig. 4. Mean residence time (MRT) of (A) C turnover rates, (B) N turnover rates under ambient CO₂ and (C) under elevated CO₂ in bulk soil (\pm SE, n = 5) and in isolated free particulate organic matter (fPOM), occluded particulate OM with density up to 1.6 g cm⁻³ (oPOM 1.6), occluded particulate OM with density up to 2.0 g cm⁻³ (oPOM 2.0) and mineral fraction (\pm SE, n = 4: 2 "real" × 2 analytical replications) during 4.5 years of Free Air CO₂ Enrichment and 3 years of fertilization.

the MRT of new C under elevated CO_2 to be about 2 months (0.15 years, data not shown) in the current study. Such high turnover rates are apparently driven by the activity of soil microorganisms (Blagodatskaya et al., 2011). However, the recalcitrance of FACE-derived plant residues has been simultaneously increasing in the experiment as shown by increase in C/N ratio of plant tissues (Table 1) and by earlier findings (Marhan et al., 2008). Moreover, the amount of C_{FACE} in bulk soil showed an increasing trend in the course of the experiment (Fig. 2, bottom). Although, the increase of C_{FACE}

along with the lack of total C changes cannot directly indicate the effect of elevated CO₂ on decomposition rates, since newly synthesized C under ambient CO₂ could potentially follow the same pattern, which is not possible to detect without a label. Still, along with the increasing C/N ratio in plant residues (Table 1) and decrease of old SOM pool predicted by modeling for the current experimental site (Marhan et al., 2010), the reported increasing activity of soil microorganisms under elevated CO₂ (Blagodatskaya et al., 2010; Dorodnikov et al., 2009) could accelerate decomposition of older "pre-FACE" C vs. FACE-derived fresh plant residues. This process will lead to the gradual replacement of the unprotected and/or less recalcitrant soil C pool by CFACE (Marhan et al., 2010). However, the mentioned mechanism should be tested for the current experimental site by labeling of ambient CO₂ treatment and/or by longterm incubation study, which could provide information about SOM decomposition under both ambient and elevated CO₂.

In contrast to the assessment of C turnover possible just for elevated CO₂ treatment, the N turnover in bulk soil was assessed for both elevated and ambient CO₂. The general trend in the replacement of total N by N_{fertil}, was similar for both CO₂ treatments (Fig. 3). Significantly lower amount of N_{fertil.} was observed only after vegetation season 2005 in bulk soil under elevated vs. ambient CO₂ (Fig. 3, bulk soil values). This may occur due to higher N uptake by plants because of increased demand for N to support plant growth stimulated by elevated CO₂ (Ainsworth and Long, 2005; De Graaff et al., 2008; Luo et al., 2004). However, neither current results of N content in plant tissues (N content was significantly lower under elevated vs. ambient CO_2 (Table 1) nor statistical evidence (just one significant event during four years of the experiment) do support this hypothesis. Furthermore, the MRT_N during 3 years showed no significant difference in bulk soil under elevated and under ambient CO₂ (Fig. 4b,c). Nevertheless, bulk soil values very often fail to provide sufficient information about the processes involved into SOM turnover (Neff et al., 2002). Thus, to reveal the effect of fertilization onto C and N dynamics under both elevated and ambient CO₂ the fractionation of total SOM pool into subpools of different stability is an adequate and effective tool (Neff et al., 2002).

4.2. C and N dynamics in SOM density fractions under ambient and elevated atmospheric CO₂: turnover vs. stabilization

4.2.1. fPOM

Free particulate organic matter represents coarse and poorly decomposed plant residues mostly of roots and stubbles origin (Fig. 1a; John et al., 2005). Predomination of plant-derived material in fPOM fraction was also confirmed by lipids distribution patterns (Wiesenberg et al., 2010). Carbon and N content of fPOM was the highest after the first growing season of 2002 under both CO₂ treatments as compared to the subsequent sampling dates (Table 3). This was due to the experimental set-up, when all growing plants on the site were not harvested since the FACE system worked in a testing regime. Thus, the aboveground plant biomass was incorporated into the soil hereby increasing its fPOM (and total C) content. The fPOM decrease in subsequent seasons was, correspondingly, due to fewer inputs of plant residues into the soil because of the removal of aboveground plant biomass during harvest. Notably higher C content (except of Mar. 2004), nearly the same N content and, hence, broader C/N ratio in fPOM (Table 3) were detected under elevated vs. ambient CO₂ indicating the changing quality of plant tissues under atmospheric CO₂ enrichment (Ainsworth and Long, 2005; Cotrufo et al., 2005; Wiesenberg et al., 2008).

The highest portions of new C and N (Tables 4, 5) along with the shortest MRT_C and MRT_N of fPOM fraction (<13 years; Fig. 4) as compared to other fractions supported the hypothesized high availability of the former to decomposition. This is in agreement

with the hierarchical concept of SOM turnover in density fractions (Bol et al., 2003; Flessa et al., 2008; Golchin et al., 1997; John et al., 2005; Marschner et al., 2008) and the effect of fertilization onto SOM turnover in density fractions (Neff et al., 2002). Although gradual decrease of MRT_C in fPOM (Fig. 4) cannot alone indicate changing quality of plant tissues under elevated atmospheric CO₂ because, in theory, a slowing down of MRT_C over time could also occur under ambient CO₂. The MRT_C along with broader C/N ratio in fPOM under elevated vs. ambient CO₂ supports previous findings of increasing recalcitrance of plant-derived inputs in FACE studies (Cotrufo et al., 2005; Marhan et al., 2008; Wiesenberg et al., 2008). However, as it was reported (Bol et al., 2009; Flessa et al., 2008; Marschner et al., 2008), the chemical recalcitrance of plantderived inputs cannot solely provide the potential of SOM stabilization within a long-term period. Thus, other factors, such as association of organic compounds with mineral particles should be considered for the assessment of SOM turnover under elevated atmospheric CO₂.

4.2.2. oPOM

Particulate organic matter occluded in soil aggregates represented visually more decomposed organic materials with stronger association to soil mineral particles as compared to fPOM (Fig. 1b, c; John et al., 2005). Analysis of lipids distribution patterns within SOM density fractions showed the increased contribution of microbial-derived compounds in oPOM vs. fPOM and mineral fractions (Wiesenberg et al., 2010).

Despite the amount of C and N (Table 3) as well as C_{FACE} and N_{fertil.} (Figs. 2 and 3) were at least 2-folds higher in oPOM 2.0 vs. oPOM 1.6 fraction, the MRT_C (Fig. 4a) and particularly MRT_N (Fig. 4b,c) did not reveal a functional difference between lighter oPOM 1.6 and heavier oPOM 2.0. This contradicts the conceptual model of SOM turnover in density fractions proposed by Golchin et al. (1997). Authors assumed a functional difference between lighter and heavier oPOMs - oPOM 1.6 and 2.0 derives from microaggregates. However, the fraction oPOM 2.0 also partly derives from macroaggregates where it acts as a binding agent between microaggregates. The lack of the difference in MRT of C and N between lighter and heavier oPOMs could be caused by (i) weak association of lighter and heavier oPOM fractions to aggregates of different sizes and/or (ii) short turnover time of aggregates. Thus, regular intensive tillage of soil on experimental site accelerated the brakedown of macroaggregates into microaggregates with the simultaneous rearrangement of the latter into "new" macroaggregates, etc. So, POM occluded in macro- and microaggregates has been mixing hereby showing no difference in turnover rates between lighter and heavier oPOM fractions.

Both MRT_C and MRT_N of oPOM fractions have substantially increased throughout the experiment (Fig. 4a). Moreover, Fig. 4 shows that the increase in MRT_C of bulk soil over time was largely driven by the response of the oPOM fractions. Shorter turnover time of C in the beginning and its subsequent slowing down during an experiment was reported for studies utilizing C_3/C_4 vegetation change to assess the turnover time of C (Klumpp et al., 2007; Marschner et al., 2008) and for those under FACE (van Kessel et al., 2006). This is consistent with the intensive incorporation of new FACE-derived C into the soil within a relatively short time interval (in our case, about 7% of total C was replaced after the first growing season already, Table 4). Thereafter, the rate of the replacement decreases and after some time the replacement of C is very slow. This means that the C of the "labile" and "intermediatestable" C pools is mostly replaced after this time (Marschner et al., 2008). For the current site, not only progressive degradation of organic material, which was incorporated in the initial year of the experiment (Wiesenberg et al., 2010), but also substantial decrease of the amount of plant residues (aboveground plant biomass has been harvested after 2002) resulted in 4-fold increase of MRT_C during subsequent 3.5 years. Finally, identical trends of MRT_C increase in oPOM and bulk soil support the concept of the critical role of aggregation on stabilization of organic matter in entire soil (Golchin et al., 1997; Jastrow et al., 2005; Six et al., 2001).

4.2.3. Mineral-associated OM

The residual fraction during aggregate separation, the mineral fraction, left after the removal of POM comprised 89-96% of an initial soil sample by weight (Fig. 1d). This fraction contained the largest pool of C and N (Table 3). There is strong evidence in the literature that the Min fraction (also referred as silt and clay fraction) is responsible for SOM storage and stabilization. This was shown by chemical composition of SOM (Min fraction mostly contains derivates of plant material decomposition) and increasing turnover times or MRTs of SOM (Bol et al., 2003, 2009; Flessa et al., 2008; Golchin et al., 1997; von Lützow et al., 2007; Wiesenberg et al., 2010). Our results similarly showed that SOM in the Min fraction had the longest MRT_C and MRT_N of all fractions, hereby supporting the hypothesized highest protection of SOM provided by association to soil mineral particles. However, the dynamics of MRT_C and MRT_N in Min fraction over 3–4 years cannot strongly suggest SOM to stabilize in this fraction. From the one hand, the MRT_N has been decreasing during the experiment under both ambient and elevated CO_2 (Fig. 4 b, c) indicating the gradual process of total N replacement by $N_{\mbox{fertil.}}$ in the form of low availability for microbial decomposition and/or plant uptake (i.e. stabilization). From the other hand, the MRT_C of the Min fraction assessed for elevated CO₂ was constant (about 45 years) during the period of measurements (4 years) (Fig. 4). Generally, the lack of the difference in MRT_C of the Min fraction over 4 years could mostly relate to the fact that MRT_C of the fraction is much longer than the duration of the experiment. Hence, MRT_C will remain nearly constant in the short-term time interval. However, another mechanism may exist: stabilization of new C derived from coarse plant residues under elevated CO₂ (discussed for bulk soil and fPOM fraction), which theoretically should result in an increase of MRT_C, is counterbalanced by increasing decomposition of older "pre-FACE" C. Some evidence to this provides a trend of decreasing of C and N amounts in the Min fraction throughout the experiment, especially pronounced for C under elevated CO₂ (Table 3). Hence, along with the progressive increase of C_{FACE} in the Min fraction (Fig. 2) the overall losses of C under elevated CO₂ may occur at the expense of older "pre-FACE" C. Still, regarding the above discussion for the bulk soil, either labeling of ambient CO₂ treatment and/or long-term incubation of isolated fractions under both ambient and elevated CO₂ could support/reject the proposed hypothesis.

5. Conclusions

Atmospheric CO₂ enrichment of an agricultural field plot cropped with wheat did not affect C and N contents in bulk soil during four growing seasons. However, fractionation of SOM by density and application of isotope analysis provided information about the quantity and intensity of C_{FACE} and N_{fertil}. incorporation into: the inter-aggregate OM (fPOM), POM occluded within soil aggregates (oPOM 1.6, oPOM 2.0) and mineral-associated OM during the experiment. Calculated turnover rates and mean residence times of C and N revealed the qualitative differences of SOM density fractions:

(i) The shortest MRT_C and MRT_N in fPOM fraction as compared to other fractions confirmed high availability of this fraction to decomposition by soil microbial biomass. At the same time, larger C/N ratio and gradual increase in MRT_C of fPOM may result from the increasing recalcitrance of plant-derived inputs under elevated CO₂.

- (ii) The results of the study did not reveal an assumed difference between lighter oPOM 1.6 and heavier oPOM 2.0. The lack of the difference in MRT of C and N between lighter and heavier oPOM fractions could be caused by short turnover time of soil aggregates. At the same time, the gradual increase of MRT_C in both oPOM fractions during the experiment confirmed the progressive degradation of organic material within aggregates of different sizes and supported the concept of the critical role of aggregation on stabilization of organic matter in entire soil.
- (iii) The longest MRT_C and MRT_N values were found for the Min fraction supporting the hypothesis that the highest protection of SOM provided by association to soil mineral particles. However, constant turnover rates of C in mineral fraction during the experiment neither confirm nor neglect the assumed stabilization of SOM to take place in the Min fraction. Moreover, a trend of decreasing of C and N amounts in the Min fraction throughout the experiment was especially pronounced for C under elevated CO₂. Hence, along with the progressive increase of C_{FACE} in the Min fraction the overall losses of C under elevated CO₂ may occur at the expense of older "pre-FACE" C.

Acknowledgments

Authors are thankful to Dr. S. Marhan for providing soil samples used in current research. Isotope analyses were conducted by Prof. Dr. G. Gebauer at the Bayreuth Center for Environmental and Ecological Research (BayCEER) and are greatly acknowledged. The financial support of this study was provided by the Graduate College Fellowship of Baden-Wuerttemberg and the German Research Foundation (DFG) under contract WI 2810/4-1.

References

- Ainsworth, E.A., Long, S.P., 2005. What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. New Phytologist 165, 351–372.
- Balesdent, J., 1996. The significance of organic separates to carbon dynamics and its modeling in some cultivated soils. European Journal of Soil Science 47, 485–493.
- Balesdent, J., Mariotti, A., 1996. Measurement of soil organic matter turnover using ¹³C natural abundance. In: Boutton, T.W., Yamasaki, S. (Eds.), Mass Spectrometry of Soils. Marcel Dekker, New York, pp. 83–111.
- Blagodatskaya, E., Blagodatsky, S., Dorodnikov, M., Kuzyakov, Y., 2010. Elevated atmospheric CO₂ increases microbial growth rates in soil: results of three CO₂ enrichment experiments. Global Change Biology 16, 836–848.
- Blagodatskaya, E., Yuyukina, T., Blagodatsky, S., Kuzyakov, Y., 2011. Turnover of soil organic matter and of microbial biomass under C₃-C₄ vegetation change: consideration of ¹³C fractionation and preferential substrate utilization. Soil Biology and Biochemistry. Soil Biology and Biochemistry 43, 159–166. doi:10.1016/j.soilbio.2010.09.028.
- Bol, R., Bolger, T., Cully, R., Little, D., 2003. Recalcitrant soil organic matter materials mineralize more efficiently at higher temperatures. Journal of Plant Nutrition and Soil Science 166, 300–307.
- Bol, R., Poirier, N., Balesdent, J., Gleixner, G., 2009. Molecular turnover time of soil organic matter in particle-size fractions of an arable soil. Rapid Communications in Mass Spectrometry 23, 2551–2558.
- Christensen, B.T., 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science 52, 345–353.
- Cotrufo, M.F., De Angelis, P., Polle, A., 2005. Leaf litter production and decomposition in a poplar short-rotation coppice exposed to free air CO₂ enrichment (POPFACE). Global Change Biology 11, 971–982.
- De Graaff, M.-A., van Groeningen, K.J., Six, J., Hungate, B.A., van Kessel, C., 2006. Interactions between plant growth and nutrient dynamics under elevated CO₂: a meta-analysis. Global Change Biology 12, 1–15.
- De Graaff, M.-A., van Kessel, C., Six, J., 2008. The impact of long-term elevated CO₂ on C and N retention in stable SOM pools. Plant and Soil 303, 311–321.

Dorodnikov, M., Blagodatskaya, E., Blagodatsky, S., Marhan, S., Fangmeier, A., Kuzyakov, Y., 2009. Stimulation of microbial extracellular enzyme activities by elevated CO_2 depends on soil aggregate size. Global Change Biology 15, 1603–1614.

Dorodnikov, M., Fangmeier, A., Giesemann, A., Weigel, H.J., Stahr, K., Kuzyakov, Y., 2008. Thermal stability of soil organic matter pools and their turnover times calculated by ¹³C under elevated CO₂ and two levels of N fertilization. Isotopes in Environmental and Health Studies 44, 365–376.

- Dorodnikov, M., Fangmeier, A., Kuzyakov, Y., 2007. Effects of atmospheric CO₂ enrichment on delta C-13, delta N-15 values and turnover times of soil organic matter pools isolated by thermal techniques. Plant and Soil 297, 15–28.
- Ellerbrock, R.H., Kaiser, M., 2005. Stability and composition of different soluble soil organic matter fractions – evidence from δ¹³C and FTIR signatures. Geoderma 128, 28–37.
- Erbs, M., Fangmeier, A., 2006. Atmospheric carbon dioxide enrichment effects on ecosystems – experiments and real world. Progress in Botany 67, 441–459.
- Flessa, H., Amelung, W., Helfrich, M., Wiesenberg, G.L.B., Gleixner, G., Brodowski, S., Rethemeyer, J., Kramer, C., Grootes, P.-M., 2008. Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: a synthesis. Journal of Plant Nutrition and Soil Science 171, 36–51.
- Giesemann, A., Weigel, H.-J., 2008. Soil carbon isotopic composition and soil carbon content in an agroecosystem during six years of Free Air Carbon dioxide Enrichment (FACE). Isotopes in Environmental and Health Studies 44, 349–363.
- Golchin, A., Baldock, J.A., Oades, J.M., 1997. A model linking organic matter decomposition, chemistry, and aggregate dynamics. In: Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.A. (Eds.), Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, pp. 245–266.
- Gregorich, E.G., Ellert, B.H., Monreal, C.M., 1995. Turnover of soil organic matter and storage of corn residue carbon estimated from natural ¹³C abundance. Canadian Journal of Soil Science 75, 161–167.
- Heath, J., Ayres, E., Possell, M., Bardgett, R.D., Black, H.I.J., Grant, H., Ineson, P., Kerstiens, G., 2005. Rising atmospheric CO₂ reduces sequestration of rootderived soil carbon. Science 309, 1711–1713.
- Hoosbeek, M.R., Scarascia-Mugnozza, G.E., 2009. Increased litter build up and soil organic matter stabilization in a poplar plantation after 6 years of atmospheric CO₂ enrichment (FACE): final results of POP-EuroFACE compared to other forest FACE experiments. Ecosystems 12, 220–239.
- Högy, P., Wieser, H., Köhler, P., Schwadorf, K.J., Breuer, J.J., Franzaring, J.R., Muntifering, R., Fangmeier, A., 2009. Effects of elevated CO₂ on grain yield and quality of wheat: results from a 3-year free-air CO₂ enrichment experiment. Plant Biology 11 (Suppl. 1), 60–69.
- Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: Mitigation of Climate Change. Summary for Policymakers – Working Group III contribution to the Environmental Panel on Climate Change Fourth Assessment Report, 35 pp.
- Jastrow, J.D., Miller, R.M., Matamala, R., Norby, R.J., Boutton, T.W., Rice, C.W., Owensby, C.E., 2005. Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biology 11, 2057–2064.
- John, B., Yamashita, T., Ludwig, B., Flessa, H., 2005. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 128, 63–79.
- Klumpp, K., Soussana, J.F., Falcimagne, R., 2007. Long-term steady state C-13 labelling to investigate soil carbon turnover in grasslands. Biogeosciences 4, 385–394.
- Kuzyakov, Y.V., Mitusov, A., Schneckenberger, K., 2006. Effect of C3–C4 vegetation change on δ^{13} C and δ^{15} N values of soil organic matter fractions separated by thermal stability. Plant and Soil 283, 229–238.
- Lagomarsino, A., De Angelis, P., Moscatelli, M.C., Grego, S., 2009. The influence of temperature and labile C substrates on heterotrophic respiration in response to elevated CO₂ and nitrogen fertilization. Plant and Soil 137, 223–234.

- Leavitt, S.W., Paul, E.A., Galadima, A., Nakayama, F.S., Danzer, S.R., Johnson, H., Kimball, B.A., 1996. Carbon isotopes and carbon turnover in cotton and wheat FACE experiments. Plant and Soil 187, 147–155.
- Lichter, J., Barron, S.H., Bevacqua, C.E., Finzi, A.C., Irving, K.F., Stemmler, E.A., Schlesinger, W.H., 2005. Soil carbon sequestration and turnover in a pine forest after six years of atmospheric CO₂ enrichment. Ecology 86, 1835–1847.
- Lichter, J., Billings, S.A., Ziegler, S.E., Gaindh, D., Ryals, R., Finzi, A.C., Jackson, R.B., Stemmler, E.A., Schlesinger, W.H., 2008. Soil carbon sequestration in a pine forest after 9 years of atmospheric CO₂ enrichment. Global Change Biology 15, 441–453.
- Luo, Y., Su, B., Currie, W.S., et al., 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731–739.
- Marhan, S., Demin, D., Erbs, M., Kuzyakov, Y., Fangmeier, A., Kandeler, E., 2008. Soil organic matter mineralization and residue decomposition of spring wheat grown under elevated CO₂ atmosphere. Agriculture Ecosystems and Environment 123, 63–68.
- Marhan, S., Kandeler, H., Rein, S., Fangmeier, A., Niklaus, P., 2010. Indirect effects of soil moisture reverse soil C sequestration responses of a spring wheat agroecosystem to elevated CO₂. Global Change Biology 16, 469–483.
- Marschner, B., Brodowski, S., Dreves, A., et al., 2008. How relevant is recalcitrance for the stabilization of organic matter in soils? Journal of Plant Nutrition and Soil Science 171, 91–110.
- Miglietta, F., Peressotti, A., Vaccari, F.P., Zaldei, A., de Angelis, P., Scarascia-Mugnozza, G., 2001. Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytologist 150, 465–476.
- Neff, J.C., Townsend, A.R., Gleixner, G., Lehman, S.J., Turnbull, J., Bowman, W.D., 2002. Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419, 915–917.
- Niklaus, P.A., Glöckler, E., Siegwolf, R., Körner, C., 2001. Carbon allocation in calcareous grassland under elevated CO2: a combined ¹³C pulse-labelling/soil physical fractionation study. Functional Ecology 15, 43–50.
- Norby, R.J., Hanson, P.J., O'Neill, E.G., et al., 2002. Net primary productivity of a CO₂enriched deciduous forest and the implications for carbon storage. Ecological Applications 12, 1261–1266.
- Paustian, K., Six, J., Elliott, E.T., Hunt, H.W., 2000. Management options for reducing CO₂ emissions from agricultural soils. Biogeochemistry 48, 147–163.
- Six, J., Carpentier, A., van Kessel, C., Merckx, R., Harris, D., Horwath, W.R., Lüscher, A., 2001. Impact of elevated CO₂ on soil organic matter dynamics as related to changes in aggregate turnover and residue quality. Plant and Soil 234, 27–36.
- van Kessel, C., Boots, B., De Graaff, M.-A., Harris, D., Six, J., 2006. Total soil C and N sequestration in a grassland following 10 years of free air CO₂ enrichment. Global Change Biology 12, 1–13.
- von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B., 2007. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry 39, 2183–2207.
- Wiesenberg, G.L.B., Dorodnikov, M., Kuzyakov, Y., 2010. Source determination of lipids in bulk soil and soil density fractions after four years of wheat cropping. Geoderma 156, 267–277.
- Wiesenberg, G.L.B., Schwarzbauer, J., Schwark, L., Schmidt, M.W.I., 2008. Plant and soil lipid modifications under elevated atmospheric CO2 conditions II: stable carbon isotopic values (³¹³C) and turnover. Organic Geochemistry 39, 103–117.