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a b s t r a c t

Rhizodeposit-carbon (rhizo-C) serves as a primary energy and C source for microorganisms in the
rhizosphere. Despite important progress in understanding the fate of rhizo-C in upland soils, little is
known about microbial community dynamics associated with rhizo-C in flooded soils, especially
depending on water regimes in rice systems. In this study, rice grown under non-flooded, continuously
flooded and alternating water regimes was pulse labeled with 13CO2 and the incorporation of rhizo-C into
specific microbial groups was determined by 13C in phospholipid fatty acids (PLFAs) at day 2 and 14 after
the labeling.

A decreased C released from roots under continuously flooded condition was accompanied with lower
total 13C incorporation into microorganisms compared to the non-flooded and alternating water regimes
treatments. Continuous flooding caused a relative increase of 13C incorporation in Gram positive bacteria
(i14:0, i15:0, a15:0, i16:0, i17:0, a17:0). In contrast, Gram negative bacteria (16:1u7c, 18:1u7c, cy17:0, cy
19:0) and fungi (18:2u6, 9c, 18:1u9c) showed greater rhizo-C incorporation coupled with a higher
turnover under non-flooded and alternating water regimes treatments. These observations suggest that
microbial groups processing rhizo-C differed among rice systems with varying water regimes. In contrast
to non-flooded and alternating water regimes, there was little to no temporal 13C change in most mi-
crobial groups under continuous flooding condition between day 2 and 14 after the labeling, which may
demonstrate slower microbial processing turnover. In summary, our findings indicate that belowground
C input by rhizodeposition and its biological cycling was significantly influenced by water regimes in rice
systems.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

It is widely recognized that rhizodeposit-carbon (rhizo-C) serves
as a primary energy and C source for microorganisms in the
rhizosphere and that the rootemicrobial interactions play a key
role for soil C cycling as well as for C sequestration (Paterson, 2003;
Kuzyakov et al., 2003; Rees et al., 2005). Therefore, better under-
standing of the mechanisms of rhizo-C utilization by microorgan-
isms and its pathways in soil is necessary. This is particularly the
case for paddy soils in rice cultivation.

Rice is the major staple food crop in Asia, and it consumes about
90% of total irrigation water (Bhuiyan, 1992). However, freshwater
: þ86 10 62731016.

All rights reserved.
for rice irrigation is becoming scarce due to increasing competition
from industrial and urban demand (Bouman and Tuong, 2001; Fan
et al., 2012a). Therefore, water conservation methods for rice pro-
duction were introduced and developed. These water conservation
techniques include non-flooded mulching cultivation (Fan et al.,
2005) and alternating wetting and drying irrigation (Yang et al.,
2002; Belder et al., 2004). These techniques have been shown to
improve rice productivity as well as N and water use efficiency
(Yang et al., 2002; Belder et al., 2004; Fan et al., 2005, 2012b).

Soil moisture conditions affect the partitioning and allocation of
plant photosynthates in soil (Meharg and Killham, 1990). Henry
et al. (2007) found a 26% higher C exudation when growing
wheatgrass under drought stress compared to flooding. Rice under
alternating wetting and drying or non-flooded conditions has more
fine roots and root branching than under flooding (Mishra and
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Fig. 1. Experimental set-up for rice growth and labeling of shoots by 13CO2 pulse in an
airtight chamber (modified after Kuzyakov and Siniakina, 2001).
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Salokhe, 2011). Alternating wetting and drying practice can
improve rice root and shoot morphology (Thakur et al., 2011). This
suggests that partitioning of photosynthesized carbon and roots
exudation could be affected by water regimes in rice.

Soil moisture also exerts a major effect on microbial activity and
community structure (Bossio and Scow, 1998; Drenovsky et al.,
2004). Shifts in microbial community structure are expected after
conversion from anaerobic to aerobic or alternating aerobic con-
ditions. Previous studies have shown that flooding decreased
fungal abundance (Drenovsky et al., 2004; Unger et al., 2009).
Higher proportions of branched-chain PLFAs were reported under
flooded condition while proportions of straight monounsaturated
and straight poly-unsaturated PLFAs were greater under upland
condition (Nakamura et al., 2003). This was consistent with earlier
study where monounsaturated fatty acids were reduced under
flooding (Bossio and Scow, 1998).

A number of studies have documented that rhizosphere mi-
crobial communities are strongly influenced by rhizo-C (e.g. Butler
et al., 2003; Treonis et al., 2004; Paterson et al., 2007; Denef et al.,
2009; Jin and Evans, 2010). Nevertheless, most of these studies
have been done in upland systems. Only a few studies have eval-
uated the rhizo-C utilization by microorganisms in flooded rice
systems (Lu et al., 2004; Wu et al., 2009; Ge et al., 2012), especially
there is only one study that was related to water status (Yao et al.,
2012). Based on a continuous 13C labeling, Yao et al. (2012) showed
that utilization of plant derived C by microorganisms in non-
flooded is different from that in water-logging condition. Howev-
er, it still unclear whether water regimes in rice systems affect the
input of plant C to soil in this study (Yao et al., 2012). Furthermore,
despite advantages of continuous 13C labeling, it was impossible to
conclude which rhizosphere microorganisms are the first for uti-
lizing rhizo-C.

Belowground C input by rhizodeposition and its interactions
with microorganisms determine to a large extent C dynamics and
sequestration in soil. For instance, shifts in microbial growth, such
as increases in fungal abundance relative to bacterial populations,
have been associated with increased C retention in soil (Six et al.,
2006). Rhizodeposition can lead to C accumulation or C con-
sumption due to stimulation of microorganisms (Kuzyakov et al.,
2001). For instance, the easily available rhizodeposition may
stimulate microorganisms, and then may accelerate (positive
priming) or retard (negative priming) SOM decomposition
(Kuzyakov et al., 2000; Cheng and Kuzyakov, 2005). Therefore, in-
formation on microbial communities associated with rhizo-C dy-
namics as related to water regimes in rice systems is particularly
limited and urgently necessary.

Phospholipid fatty acids (PLFAs) are diverse lipids of cell mem-
branes, and several PLFAs have been used as biomarkers for specific
microbial groups (Frostegård et al., 1993; Zelles, 1997, 1999). By
combining PLFA analysis with 13CO2 labeling and subsequent 13C
incorporation in individual PLFA, it is possible to follow C fluxes
from the plant into the soil and to identify microorganisms that
utilize the rhizo-C (Paterson et al., 2007).

We hypothesized that non-flooded and alternating water re-
gimes would increase the released C from roots into soil because of
greater root activity (Mishra and Salokhe, 2011; Thakur et al., 2011).
Fungi are sensitive to anaerobic conditions (Schimel et al., 2007)
and Gram negative group are usually more abundant at higher
substrate availability (Bossio and Scow, 1998; Marschner et al.,
2003; Drenovsky et al., 2004). Therefore we also hypothesized
that these microbial groups will show higher incorporation of
rhizo-C under non-flooded and alternating water regimes treat-
ments than under flooding. To test these hypotheses, rice plants
were grown under three water regimes. A 13CO2 pulse labeling of
the rice shoots was performed and samples were taken at 2 and 14
days after the 13C labeling. We (1) determined the effects of water
regimes on rhizo-C and microbial community structure, and (2)
assessed the utilization of rhizo-C by microbial groups coupled
with temporal changes after the labeling.
2. Materials and methods

2.1. Soil preparation and rice growth condition

The soil characteristics and plant growth conditions have been
previously described by Tian et al. (2013). Briefly, soil samples
(Anthrosols) were collected from the plough layer (0e20 cm) of a
rice field at Dong Kou city, Hunan province, China (110� 620N and
27� 120E). The soil was air-dried and sieved (<5 mm), and then
360 g soil were filled into a polycarbonate plant growth pot (SM
16510/11, Sartorius, Göttingen, Germany) and rewetted to 85% of
the water holding capacity (WHC). Three healthy germinated rice
seedlings were transplanted to each pot (Fig. 1). The soil was
amended with urea [CO (NH2)2] and potassium dihydrophosphate
(KH2PO4) at the rate of 100 mg N kg�1 and 12.5 mg K kg�1 soil. 30%
N was basal fertilizer, 30% N and 40% N were top dressing on day 15
and 28. All the K was basal fertilizer. Additionally, 3.5 g L�1 KH2PO4
was directly sprayed to the leaves 11 days after planting.

Three soil water regimes were established: (1) continuously
flooded (CF), the pots were always maintained with distilled water
to a level of 4e5 cm above soil surface, (2) non-flooded (NF), the
pots were maintained at 85e90% of the WHC, (3) alternating
wetting and drying (AWD), the pots were flooded as described
above for CF, then dried for 3e4 days until the soil water content
reached 70e75% of the WHC, then flooded again; this kept the soil
under alternating flooded and dried conditions. These three water
regimes started after the development of three leaves per plant. The
plants were grown at a light intensity of 400 mmol m�2 s�1 for 14 h
per day and a temperature of 27� 1 �C and 22� 1 �C (day/night). In
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total, 27 pots were prepared: 18 pots were used for pulse labeling
and 9 pots were used as control without 13C labeling.

2.2. 13CO2 pulse labeling

The 13CO2 pulse labeling took place on day 60 after rice planting.
The labeling apparatus consists of a two-compartment Plexiglas
chamber that has been previously described by Kuzyakov et al.
(2001). The hole around the stem in the lid of the pots was
sealed with silicon paste (NG 3170, Thauer & Co., Dresden, Ger-
many) and tested for air leaks the day before labeling. Briefly, 18
pots with 54 plants were placed into one chamber. 13CO2 was
released into the chamber through the reaction of 1.5 g Na213CO3 (99
atom% 13C) and 10 ml 5 M H2SO4. The plants were labeled during
5 h in the 13CO2 atmosphere. During the pulse labeling, all AWD
pots were on stage from flooded to dry, there was obvious water
level on surface, but with lower water level above the soil surface
compared with continuously flooded pots.

2.3. Sampling and analyses

Plant and soil samples were taken 2 and 14 days after the pulse
labeling. At harvest, shoots were cut at the base and soil was taken
out of the pot. The roots were separated from soil by handpicking
and washed with 100 ml deionized water to remove the adhering
soil. Shoots and roots were dried at 60 �C. Fresh soil samples were
stored at �20 �C and 4 �C for PLFAs and microbial biomass C
analysis, respectively. A similar sampling procedure as discussed
above was performed for the nine control pots before labeling.

Dry samples of shoots, roots and soil were ground in a ball mill
prior to analysis. The d13C signature and the total C content of
shoots, roots and soil were determined by an isotope ratio mass
spectrometer (IRMS, Delta Plus, Finnigan MAT, Bremen, Germany)
coupled with an elemental analyzer (NA 2500; CE-Instruments,
Rodano, Milano, Italy).

Soil microbial biomass C was determined by chloroform fumi-
gation extraction (Wu et al., 1996). Briefly, 10 g fresh soil was
extracted with 40 ml of 0.05 M K2SO4. Another 10 g fresh soil was
fumigated with chloroform for 24 h and extracted in the same way.
An aliquot was taken to measure total C concentrations by a TOC/
TIC analyzer (Analytik Jena, Jena, Germany). The remaining solution
was freeze-dried andweighed for d13C analysis by IRMS (Delta Plus;
Finnigan MAT, Bremen, Germany).

2.4. PLFA extraction

PLFAs were extracted and purified by a modified method of
Frostegård et al. (1991). Fatty acids were extracted from 6 g wet soil
samples with a one-phase extraction mixture containing chloro-
form: methanol: citrate buffer. Phosphatidylcholin-dinonadecanoic
acid as internal standard 1 was added before extraction. After pu-
rification via activated silica, phospholipids were transformed to
fatty acid methyl esters (FAMEs) following the derivatization pro-
cedure (Knapp, 1979). Tridecanoic acid methyl ester as internal
standard 2 was added to the sample before transferring the sam-
ples to autosampler vials for analyses. Then the amounts of FAMEs
were analyzed on a GCeMS (GC 5890 with MS 5971A, Agilent,
Waldbronn, Germany). The d13C of FAMEs were analyzed by GC-C-
IRMS via a combustion interface III (Therno Finnigan, Bremen,
Germany). Detailed information on the instrumental setup and the
used GC-column is presented in Apostel et al. (2013).

Based on previous studies the fatty acids were matched to
specific microbial groups (Zelles,1997,1999; Bossio and Scow,1998;
Frostegård et al., 1993), we divided 5 microbial groups: Gram
positive (i16:0, i17:0, a17:0, i14:0, i15:0, a15:0), Gram negative
(18:1u7c, 16:1u7c, cy17:0, cy 19:0), Fungi (18:2u6,9c, 18:1u9c), AM
fungi (16:1u5c) and Actinomycetes (10Me 16:0, 10Me 18:0).
2.5. Calculations and statistical analysis

2.5.1. 13C in rice-soil system
The obtained d13C data were used to calculate 13Catom%, and then

13C amount from the pulse labeling incorporated into individual C
pool was calculated as follows: (Lu et al., 2002)

13Cx ¼
h
ð13Catom%Þx;L � ð13Catom%Þx;UL

i.
100� Cx (1)

where (13Catom%)x, L and (13Catom%)x, UL were 13Catom% in labeled and
control samples; Cx is the C content in individual pool in labeled
sample.

The 13C incorporation in shoots, roots and soil pools was
expressed as the percentage of 13C recovery at each sampling day.
The total 13C recovery after sampling in the rice-soil systemwas the
sum of the 13C in shoots, roots and soil.

2.5.2. 13C in PLFA
The d13C value of the individual FAME obtained from the GC-C-

IRMS was first corrected for the derivatization procedure according
to Apostel et al. (2013). Then based on the Eq. (1), the 13C incor-
poration into individual PLFA (nmol 13C g�1 soil) was:

13CPLFA ¼
h
ð13Catom%ÞPLFA;L � ð13Catom%ÞPLFA;UL

i.
100� PLFA

(2)

where PLFA was the content of individual PLFA in the labeled
samples. Thenwe calculated the relative 13C distribution in specific
microbial group:

13C% ¼ 13CPLFA�groups=
X

13CPLFAs � 100 (3)

2.5.3. 13C in microbial biomass
Based on the Eq. (1), the 13C in microbial biomass was estimated

as the difference in 13C in fumigated and unfumigated soil extracts
and divided by a factor of 0.45 (Lu et al., 2002).

13C�MBC ¼
nh

ð13Catom%Þf ;L � ð13Catom%Þf ;UL
i

� Cf �
h
ð13Catom%Þunf ;L � ð13Catom%Þunf ;UL

i

� Cunf
o.

100=0:45

(4)

where f means the fumigated soil extract and unf means unfumi-
gated soil extract. Cf and Cunf are the total C contents of the fumi-
gated and unfumigated soil extracts.

2.5.4. Statistics
The PLFAs contents were log (x þ 1) transformed to focus

attention on patterns of the whole community by giving rare fatty
acids similar weighting as common fatty acids. Non-metric multi-
dimensional scaling (MDS) was used for plot the PLFAs pattern
(Primer-E Ltd, Plymouth Marine Laboratory, Plymouth, UK). In
MDS, stress values indicate how well the ordination represents the
actual variability in community structure of the samples. Stress
values �0.2 indicate that the ordination was a good reflection of
overall community structure (Duong et al., 2009). Significant dif-
ferences in microbial community structure between treatments
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were determined by PERMANOVA (Primer-E Ltd, Plymouth Marine
Laboratory, Plymouth, UK).

The significant differences of 13C incorporation into shoots,
roots, soil and microbial biomass and microbial groups between
treatments and sampling days were determined by two-way
ANOVA with SPSS (Version 11.0, SPSS Inc., USA). Differences were
considered significant at p < 0.05 with the least significant differ-
ence (LSD) test.

3. Results

3.1. Shoots and roots biomass

The shoots biomass were higher under continuously flooding
condition than those of non-flooded and alternating wetting and
drying treatments (p < 0.05; Table 1). There were differences in
roots biomass between the continuously flooded and non-flooded
treatments (p < 0.05; Table 1).

3.2. 13C within rice-soil system

The total 13C incorporation within rice-soil systems (the sum of
13C in shoots, roots and soils) were 5.23 and 4.72 mg 13C pot�1 for
non-flooded, 5.73 and 5.56 mg 13C pot�1 for continuously flooded
and 5.43 and 5.35 mg 13C pot�1 for alternating water regimes
treatment at day 2 and 14, respectively (Table 1). The continuously
flooded treatment resulted in a higher 13C recovery in the shoots
compared with non-flooded and alternating water regimes treat-
ments but in a lower 13C recovery of the soil (p < 0.05; Fig. 2A and
C). The 13C recovery of the roots did not differ significantly between
the treatments (Fig. 2B). Moreover, we could not detect an effect of
the sampling time, with the exception of the alternating water
regime treatment for which the 13C recovery of the soil decreased
from day 2 to day 14 (Fig. 2C).

3.3. Microbial biomass C, total PLFAs and soil microbial community

Continuous flooding condition decreased microbial biomass C
and total PLFAs contents in comparison with the non-flooded soil
(p < 0.05; Table 2). Microbial biomass C and total PLFA contents did
not change between day 2 and day 14 for any of the treatments
(Table 2). The pattern of PLFA composition was significantly influ-
enced by water regimes (p < 0.01; Fig. 3). The stress value of the
MDS plot was 0.08, indicating that the ordination was a good
reflection of overall microbial community structure. The abundance
of microbial groups varied under the different water regimes while
showed little to no temporal effect (Tables 2 and 3). Continuous
flooding decreased the abundance of Gram negative, fungi and AM
fungi groups (p < 0.05; Table 2), but the Gram positive and the
actinomycetes groups were not significantly affected. The fungi/
bacteria ratio of the continuously flooded treatment was 1.4 and 1.2
times lower than the non-flooded and the alternating water regime
treatments, respectively (p < 0.05; Table 2).
Table 1
Effect of water regimes on the dry weight for shoots and roots, and 13C incorporation in rice-soil 2 and 14 days after 13CO2 pulse labeling.

Day 2 Day 14

NF CF AWD NF CF AWD

Shoots biomass (g pot�1) 3.71 (0.11)b 4.38 (0.14)a 3.93 (0.08)b 4.33 (0.08)b 5.42 (0.16)a 4.59 (0.10)b

Roots biomass (g pot�1) 1.78 (0.19)b 2.86 (0.11)a 2.21 (0.27)ab 1.82 (0.09)b 3.03 (0.23)a 2.39 (0.24)ab
13C in rice-soil system (mg pot�1) 5.23 (0.60)a 5.73 (0.53)a 5.43 (0.46)a 4.72 (0.26)a 5.56 (0.58)a 5.35 (0.57)a

Different low-case letters indicate significant differences between three treatments. Numbers in bracket represent standard error of the means (n ¼ 3).
NF: non-flooded; CF: continuously flooded; AWD: alternating wetting and drying.



Table 2
Abundance of microbial groups under three water regimes 2 and 14 days after 13CO2 pulse labeling.

Day 2 Day 14

NF CF AWD NF CF AWD

Total PLFA (nmol g�1) 158 (31)a 135 (21)b 145 (23)ab 140 (35)a 134 (24)a 145 (21)a

Microbial biomass C (mg C kg�1) 410 (18)a 324 (32)b 396 (5.7)ab 410 (16)a 307 (14)b 363 (17)a

PLFA groups (nmol g�1)
Gram positive bacteria 42.2 (1.2) 42.5 (2.7) 40.2 (1.6) 38.3 (2.0) 43.9 (1.1) 41.4 (1.9)
Gram negative bacteria 38.6 (0.79)a 28.4 (1.6)b 30.8 (0.52)b 30.7 (1.8)a 24.4 (0.84)b 32.5 (0.34)a

Fungi 18.1 (0.64)a 11.1 (0.62)b 13.5 (0.92)b 13.4 (1.0)a 10.7 (1.2)b 12.4 (0.60)a

AM fungi 4.00 (0.12)a 2.20 (0.17)c 3.07 (0.16)b 3.11 (0.42)a 1.93 (0.12)b 3.64 (0.07)a

Actinomycetes 12.8 (0.25) 10.6 (0.76) 11.8 (0.46) 11.6 (0.79) 10.8 (0.42) 12.9 (0.54)
Fungi/bacteria 0.27 (0.007)a 0.18 (0.003)c 0.23 (0.006)b 0.24 (0.01)a 0.18 (0.01)b 0.22 (0.005)a

Different low-case letters indicate significant differences between three treatments within one sampling day. Error bars represent standard error of the means (n ¼ 3).
NF: non-flooded; CF: continuously flooded; AWD: alternating wetting and drying.

J. Tian et al. / Soil Biology & Biochemistry 65 (2013) 195e203 199
3.4. Incorporation of rhizo-C into microbial biomass and in total
PLFAs

The total 13C recovery in both microbial biomass and total PLFAs
was lower under continuously flooded as compared with non-
flooded and alternating water regimes (p < 0.05; Fig. 4). The 13C
recovery in microbial biomass decreased more than 13C in total
PLFAs between day 2 and 14 irrespective of water regimes reflect-
ing faster turnover of C within whole microorganisms as compared
to cell walls. The 13C recovery in microbial biomass under the non-
flooded and alternating water regimes at day 2 were 1.7 and 2.4
times higher than those of day 14 (p < 0.05; Fig. 4A). There was a
significant decline of the 13C in total PLFAs between day 2 and 14
only under non-flooded treatment (p < 0.05; Fig. 4B).

3.5. Incorporation of rhizo-C into soil microbial groups

The 13C originating from rhizodeposits was not evenly distrib-
uted among microbial groups indicates that they differed in uptake
and utilization of rhizo-C. Across all water regimes and both sam-
plings, the relative 13C distribution showed that 23% of 13C in the
total PLFAs was incorporated into Gram negative group (16:1u7,
18:1u7c, cy17:0, cy18:0) (Fig. 5). The following group with high
13C incorporationwas fungi (18:2u6, 9c, 18:1u9c), containing about
8e14% of 13C in total PLFAs.

Compared with non-flooded and alternating water regime,
continuously flooded treatment resulted in lower relative 13C in all
NF
CF

AWD
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Fig. 3. MDS plots of total PLFA patterns based on BrayeCurtis similarities under three
water regimes and sampling days. NF: non-flooded; CF: continuously flooded; AWD:
alternating wetting and drying. The number (2, 14) in the symbol means sampling day.
Gram negative, fungi, AM fungi and actinomycetes, but higher
incorporation in Gram positive group only at day 14 (p < 0.05;
Fig. 5). There were significant temporal effects on the 13C distri-
bution between microbial groups with varying water regimes
(Table 3). For the non-flooded and alternating water regime treat-
ments, a decrease of the incorporated 13C between day 2 and day 14
was measured for fungi and Gram negative groups (Fig. 6). This
decrease accounts on average 49% and 14% of the 13C incorporation
at day 2 for fungi and Gram negative groups, respectively. 13C of
most microbial groups showed little to no temporal variation under
continuously flooded condition (Fig. 6).
4. Discussion

4.1. 13C allocation in rice-soil system under three water regimes

Soil water status affects the partitioning and allocation of plant
photosynthates (Meharg and Killham, 1990). A 26% or even 50%
lower C exudation was observed when growing plants under
anaerobic condition compared to aerobic condition (Meharg and
Killham, 1990; Henry et al., 2007). In our study, continuous flood-
ing resulted in a lower 13C recovery in soil compared to non-flooded
or alternating water regime treatments (Fig. 2C). The 3.75% recov-
ery in soil in continuous flooding condition in the present study is
in good agreement to Watanabe et al. (2004) recorded that 3.4% of
the recovered C was transferred to continuously flooded soil during
the booting stage on day 14. Moreover, in an earlier study we could
Table 3
ANOVA analyses across water regimes and sampling days for abundance and relative
13C incorporation of microbial groups.

Groups Effect df PLFA abundance
(nmol g�1)

Relative 13C
incorporation (%)

F p Value F p Value

Gram positive
bacteria

Water regimes 2 1.01 0.39 4.37 0.03
Day 1 0.06 0.81 5.73 0.03
Interaction 2 0.94 0.42 0.94 0.42

Gram negative
bacteria

Water regimes 2 12.4 0.0012 56.2 <0.0001
Day 1 6.07 0.02 32.1 0.0001
Interaction 2 4.12 0.04 4.66 0.03

Fungi Water regimes 2 6.36 0.01 2.22 0.15
Day 1 3.38 0.09 42.5 <0.0001
Interaction 2 1.43 0.27 2.34 0.14

AM fungi Water regimes 2 30.5 <0.0001 24.6 <0.0001
Day 1 1.38 0.26 26.6 0.0002
Interaction 2 6.19 0.01 6.51 0.0122

Actinomycetes Water regimes 2 3.86 0.05 205 <0.0001
Day 1 0.01 0.92 394 <0.0001
Interaction 2 1.5 0.26 25.1 <0.0001

Values in bold indicate significant different.
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show an allocation of 5.3% of the recovered C to soil under flooded
conditions when rice plants were labeled at a younger stage (35
day) (Tian et al., 2013). These differences reflect the plant devel-
opment stage, which influences C incorporation into roots and soil
(Swinnen et al., 1994).

Roots biomass followed the order of continuously
flooded> alternating water regime > non-flooded, with significant
differences observed between continuously flooded and non-
flooded at both day 2 and 14 (Table 1). This suggested that the
roots biomass were not cause of higher rhizodeposition for non-
flooded and alternating conditions. Rice grown under alternating
wetting and drying and non-flooded conditions can enhance roots
activity due to the higher oxygen availability and hence, may
develop more fine roots and branching (Mishra and Salokhe, 2011).
Further, new assimilates are allocated primarily to root tips and
increased exudationwas correlated with increasing number of root
tips (Thornton et al., 2004; Pausch and Kuzyakov, 2011; Wichern
et al., 2011). Consequently, higher roots activity under non-
flooded and alternating wetting and drying than continuously
flooded conditions may lead to higher rhizodeposition as we
observed in the present study. Conversely, roots under anaerobic
conditions may produce substances such as ethanol and lactate,
which are toxic to plants and microorganisms, thus decrease roots
respiration and decomposition of rhizo-C (rhizomicrobial respira-
tion). This was proved in our recent study: a higher root-derived
CO2 (sum of roots and rhizomicrobial respiration) was released
when rice was grown under non-flooded and alternating water
regimes as compared with continuous flooding (Tian et al., 2013).
Therefore, more assimilates may remain in rice in continuous
flooding condition as the reduced roots exudation or roots-derived
respiration. This line of reasoning is also supported by the signifi-
cantly higher 13C incorporation in shoots of rice under continuous
flooding compared to the other treatments (day 2; Fig. 2A). We also
observed that most roots were dark brown and with less branching
under flooding condition, indirectly indicated lower roots activity
(Thakur et al., 2011) and thus may reduce exudation.
4.2. Effect of water regimes on soil microbial community
composition

The observed significant decrease of Gram negative bacteria in
continuous flooding condition (Table 2), are in agreement with



J. Tian et al. / Soil Biology & Biochemistry 65 (2013) 195e203 201
previous studies that monounsaturated fatty acids are usually
associated with aerobic growth (Guckert et al., 1985; Bossio and
Scow, 1998; Bossio et al., 2006). The decrease of fungi and AM
fungi under continuous flooding in our study (Table 2) and previous
studies (Bossio and Scow, 1998; Drenovsky et al., 2004) shows that
fungi are sensitive to flooding. Contrary to previous studies
(Schimel et al., 2007; Gordon et al., 2008), alternating water regime
did not decrease the abundance of fungi. This may be ascribed to
relative short duration or intensity of dryingerewetting cycles
(Borken and Matzner, 2009). Water regimes significantly influ-
enced the microbial profiles (Table 2 and Fig. 3). This is in agree-
ment with earlier studies showing that water status was an
important factor for soil microbial community composition (Bossio
and Scow, 1998; Bossio et al., 2006; Mentzer et al., 2006; Unger
et al., 2009). Additionally, most studies documented that nutrient
availability, the quality of SOC and roots exudates composition are
also key factors affecting soil microbial communities (Cookson
et al., 2005; Steenwerth et al., 2006; Paterson et al., 2007; Tian
et al., 2012). We observed the allocation of C to roots respond
very fast to water regimes after pulse labeling (Fig. 2), therefore, the
changes of amounts and composition of exudates between treat-
ments also can not be ruled out as a potential cause for the dif-
ference of soil microbial community.

4.3. Incorporation of rhizo-C into microbial groups under three
water regimes

The lower 13C incorporation in microbial biomass and total
PLFAs in flooding conditions coincides with smaller 13C recovery in
soil (Figs. 2C and 4), demonstrating the strong influence of rhizo-C
on soil microorganisms with varying soil water status. Similarly,
Yao et al. (2012) reported that the 13C incorporation into total PLFAs
was significantly lower under continuous water-logging compared
with the non-flooded conditions after a continuous labeling. The
13C in microbial biomass decreased faster between day 2 and 14
than the total PLFAs regardless of the water regimes (based on the
absolute 13C data in MBC and PLFAs during two sampling times).
This can be explained by the faster turnover of the intracellular pool
of microbial biomass (extracted by chloroform fumigation extrac-
tion) compared to the PLFAs turnover as they are allocated in cell
membranes.

The 13C incorporation was not evenly distributed among mi-
crobial groups. The higher relative 13C in Gram negative bacteria
and fungi in non-flooded and alternating water regime vs. contin-
uous flooding condition (Fig. 5) confirmed our second hypothesis.
These results suggest that Gram negative and fungi actively utilize
more newly rhizo-C, and those microorganisms are important
initial rhizodeposition sinks under non-flooded and alternating
water regime conditions in paddy soils as did in upland systems
(Treonis et al., 2004; Leake et al., 2006; Denef et al., 2007; Jin and
Evans, 2010). Gram negative bacteria strongly increased with
higher substrate availability with organic fertilizers amendments
(Bossio and Scow, 1998; Marschner et al., 2003; Drenovsky et al.,
2004). Preferential utilization of plant exudates by Gram negative
bacteria than Gram positive bacteria was observed after labeling
young beech trees (Esperschütz et al., 2009). Additionally, Gram
negative bacteria groups are usually associated with aerobic
growth (Guckert et al., 1985; Bossio and Scow, 1998; Bossio et al.,
2006). Presumably, the improved soil oxygen condition and the
higher amounts of exudations under non-flooded and alternating
water regime benefit to 13C incorporation into Gram negative
bacteria. The 13C in Gram negative and fungi declined significantly
between day 2 and 14 in the non-flooded and alternating water
regimes conditions, indicating fast turnover for uptake and utili-
zation of rhizo-C (Fig. 6).
Contrastingwith the non-flooded and alternatingwater regimes
treatments, the significantly higher 13C in Gram positive bacteria at
day 14 (Fig. 5) indicates that these microorganisms were more
active in processing rhizo-C and showed higher contributions to the
utilization in continuous flooding paddy soils. However, the slower
incorporation (higher 13C on day 14 than day 2) suggests that Gram
positive bacteria were less active in processing rhizo-C. Further,
most microbial groups even showed little to no temporal 13C
incorporation change under flooding condition (Fig. 6). Presumably,
this may be caused by lower microbial processing turnover under
flooding condition. Lower rhizo-C input to soil and anaerobic
environment under continuously flooded system (Fig. 2C) may also
be partly responsible to microbial activity. Additionally, anaerobic
environment may strongly affect the composition of root exudates,
and then affect the rhizo-C utilization by microorganism. E.g.
higher concentrations of fumaric and succinic acid when growing
wheatgrass under drought condition than flooding were observed
(Henry et al., 2007). Aulakh et al. (2001) characterized the roots
exudates of rice, and found that among organic acids, malic acid
showed the highest concentration followed by tartaric, succinic,
citric and lactic acids. Thus, how the composition of rhizodeposits
influence the microorganisms should be investigated in future.

The 13C incorporation in soil and microorganism under water
regimes provided us important implications for C cycling and
sequestration in rice systems. Most C additions to soil originates
from plants, and it has beenwidely reported that around 50% of the
photosynthesized-fixed C was transferred belowground and about
5e10% of the net fixed C can be recovered in soil (Nguyen, 2003;
Rees et al., 2005). Previous studies also reported the preferential
retention and greater contribution of rhizo-C to SOM-C as
compared to aboveground litter (Kong and Six, 2012; Rasse et al.,
2005). Flooding condition decreased belowground C input by rhi-
zodeposition, then accompanied with lower microbial processing
turnover. Therefore, future investigations on mechanisms which
are of importance for microbial utilization of rhizodeposits and
effects on C cycling and sequestration in rice systems with focus on
water conversation techniques are necessary.

5. Conclusions

Continuous flooding resulted in lower 13C incorporation in soil
and microorganisms as compared with non-flooded and alter-
nating water regimes. The higher abundance of Gram negative
bacteria and fungi together with 13C incorporation under non-
flooded and alternating water regimes, suggests and those micro-
organisms are important initial rhizodeposition sinks under non-
flooded and alternating water regime conditions in paddy soils. In
contrast, Gram positive bacteria showed higher contribution for
uptake of rhizo-C in continuous flooding as compared with the
other two treatments. The decrease of 13C in Gramnegative bacteria
and fungi groups between day 2 and 14 showed higher process of
rhizo-C under non-flooded and alternating water regime, while 13C
in most microbial groups under continuous flooding showed lower
microbial turnover.

Summarizing, the study showed that water regimes used for
rice production had fundamental effects on fate of rhizodeposition
and its biological pathways. Future studies are required to inves-
tigate these findings under field conditions and also how the
composition of rhizodeposits influence the microorganism as
related to water regimes.
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