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The use of kinetic respiration analysis to determine soil microbial biomass its active part and maximum
specific growth rate has recently increased. With this method, the increase in soil respiration rate
initiated by application of carbon growth substrate, e.g. glucose, and mineral nutrients is used to estimate
parameters describing microbial growth in soil. This study refines the method by developing statistical
guidelines for the data analysis and processing. The kinetic respiration analysis assumes that microbial
growth is not limited by substrate and energy. That is why it is critically important to identify the time
period corresponding to the unlimited growth. In this work, we studied how the unlimited growth phase
can be identified in less subjective ways by examining 121 datasets of respiration time series of 44
different soil samples taken from field plots. Deflection of the respiratory curve from the exponential
pattern indicates growth limitation. Subjective selection of the part of respiratory curve which fits to the
exponential pattern resulted in a 30% bias in specific microbial growth rates. We propose rules that are
based on inspecting the patterns in a series of plots of residuals of fitted respiration rate. By comparing
those rules with a set of statistical criteria we find that the weighted-coefficient of determination (r2) can
be used to objectively constrain the unlimited growth phase in those cases where double-limitation does
not occur. Furthermore, we discuss how the uncertainty of estimated microbial parameters is influenced
by a) measurement uncertainty, b) biased measurement at the beginning of the experiment, and c) the
number and timing of respiration measurements. We recommend checking plots of fits and residuals as
well as reporting uncertainty bounds together with the estimated microbial parameters. A free statistical
package is provided to easily deal with those aspects.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The determination of the active microbial soil biomass is
important to characterize soil sustainability and to understand the
microbial control on the decomposition of soil organic matter
(SOM) (Stenström et al., 2001). Themost widely appliedmethods to
estimate soil microbial biomass are chloroform fumigation
extraction (Vance et al., 1987) and substrate induced respiration
(SIR) (Anderson and Domsch, 1978). However, only kinetic
respiration analysis is able to distinguish between sustaining and
growing biomass and is able to quantify the initial activity state of
zler), s.blagodatskiy@abdn.ac.
tskaya), kuzyakov@gwdg.de
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the soil microbial biomass (Panikov and Sizova, 1996; Blagodatsky
et al., 2000)(details in Section 2.1). Neglecting the activity state
and relating rates of soil SOM decomposition solely to maximum
specific microbial growth rates, will lead to approximations of the
conditions in some soil microzones, e.g. rhizosphere, but will not
explicitly describe the important dynamics in bulk soil (Stenström
et al., 2001) and the dynamics of the huge amounts of slowly
decomposing SOM. Hence, the determination of the activity state
is important to constrain different model structures about the role
of soil microbial biomass in soil carbon decomposition (Wutzler
and Reichstein, 2008), which in turn will strongly affect our
understanding of feedbacks between soil carbon cycling and global
warming (Heimann and Reichstein, 2008). Furthermore, quanti-
fying the fraction of actively growing biomass, which is capable for
immediate growth on added substrate, is extremely important for
the estimation of all microbially mediated process rates, as only

mailto:twutz@bgc-jena.mpg.de
mailto:s.blagodatskiy@abdn.ac.uk
mailto:s.blagodatskiy@abdn.ac.uk
mailto:sblag@mail.ru
mailto:kuzyakov@gwdg.de
www.sciencedirect.com/science/journal/00380717
http://www.elsevier.com/locate/soilbio
http://dx.doi.org/10.1016/j.soilbio.2011.10.004
http://dx.doi.org/10.1016/j.soilbio.2011.10.004
http://dx.doi.org/10.1016/j.soilbio.2011.10.004


T. Wutzler et al. / Soil Biology & Biochemistry 45 (2012) 102e112 103
active microorganisms drive the processes. Application of this
approach is helpful for the exact assessment ofmicrobial community
reaction on pollution by heavy metals (Blagodatsky et al., 2006),
quantification of rhizosphere effect (Blagodatskaya et al., 2009),
impact of elevated CO2 (Blagodatskaya et al., 2010) or soil tillage
(Blagodatskii et al., 2008).With the kinetic respiration analysis a soil
sample is incubated together with a carbon substrate and substrate
consumption or respiration is monitored over several hours.
Microbial properties are inferred by fitting a model of microbial
growth to the observed respiration time series. The usage of the
kinetic respiration analysis has increased over the last several years
(Blagodatskaya et al., 2010, 2009; Dorodnikov et al., 2009; Esberg
et al., 2010; Gnankambary et al., 2008; Ilstedt et al., 2006, 2007;
Ilstedt and Singh, 2005; Lipson et al., 2009, 1999). However,
a comparison or synthesis of results of this method is hampered
because of differences in statistical and mathematical treatment of
respiration data.Hence, it is desirable to advance themethodologyof
the kinetic respiration analysis and study how to resolve problems
associated with this treatment of the data. These problems include
issues of the statistical analysis of the respiration curves, such as:

1. the selection of a subset of the respiration dataset that repre-
sents the initial unlimited growth phase (i.e. the time of the
exponential growth of respiration rate)

2. prior information about the uncertainty of respiration
measurements

3. determination of quantity and timing of respiration
measurements

4. biasing of the measurements at the beginning of the
experiment

This study focuses on problem 1 while discussing 2e4.
One of the assumptions of kinetic respiration analysis is that

only those observations of the respiration rate are used where soil
microbes are being activated and grow without limitation.
However, limitation will occur as soon as supplied growth
substrates are consumed in the course of the experiment. Hence,
the observed dynamic of respiration rate must be confined to the
data subset with no significant limitation effects. Applying the
model fit to different subsets results in different estimates of the
specific growth rate as shown for the example in Fig.1. Limitation of
growth occurs at the late stage, so it would seem that the last 3 to 6
n=30
mu=(0.187,0.214)
r2=0.98381
r2w=0.99698
Q=0.53188

n=29
mu=(0.199,0.224)
r2=0.98744
r2w=0.99747
Q=0.53683

n=26
mu=(0.242,0.254)
r2=0.99788
r2w=0.99938
Q=0.67145

n=25
mu=(0.25,0.261)
r2=0.99965
r2w=0.99964

Q=0.56971
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Fig. 1. A typical case: plot series of fits of model equation (1) to different subsets of the time
fit, grey points: excluded records, mu: 95% confidence interval of maximum growth rate, r
indicates the maximum of the measure.
records should be discarded. Ignoring the growth limitation and
using the full dataset would have led to an underestimation of
specific growth rate by 28% and to differing conclusions. On the
other hand, discarding too many records leads to increasing
uncertainty of the estimated parameters. In order to compare
results between different studies, it is necessary to agree on criteria
of confining the experimental growth phase.

As can be seen from Fig. 1, three standard statistical criteria r2,
r2w and Q (detailed explanation below) suggest different number
of records (i.e. 24, 25, or 26) to be chosen for estimating the
maximum specific growth rate. So, the agreement on criteria is
needed for the successful application of kinetic respiration
analysis.

This study addresses all potential users of the kinetic respiration
method as well as researchers estimating microbial specific growth
rates using CLPP method (Lindstrom et al., 1998; Mondini and
Insam, 2003). Users do not need a strong statistical background;
they are only required to operate a computer program (e.g. SAS, R,
or ModelMaker) that is able to fit a non-linear model to a given
dataset. The program should allow specifying uncertainty of the
respiration data and should provide uncertainty estimates together
with estimated coefficients. In this study, we use the freely available
statistical software R, specifically the function gnls from package
nlme, used by the twKinresp package (Wutzler, 2010).

2. Material and methods

2.1. The background of kinetic respiration analysis

With kinetic respiration analysis, a soil sample is amended with
a carbon substrate, e.g. glucose and mineral nutrients to avoid
limitation by substrates other than carbon. The soil sample is
incubated with constant temperature and moisture level of 60%
water holding capacity and the respiration rate is monitored during
the following 24e48 h (experimental details are described below in
the following section). Under such conditions of initially unlimited
microbial growth an exponential increase of the respiration rate is
observed. The increase in respiration often cannot be explained
solely by growth of microbial biomass. One explanation is that
many microbial cells in soils are usually in an energy-saving
sustaining state and are initially not a full potential to metabolize
the substrate but must adapt their molecular equipment (Panikov,
n=28
mu=(0.211,0.235)
r2=0.99
r2w=0.99794
Q=0.54027

n=27
mu=(0.226,0.245)
r2=0.99399
r2w=0.99866
Q=0.54106

n=24
mu=(0.252,0.264)
r2=0.99978

r2w=0.99952
Q=0.54269

n=23
mu=(0.25,0.264)
r2=0.99967
r2w=0.99926
Q=0.54772

ur (Experiment 3_2)

series of respiration data set 3_2. Black points: n records that are included in the model
2: coefficient of determination, r2w: Q: alternative goodness of fit measure. Bold text
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1995). Hence the population or microbial community will change
from a physiological state of low activity towards their full poten-
tial metabolic activity. The physiological state is the fraction of
actual to potential substrate turnover of the microbial community
that is responding to the substrate addition. In chemostat this is
interpreted as the state of most of the cells (Appendix A), however,
in heterogeneous soil it can also be interpreted as the fraction of
sustaining cells to fully active cells (Blagodatsky et al., 2000). With
kinetic respiration analysis the respiration curve (Eq. (1)) is fitted to
the respiration rates and used to calculate microbial parameters.

pðtÞ ¼ b0 þ b1e
b2t (1)

where p(t) is the measured respiration rate at time t, expressed as
respired CO2eC per time, bi are fitted coefficients. This respiration
curve and the coefficients are interpreted in slightly different ways
(Colores et al., 1996; Marstorp and Witter, 1999; Stenström et al.,
1998). Here, we concentrate on the interpretation where the
growth associated respiration is allowed to change with changing
activity of microbial biomass (eqs. (2)e(4) (Panikov, 1995; Panikov
and Sizova, 1996). In the beginning the exponential curve is often
dominated by adapting the physiological state of the cells, called
the lag-phase. During this phase often only weak increase in
microbial biomass is observed. Later on during the so called
exponential growth phase, the respiration curve is dominated by
growth of the active microbial biomass.

mmax ¼ b2 (2)

r0 ¼ b1ð1� lÞ
b0 þ b1ð1� lÞ (3)

x0 ¼ b1lYCO2

r0mmax
¼ b0 þ b1ð1� lÞ�

1
l
� 1

�
b2

YCO2
(4)

where mmax is maximum specific growth rate, i.e. potential
maximum of fully active cells, r0 is the initial physiological state, x0
is the initial biomass. Those three are the microbial parameters of
interest. Parameter l is the ratio between productive (growth
associated) part and total of the specific respiration activity and
YCO2

is biomass yield per unit of respired CO2.
If the kinetic respiration analysis is performed shortly after soil

sampling, the initial physiological state (0 < r0 < 1) characterizes
relative microbial activity in situ.

For numerical reasons it historically has been easier to fit Eq. (1)
to the data and calculate microbial parameters in a second step.
Table 1
Soil characteristics and field trials descriptions for sample subset FACE.

Soil type, texture, location Crop Sampling site

Cambisol, Sandy loam FAL Sugar beet rhizosphere

root-free soil

rhizosphere

root-free soil

Winter wheat rhizosphere
root-free soil
rhizosphere
root-free soil
rhizosphere
root-free soil
rhizosphere
root-free soil
Current statistical software, however, can easily and directly fit
models of complex formulations. Hence, we recommend repre-
senting the model in the form of Eq. (5) and fit this equation to the
data. In this way the estimated coefficients and also the estimated
uncertainties directly refer to the microbial parameters of interest.

pðtÞ ¼ x0ð1� r0Þ
�
1
l
� 1

�
mmax
YCO2

þ x0r0
1
l

mmax
YCO2

emmax t (5)

Equation (5) is effectively a three parameter equation when
accepting the following assumptions. First, l may be accepted as
a basic stoichiometric constant of 0.9 during unlimited growth
(Akimenko et al., 1983). And second YCO2

¼ Y=ð1� YÞ can be
assumed to be the constant 1.5 during the experiment (Blagodatsky
et al., 2000).Amore advanced statistical treatment that accounts for
the uncertainty of those two parameters would slightly increase
the confidence range of the microbial parameters of interest.
The derivation of Eq. (5) is summarized in Appendix A.
2.2. Soils samples and respiration measurement

We used 121 datasets of respiration time series of 44 different
soil samples taken from field plots (upper 10 cm) to test several
methods of confining the experimental growth phase. The first part
of the soil sample data consisted of 16 samples of the same soil
(Cambisol, sandy loam, from FAL, Braunschweig, Germany field
experiment, (Blagodatsky et al., 2006)), which differed in the rate of
soil fertilization, the type of grown agricultural crop, and the
concentration of atmospheric CO2 at which these cropswere grown
(data subset FACE, Table 1).

The second part of the soil sample data consisted of 28 samples
from FAL and Pushchino. It originated from laboratory experiments
on four different soils with varying levels of mineral N and P applied
to the soil during determination of the respiration response
(Table 2). All soil samples were sieved (<5 mm) at day of sampling
and stored field-fresh in aerated polyethylene bags usually for 1e3
days at 4 �C (maximum 2 weeks). Before measurements of the
substrate induced respiration kinetics the soil moisture content
was adjusted to 50% of the water holding capacity (WHC), and then
the soil was preincubated at 22 �C for 24 h.

Ten grams (dry weight) of soil were amended with a mixture
containing glucose (10 mg g�1), talcum (20 mg g�1), and mineral
salts (standard mixture consists of (NH4)2SO4, 1.9 mg g�1; K2HPO4,
2.25 mg g�1; MgSO4*7H2O, 3.8 mg g�1). For the second part of data,
some soil samples were amended with smaller amount of N or P as
shown in Table 2. After substrate addition, the soil samples were
N, kg N ha�1 year�1 CO2, in atmo-sphere, ppm Sample no

126 350 1
550 2

63 350 3
550 4

63 350 5
550 6

126 350 7
550 8

126 350 9
350 10

63 350 11
350 12

126 550 13
550 14

63 550 15
550 16



Table 2
Soil characteristics and description of applied treatments for sample subsets FAL and Pushchino. Standard deviations are in parentheses.

Soil type, texture, location pH (KCl) Total C (%) Total N (%) Management Amendments
(mg g�1 soil)

Sample no

Cambisol, Sandy loam, FAL 5.8 1.11 (0.05) 0.102 (0.006) Arable, since 33 yrs no N; since 12 yrs
no fertiliser

No nutrients 17
0.4 N 18
0.4 P 19
0.8 N; 0.4 P 20
0.4 N; 0.4 P 21
0.2 N; 0.4 P 22
0.133 N; 0.4 P 23

Cambisol, Sandy loam, FAL 5.6 2.54 (0.05) 0.221 (0.002) Grassland, 300 m3 ha�1 sewage sludge
(1980e1990), until 1992 45 kg min N
twice per yr since 10 yrs no treatment;
2x mowing per yr; cuttings not removed

No nutrients 24
0.4 N 25
0.4 P 26
0.8 N; 0.4 P 27
0.4 N; 0.4 P 28
0.2 N; 0.4 P 29
0.133 N; 0.4 P 30

Luvisol, Loamy silt, Pushchino 4.6 1.5 (0.035) 0.126 (0.001) Arable, no fertiliser since 7 yrs No nutrients 31
0.4 N 32
0.4 P 33
0.8 N; 0.4 P 34
0.4 N; 0.4 P 35
0.2 N; 0.4 P 36
0.133 N; 0.4 P 37

Luvisol, Loamy silt, Pushchino 4.2 1.67 (0.01) 0.151 (0.002) Grassland, turned from arable to meadow
22 yrs ago; no fertiliser since 22 yrs; 2x
mowing per yr and cuttings harvested

No nutrients 38
0.4 N 39
0.4 P 40
0.8 N; 0.4 P 41
0.4 N; 0.4 P 42
0.2 N; 0.4 P 43
0.133 N; 0.4 P 44
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placed in triplicate into an ADC2250 24-Multichannel Soil Respi-
ration System (ADC Bioscientific Ltd, Great Amwell, UK), which
consisted of 24 plastic tubes, to measure CO2 production rate at
22 �C. Each sample was continuously aerated (300 ml min�1), and
the evolved CO2 was measured every hour using an infrared
detector and a mass flow meter (Heinemeyer et al., 1989). Air-flow
rate, CO2 concentration and standard error of CO2 measurements
were continuously monitored.

2.3. Model fitting

Each of the 121 respiration rate time series has been first
truncated to exclude the records after the maximum of the initial
growth phase. Next, for each truncated time series, a series of
subsets of data were constructed where the last 0 to n records were
omitted. For each of these subsets a slightly modified version of
(Eq. (1)) was fitted by non-linear regression (Eq. (6)).

vðtiÞ ¼ e b0l þ b1e
eb2l ti þ 3i (6)

Variables b0 and b2 were replaced by exp(b0l) and exp(b2l)
respectively, where b0l and b2l are the natural logarithm of
the corresponding variable. By this variable transformation, we
ensured that the parameters at original scale and their 95%
confidence intervals are always positive. 3i is the standard deviation
of the measurement error. In order to account for the fact that
higher respiration rates were measured with a higher uncertainty,
we used the following variance model (Eq. (7)).

sdð 3iÞ ¼ sjvðtiÞjd (7)

The expected standard deviation sdð 3iÞ increases with themodel
prediction vðtiÞ. The coefficient s was estimated by the model fit in
the gnls function (Pinheiro and Bates, 2000), and the coefficient d
has been set to 0.5, 0.6, and 0.5 for the FACE, FAL, and Pushchino
subsets (Table 1) of the data, respectively. A value of d ¼ 0
corresponds to unchanging absolute errors,d ¼ 1 to unchanging
relative errors, and intermediate values correspond to increasing
absolute errors or decreasing relative errors. We will elaborate on
the choice of d in more detail in the discussion section.

Model fitting was done using the gnls function of the nlme
package version 3.1-96 of the free statistical software R version
2.10.1. The starting values for each fit were determined by a linear
regression of ln(p(t)) � 0.99*min(p(t)) against time t, where p(t) is
the respiration rate measured at time t.

Standard errors and confidence bounds of the microbial
parameters were obtained by fitting a slight modification of
Equation (5) directly to the respiration using the gnls function.
The modification was a variable transformation to represent our
prior knowledge that initial biomass, specific growth rate are
strictly positive and the initial activity ratio is bounded between
zero and one (Eq. (8)).

pðtÞ ¼ ex0lð1� sðr0lÞÞ
�
1
l
� 1

�
emmaxl

YCO2

þ ex0l sðr0lÞ
1
l

emmaxl

YCO2

ee
mmaxl t (8)

We replaced x0 and mmax by exp(x0l) and expðmmaxlÞ respectively,
and we replaced r0 by s(r0l), where s is the inverse of the
logit function logðr0=ð1� r0ÞÞ. The transformed parameters x0l,
mmaxl, and r0l are estimated within an unbounded domain. The
back-transformations to the original scale ensured proper bounds
and proper confidence intervals for the microbial parameters.

The necessary starting values were obtained by applying
Equations (2)e(4) to the estimates of fitting Equation (6) to the
respiration data.

2.4. Rules of comparing residual plots to confine the unlimited
growth phase

In order to identify a subset of the data within the unlimited
growth phase, we compared several fits on subsets of the original
data that differ by the number of included records (n).



T. Wutzler et al. / Soil Biology & Biochemistry 45 (2012) 102e112106
If the subset of data included records where growth conditions
were actually limited, the time course of the respiration rate
diverged from simulated exponential increase (see Fig. 1, n ¼ 30).
This effect is often identified more clearly by plotting the log of the
respiration minus the estimated respiration at time zero, i.e. beta0
(Fig. 2, n ¼ 30).

Plotting the standardized residuals (differences between model
fits and measurements divided by the corresponding standard
errors) revealed a distinct shape resembling the letter V in the
subsets that include records out of the unlimited growth phase
(Fig. 3). This deviation from a random distribution indicated
a significant positive autocorrelation in the residuals.

Excluding additional records from the end time of the dataset,
the V-shape gradually disappeared. With the example of Fig. 3 with
n ¼ 25 records, residuals were scattered around without a distinct
pattern. Hence, the assumption of independence of the residuals
was valid for this subset and the appliedmodel (Eq. (6)) successfully
described the time course of the respiration. We selected the subset
that includes themost records out of the sets where the assumption
of independent residuals has not been violated. This can be
formalized as selecting the number of records n of the first plot in
the sequence where the pattern in residuals disappeared. The
influence of limitations during the growth cycle starts gradually.
Hence the choice of the dataset when this pattern disappeared is
not strict and still a bit subjective. Therefore we strived to find
statistical criteria to identify the unlimited growth phase.

2.5. Statistical criteria to confine the unlimited growth phase

The model fits to subsets of the respiration time series differing
by the number of included records n can be also compared by
statistical criteria. We benchmarked several criteria by comparing
them to the result of applying the rules of comparing residual plots
to the 121 respiration time series.

2.5.1. Maximum value of r2 and Q-value
The first measure that we tested was the coefficient of deter-

mination, denoted r2 (Eq. (9)) (Quinn and Keough, 2002).

r2 ¼ 1� SSerr
SStot

¼ SSreg
SStot

¼

P
i
ðvðtiÞ � vÞ2
P
i
ðvi � vÞ2

(9)
n=30
mu=(0.187,0.214)
r2w=0.997
Q=0.53188

n=29
mu=(0.199,0.224)
r2w=0.9975
Q=0.53683

n=26
mu=(0.242,0.254)
r2w=0.9994
Q=0.67145

n=25
mu=(0.25,0.261)
r2w=0.9996

Q=0.56971
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Fig. 2. Same as Fig. 1 with y-axis is at log scale. Coefficient beta0 is the respiration rate at
slightly changes between figure panels.
where r2 is the coefficient of determination, SSerr is the residual
sum of squares, SStot is the total sum of squares, SSreg is the
regression sum of squares, v(t) is the respiration rate predicted by
the fittedmodel for time ti, v is the mean respiration rate across all i,
and vi is the observed respiration rate.

The coefficient of determination has two useful properties: it
decreases with the exclusion of records from the dataset, and it
decreases with inclusion of records that are far apart from the
model prediction, i.e. outside the exponential growth phase. Hence,
we expected the dataset with the maximum number of points in
the exponential growth phase to result in the maximum r2.

In order to account for the varying measurement uncertainties,
we additionally calculated a weighted version of the coefficient of
determination denoted r2w according to Eq. (10).

r2w ¼

P
i
ðvðtiÞ � vÞ2sdð 3iÞ�2

P
i
ðvi � vÞ2sdð 3iÞ�2 (10)

where sdð 3iÞ is the expected standard deviation according to
Equation (7).

A similar measure of goodness of fit is the sum of weighted
residuals (eq. (11)).

X2 ¼
X
i

ðvðtiÞ � viÞ2
sdð 3iÞ2

(11)

where v(ti) and vi are the model prediction and the observed
respiration respectively at time ti and sdð 3iÞ the estimated standard
deviation of observation i (Eq. (7)). The measure Q is the proba-
bility of obtaining the statistics X2 (Eq. (11)) in a Chi-square
distribution with the number of degrees of freedom equal to the
number of data values minus the number of adjusted parameters,
i.e. three in this case. Q corresponds to the probability that the
differences between the model and the data has occurred by
chance. Similar to r2, Q is expected to have maximum values at the
dataset with the maximum number of points in the exponential
growth phase.

2.5.2. Absence of autocorrelation between residuals
Deviations from unlimited growth will result in patterns in the

residuals. If there was a distinctive pattern in the residuals, then
testing for autocorrelation in residuals is probably significant.
n=28
mu=(0.211,0.235)
r2w=0.9979
Q=0.54027

n=27
mu=(0.226,0.245)
r2w=0.9987
Q=0.54106

n=24
mu=(0.252,0.264)
r2w=0.9995
Q=0.54269

n=23
mu=(0.25,0.264)
r2w=0.9993
Q=0.54772

ur (Experiment 3_2)

the time zero directly after the amendment. beta0 is estimated during model fit and



n=30

p.1=0
p.2=0

n=29

p.1=0
p.2=0

n=28

p.1=0
p.2=0

n=27

p.1=0.006
p.2=0.007

p.3=0 p.n=1 p.3=0 p.n=1 p.3=0 p.n=1 p.3=0.001 p.n=1

n=26

p.1=0.193

p.2=0.457

p.3=0.059   p.n=0.992

n=25

p.1=0.42
p.2=0.852
p.3=0.6  p.n=0.827

n=24

p.1=0.254
p.2=0.292
p.3=0.289    p.n=0.914

n=23

p.1=0.287
p.2=0.465
p.3=0.476     p.n=0.842

Time 1.9 to 30.9 hour (Experiment 3_2)
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Fig. 3. Plot series of the residuals of Fig. 1. n: number of records in the subset of the data. For this example the statistical criteria tell that there is no significant autocorrelation starting
from panel n ¼ 26. From visual inspection of the V-shaped patterns, however, we decide that unlimited growth phase extends only until n ¼ 25 records. p.1: probability of auto-
correlation according to the BreuscheGodfrey test for the entire series of residuals, p.2: same as p.1 but applying the test only for the subset of residuals excluding the records before the
minimum of respiration., p.3: same as p.2: but additionally excluding the last residual in the test statistics, p.n: probability of the Durbin Watson test for negative autocorrelation.
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If there was no distinctive pattern, the tests for autocorrelation
have higher probability of obtaining non-significant results.

The DurbineWatson statistic tests for first-order autocorrelation
in the residuals froma regression analysis (Durbin andWatson,1951).
The function dwtest in the free R software provides probabilities for
positive or negative autocorrelation based on this statistics.

The BreuscheGodfrey test (Breusch, 1978) also tests for auto-
correlation in the residuals but is considered to be more general
and more powerful than the DurbineWatson test. The function
bgtest of the free R software provides probabilities for serial auto-
correlation for the BreuscheGodfrey test.

We used these probabilities of the tests to choose a subset of the
data with the following rules.

1. The fit to the data set has no significant autocorrelation on the
5% rejection level.

2. The fit to the dataset including one more point has significant
autocorrelation at the 5% rejection level.

3. If there are several cases that fulfill rules 1 and 2, select the case
that includes the most records.

We found that these tests detected more autocorrelations in
the respiration data than that was obvious in the residual plots
when applied to all the residuals. Hence, we present the results of
applying the tests to subsets of the residuals. The first subset
includes all residuals (denoted dwtestfull and bgtestfull).
The second subset omits all the residuals before the minimum of
respiration and excludes the very first records that are prone to
measurement errors (denoted dwtest and bgtest). Further we
found that the last observation had a large influence on the test
statistics. Hence, the third subset additionally excluded the last
observation (denoted dwtest1 and bgtest1).

2.5.3. Combined criteria
Because each of the basic criteria identified incorrect number of

records in unlimited growth phase results for a few respiration
series, we further refined and experimented with several
combinations of the basic criteria. Here we present one combined
criterion that was quite successful and at the same time not too
complicated. We denote it cortest. The combined criterion works
on the following rules

1. Choose the dataset identified by bgtest1 rules
2. If there is a dataset with negative autocorrelation according to

a dwtest that includes more records then the dataset identified
by 1 then choose this one.

This combined criterion improved the bgtest1 decision in the
cases where there was a negative autocorrelations by chance.

The second combined criterion, here denoted as r2wComb, took
account for deviations between several criteria. When both the r2
criterion and the cortest criterion identified a dataset that deviated
by more than one point from the dataset identified by the r2w
criterion, the criterion r2wComb did not give a number of points
but was undecided (NA, not a value).

3. Results and discussion

3.1. Confining the experimental growth phase

Series of plots of model fits at original and log scale (Figs. 1 and
2) and the series of model residuals plots (Fig. 3) greatly aided the
identification of the records within the unlimited growth phase.
We applied the rules of comparing residual plots (Section 2.4) to
the 121 respiration datasets. In 8 datasets, there were inherent
autocorrelations that may have arisen from measurement errors
that were correlated with time, making the rules of comparing
residual plots unsuccessful. In those cases, the V-pattern did not
disappear with exclusion of additional records (Fig. 4). So we
selected a subset of unlimited growth by inspecting the series of fits
at original and log scale.

The importance of properly confining the unlimited growth
phase as demonstrated in Fig. 1 was confirmed by a sensitivity
analysis across the 121 time series of microbial growth respiration



Fig. 4. Example plot series of standardized residuals where the inspection of residual pattern was not applicable.

Table 3
Frequency of matches and mismatches between the number of records in subsets of
unlimited growth data identified by several statistical criteria compared to the
number of records identified by rules of comparing residual plots across n ¼ 121
datasets.

Criterium Undecided <�1 >þ1 Matches Failure rate

Correlation measures
r2 0 31 3 87 28%
r2w 0 1 6 114 6%
Q 0 56 35 30 75%
Patterns in residuals
dwtestfull 23 30 1 67 26%
dwtest 11 29 1 80 25%
dwtest1 10 28 10 73 31%
bgtestfull 6 13 15 87 23%
bgtest 4 13 17 87 25%
bgtest1 3 14 17 87 26%
Combined measures
cortest 3 14 17 87 26%
r2wComb 15 0 2 104 2%
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(Appendix B). The specific growth rate mmax was significantly biased
downwards and the initial activity r0 was highly sensitive to
including records after the unlimited growth phase.

When benchmarking several statistical criteria to confine
the growth phase, the r2w criterion performed best among the
non-combined criteria. It successfully identified the unlimited
growth phase in all time series where nutrients were not limiting
(104 of 121) (Table 3).

3.2. Robust criteria confining the experimental growth phase

The weighted r2 is a simple statistical criterion to constrain
the unlimited growth phase. However, we further studied whether
the criteria can distinguish the situations where the restrictions
for unlimited growth are violated. If a criterion does not give
unreasonable results in those cases we call it robust. An example test
case was the FAL arable sandy soil that was incubated with incom-
plete nutrient amendment. As a result the r2w criterion sometimes
provided incorrect conclusions (time series of samples 24, 26, and
29). This was because of deviations from unlimited growth due to
shortage of nutrients instead of carbon substrate. We experimented
with several methods of automated detection of these problematic
cases. In most of the unsuccessful cases, the r2w criterion diverged
from both the r2 and the cortest criterion by more than one record.
The check on this divergence was formalized with the combined
r2wComb criterion, which identified almost all problematic cases.
There were only two of the 121 series (time series 28_2 and 37_2)
where the r2wComb criterion provided approximation instead of
indentifying the problems of double limitation.

In both series, consistent deviations of the respiration from the
growthmodel in the middle of the growth phase hampered the test
for correlations (Fig. 5). Such consistent deviations can arise due to
equipment error. However, the microbial parameters based on an
improperly defined growth phase did not significantly differ from
the ones based on visually confining the growth phase.
In summary, the r2w criterion was applicable for confining
the experimental growth phase in experiments with complete
nutrient amendment. For low nutrient studies, the more complex
combined r2wComb criterion was able to detect the problematic
cases where further inspection is necessary. We conclude that the
r2wComp criterion represents a robust way, how to statistically
constrain the unlimited growth phase.

3.3. Uncertainty of respiration measurements

In addition to the experimental growth phase, the estimates of
microbial parameters depend on the prior information about
measurement uncertainty. Ordinary least squares parameter
estimation assumes that measurement errors are independent and
identically distributed. However, this assumption is often not met
with respiration measurements. The uncertainty of the respiration



Fig. 5. Example plot series of model fits where the r2wComb criterion was not successful. The rules of comparing residual patterns suggested the series of 36 records, the r2wComb
suggested 40 records. The best estimates of microbial parameters, though, did not significantly differ between the two subsets of the data.
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measurements usually increases with the magnitude of the
respiration. The usage of generalized linear models allows the
magnitude of the variance of each measurement to be a function of
its predicted value (Quinn and Keough, 2002). Hence, we modelled
the variation of the residuals by Equation (7). The parameter d was
assumed to be dependent only on the measurement setup and was
assumed not to change between datasets measured with the same
device and setup.

The number of records in the unlimited growth phase and
the estimated microbial parameters was sensitive to the choice
of the magnitude of increase of measurement uncertainty with
the magnitude of the respiration. For example, in Fig. 6, the 95%
confidence interval of specific growth rate estimated at d ¼ 0.5
does not include the best estimate at d ¼ 0.3. However, assuming
d within the range of 0.4e0.8 does not introduce significant bias.

One might be tempted to estimate the uncertainty of the
measurements by the distribution of measurement errors across
replicates. However, the differences between replicates are only in
part caused by measurement errors but are in a big part caused
by variation in initial biomass x0 and physiological state r0. Even
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with totally precise measurements of respiration, the observed
respirationwould differ because of differences of microbial biomass
across replicates. Hence, estimating the measurement uncertainty
from differences across respiration observations of several repli-
cates would lead to an overestimation of measurement uncertainty,
especially in the later stages of growth.

In the best case, measurement uncertainty has been determined
by a calibration of the measurement setup against a known flux of
carbon dioxide. However, such information is rarely available. The
identification of d from the data is an unsolved problem. In this
study we eventually included parameter d as a free parameter in
model fits to each experiment and used the median of the results
across all the experiments.

For modern Model-data synthesis reporting of uncertainties of
estimated parameters is as essential as reporting the best estimates
(Raupach et al., 2005). Themodifications of themodel fitting process
suggested in Section 2.1 proved very useful for estimating parameter
uncertainty. In accordancewith (Hess and Schmidt,1995) we suggest
to use respiration rates instead of cumulated respiration. Next, by
directly fitting Eq. (5) that includesmicrobial parameters allowed the
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numerical algorithms to infer parameter uncertainty. Further, the
parameter transformations of Eq. (8) yielded asymmetric confidence
bounds for microbial parameters, ensuring valid ranges. This
procedure corresponds to assuming a log-normal distribution for
x0,and mmax, which is reasonable for strictly positive variables
(Jaynes and Bretthorst, 2003; Tarantola, 2005).

3.4. Biased measurements at the beginning of the growth phase

Several methods of measuring respiration from soil give
imprecise measurements after disturbing the soil sample at the
beginning of the experiment. With gas analyzers (Heinemeyer
et al., 1989), the flow has to equilibrate throughout the tubing
system.With the Respicondmethod (Nordgren, 1988), temperature
has to be restored. Hence, it is necessary to discard the imprecise
measurements at the beginning before the fitting procedure. In the
example of Fig. 7 the decline of respiration rates within the first 4 h
does not correspond to the assumption of unlimited growth of
microbes. Omitting the first 4 observations from the kinetic respi-
ration analysis changed the estimates of initial (time ¼ 0) microbial
biomass and initial activity ratio.

3.5. Number and spacing of respiration measurements

The required precision of microbial parameters eventually
determines the required number of measurements. From a statis-
tical perspective, the fitting method requires at least 6 records. This
is because there are 6 parameters to estimate, the three microbial
parameters, the two parameter of residual uncertainty, and the time
(or number of records) within the unlimited growth phase. More
important than the number of measurements, however, is that the
measurements are well dispersed across the time of unlimited
growth. We demonstrate this issue using the example from the
introduction (Fig. 8). We repeated the kinetic analysis for several
subsets of the time series. Using only 6 records equally spaced
across the growth phase, the confidence intervals of microbial
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Fig. 7. Effect of biased measurements at the beginning of the time series. The gray line
and the first set of estimated parameters are inferred from the entire time series. The
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where the first 5 h (gray points) have been excluded. Values in brackets denote the 95%
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parameters were only inflated by a factor of about 2 and included
the best estimate that was based on all 30 records. In contrast, when
using all 15 measurements of the first or second half respectively,
the confidence intervals were inflated much more.

In the case, when there are too few measurements, the uncer-
tainty bounds will indicate this. For example Fig. 9 displays an
example of strong N limitation where the kinetic respiration anal-
ysis formally works, however, essentially does not add much
information about microbial parameters. In this case it would be
misleading to just report best estimates without reporting the
uncertainty bounds.
4 6 8 10 12 14 16

6.5

7.0

7.5

8.0

8.5

9.0

Time [hr] (Experiment 31_1)

R
es

pi
ra

tio
n 

R
at

e 
(g

C
 C

O
2 

/ g
C

 s
oi

l /
 h

ou
r) mumax: 0.073 (0.004 1.3)

r0: 0.016 (3.6e-05 0.88)
x0: 1100 (150 8500)

Fig. 9. Example of wide 95% confidence intervals (given in brackets) of estimated
microbial parameters.



T. Wutzler et al. / Soil Biology & Biochemistry 45 (2012) 102e112 111
4. Conclusions

The kinetic respiration analysis is currently the only method of
soil microbial biomass estimation that allows the estimation of the
active part of total biomass. The synthesis of results of the method,
however, has been hampered by differences in statistical treatment
of the resulting data, which is discussed in this study.

One precondition of the method is unlimited growth and the
dataset has to be confined to this initial phase, i.e. the lag phase and
the exponential growth phase. The estimates of the microbial
kinetic parameters are sensitive to differences in this process of
confining the unlimited growth phase. The process is inherently
vague because the onset of deviation from unlimited growth due to
the influence of a limitation appears to be gradual. Still, the
scientific community should aim to establish a common procedure
of confining the unlimited growth phase to allow comparison and
synthesis of the estimates across studies. We propose rules of
comparing residual plots that are based on the disappearance of
a pattern in the residuals in a series of fits. Inclusion of records
outside the unlimited growth phase introduces larger deviations
than exclusion of records inside the unlimited growth phase.
Hence, excluding records is the more conservative choice.

From the tested statistical criteria, the simple r2w criterion
(the weighted coefficient of determination) is applicable for
confining the experimental growth phase in experiments with
complete nutrient amendment. The more complex r2wComb crite-
rion can in addition detect problematic cases. It is only necessary, if
the researcher wants to automate the analysis of many time series
and wants to have a guide for finding those series, e.g. from low
nutrient studies, where further inspection is necessary. This study
confirms the importance of experimental precautions. Nitrogen and
Phosphorus limitation should be avoided in using kinetic respiration
analysis for the purpose estimatingmicrobial biomass and its activity
state.

The estimates of microbial parameters are sensitive to the
specification of measurement uncertainty. This uncertainty is
overestimated when inspecting the variance in respiration across
replicates and neglecting the differences in initial conditions
between replicates. The robust estimation of uncertainty parame-
ters from the data itself is subject to further research.

The estimates of microbial parameters are also sensitive to the
number and timing of the respiration measurements across the
phase of unlimited growth and bias in the initial measurements due
to experimental conditions. It is important that the measurements
are well dispersed across the time period of unlimited growth. The
case of only too few measurements will be reflected in the uncer-
tainty bounds of microbial estimates. We strongly recommend
always reporting those bounds together with the estimates.
Table 4
Statistics of difference of parameter estimates with adding records to or excluding rec
deviations in number of records compared to the subset identified by the rules of comp

Parameter Statistics �3 �2

mmax sd 0.061 0.039
rel.Err 18% 11%
bias 0.027 0.018
p 3.10E-06 1.60E-06

r0 sd 0.1 0.046
rel.Err 205% 49%
bias �0.0013 �0.0075
p 0.89 0.074

x0 sd 84 140
rel.Err 9% 9%
bias �19 �4
p 0.014 0.75

sd: Standard deviation of the difference, rel.Err: mean of the absolute of relative errors, b
We provide the tools of using the freely available R software to
fit the kinetic respiration analysis model to the data and to
constrain the unlimited growth phase as an R-package. The most
critical statistical issues are under control and they should not
hamper the application of the kinetic respiration analysis.
Appendix A. Derivation of the kinetic model

Herewe present the derivation ofmodel Equation (5). The kinetic
respiration analysis is based on the dynamic synthetic chemostat
model (SCM) (Panikov, 1995). This model describes the activity of
microbial biomass by the physiological state r. Variable r is defined as
the ratio between the instantaneous quantity of cell constituents
absolutely necessary for growth (P-components) and its total
changeable part. The SCM assumes that a change in P-components is
complemented by a reverse change in components needed for
survival under restricted growth (U-components), and that hence the
amount of U-components should be proportional to 1 � r. It can be
said that r indicates the ratio between active and sustaining biomass.

When integrating the dynamic SCM model over a time t of
unlimited growth the respiration rate p(t) follows Equation (12)
(Panikov and Sizova, 1996; Blagodatsky et al., 2000).

pðtÞ ¼
h
ð1� YÞrðtÞQ þ Q 0

i
xðtÞ

¼ x0ð1� r0ÞQ 0 þ x0r0
h
ð1� YÞQ þ Q 0

i
emmaxt

¼ x0ð1� r0ÞQ 0 þ x0r0QTemmaxt

(12)

where p(t) is the respiration rate at time t, expressed as respired
carbon per time, mmax is maximum specific growth rate, r0 is the
initial physiological state, x0 is the initial biomass, Q and Q0 are
maximum substrate uptake rates for coupled and uncoupled
respiration respectively. The part Y, termed biomass yield, of the
uptake for coupled respiration is incorporated into biomass, i.e., is
associated with growth, and part (1 � Y) is respired. The uncoupled
part Q0 is not coupledwith growth and is completely respired. It can
be approximated by measuring cyanide-resistant respiration.
Variable QT ¼ ð1� YÞQ þ Q 0 is the total specific respiration. With
YCO2

¼ Y=1� Y and l ¼ ðQT � Q 0Þ=QT , Equation (5) above is
a direct reformulation of Eq. (12).
Appendix B. Sensitivity of growth parameters to biases in
confining the unlimited growth phase

Do differences in confining the unlimited growth phase cause
improper estimates of microbial parameters? This question can be
ords from to the unlimited growth phase. Numbers in the heading correspond to
aring residual plots.

�1 1 2 3

0.016 0.026 0.043 0.042
5% 9% 15% 19%
0.0065 �0.018 �0.033 �0.04
1.00E-05 7.00E-12 2.80E-13 2.20E-16
0.037 0.099 0.15 0.28
18% 103% 511% 1699%
�0.0062 0.019 0.048 0.12
0.065 0.036 0.0012 1.70E-05
38 70 97 51
4% 8% 14% 17%
�0.35 13 1.3 �31
0.92 0.04 0.89 7.00E-09

ias: mean of the difference, p: Probability of the bias by a two-sided t-test (n ¼ 121.)
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answered by a sensitivity analysis. For each of the 121 datasets
where we identified an unlimited growth phase, we compared
resulting microbial parameters using different subsets 7 of the
respiration data. The first subset corresponded to the subset defined
by the rules of comparing residual plots tomicrobial parameters. The
other six subsets included either up to threemore records or omitted
up to three records at the end of the unlimited growth phase.

As ameasure of the expected absolute and relativemagnitude of
the deviation, we calculated the mean, standard deviation, and
mean of the absolute (i.e. positive) of the relative error. As
a measure of expected bias, we calculated the mean of the relative
differences. Significance of the bias was tested by a paired t-test.

The sensitivity analysis showed significant bias of microbial
parameters when constraining the unlimited growth phase in
different ways. The specific growth rate mmax was significantly
biased upwardswhen excluding records of the end of the unlimited
growth phase and significantly biased downwards when including
records after the unlimited growth phase (Table 4). The initial
activity r0 was highly sensitive to inclusion of more records, as
indicated by the relative errors. There was a strong significant
overestimation when including records after the unlimited growth
phase. For initial biomass x0 there was no clear direction of the
deviations. Based on the magnitude of the relative errors we
recommend that if one is in doubt about including a record within
the unlimited growth phase, one should rather exclude it.
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