Contents lists available at ScienceDirect

Soil Biology and Biochemistry

journal homepage: www.elsevier.com/locate/soilbio

Rice rhizodeposits affect organic matter priming in paddy soil: The role of N fertilization and plant growth for enzyme activities, CO₂ and CH₄ emissions

Zhenke Zhu^{a,b}, Tida Ge^{a,b,*}, Shoulong Liu^{a,b}, Yajun Hu^{a,b}, Rongzhong Ye^c, Mouliang Xiao^{a,b}, Chengli Tong^{a,b}, Yakov Kuzyakov^{a,d,e,f}, Jinshui Wu^{a,b}

^a Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China

b Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China

^c Department of Plant and Environmental Sciences. Pee Dee Research and Education Center, Clemson University Clemson, SC 29506, USA

^d Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, 37077 Göttingen, Germany

e Agro-Technology Institute, RUDN University, Moscow, Russia

^f Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia

ARTICLE INFO

Keywords: Rice paddy N fertilization CH₄ production Enzyme activity Rhizosphere priming effect C and N cycles

ABSTRACT

Carbon dioxide (CO_2) and methane (CH_4) production in paddy soils play a crucial role in the global carbon (C)cycle and greenhouse gas emissions. A rhizosphere priming effect (RPE) may change these emissions, but the relationships between RPE, CH₄ emission, and the effect of N fertilization are unknown. We investigated the RPE on CO2 and CH4 emissions and their dependence from N fertilization in a¹³CO2 continuous labelling experiment by partitioning total CO2 and CH4 derived from roots and soil organic matter (SOM). Because of plant-derived CO₂, rice plants strongly increased total CO₂ emission compared to that from unplanted soil. SOM-derived CO₂ and CH4 increased in the presence of roots but decreased after N fertilization. The RPE for CO2 at an early growth stage (\leq 40 days) was negative: -1.3 and -1.9 mg C day⁻¹ kg⁻¹ soil without and with N fertilization, respectively. However, 52 days after transplanting, RPE for CO₂ got to positive. The RPE for CH₄ increased gradually up to 1.6 and 0.5 mg C day⁻¹ kg⁻¹ soil at the end of the experiment without and with N fertilization, respectively. Moreover, the RPE for CH₄ got half of the RPE for CO₂ after 64 days showing the relevance of CH₄ emissions for greenhouse gases balance and C cycling in paddy ecosystems. The RPE for CO₂ and CH₄ emissions increased with microbial biomass content and activities of xylanase and N-acetylglucosaminidase. Supporting the results to RPE, the enzyme activities decreased with N fertilization, suggesting that reduced N limitation decreased microbial potential to mine N from SOM. In conclusion, for the first time we showed that rootmicrobial interactions stimulated SOM mineralization in rice paddies through rhizosphere priming effects not only for CO2 but also for CH4, but the RPE decreased with N fertilization.

1. Introduction

Soil organic matter (SOM) functions as an important source and sink of atmospheric carbon dioxide (CO₂) (Amundson, 2001). Soil CO₂ efflux is approximately 10 times greater than anthropogenic CO₂ emissions from fossil fuel burning and land use change (Bond-Lamberty and Thomson, 2010). Soil CO₂ mainly derives from rhizosphere respiration (including root respiration), microbial decomposition of rhizodeposits from living roots, and microbial decomposition of SOM (Kuzyakov, 2006). It is well accepted that root-mediated processes regulate SOM dynamics, but their relationships with edaphic physical and microbial factors are less clear.

Plants can regulate SOM decomposition via rhizosphere processes

(Cheng et al., 2014; Dijkstra et al., 2013; Kuzyakov, 2010). Living roots release available substrates, which are used as the primary energy source for microorganisms, stimulate microbial growth in the rhizo-sphere, thus leading to extracellular enzyme production, and enhance (400%) or suppress (50%) soil organic carbon (SOC) decomposition compared with unplanted soil (Kuzyakov, 2010; Shahzad et al., 2015; Zhu and Cheng, 2011). The amounts of rhizodeposition and root activities depend on plant growth, which in turn affects physical and chemical conditions, such as water content, oxygen (O₂) concentration, pH, and redox potential (Eh), in the rhizosphere depending on phenological stage (Cheng et al., 2003; Yuan et al., 2014). These soil changes induced by roots can also significantly affect the magnitude of SOM decomposition (Kumar et al., 2016; Mwafulirwa et al., 2016).

http://dx.doi.org/10.1016/j.soilbio.2017.11.001

^{*} Corresponding author. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China. *E-mail address:* gtd@isa.ac.cn (T. Ge).

Received 6 June 2017; Received in revised form 27 September 2017; Accepted 2 November 2017 0038-0717/ © 2017 Elsevier Ltd. All rights reserved.

Furthermore, plants can alter rhizosphere microbial activities by competing with microorganisms for nutrients such as nitrogen (N), which leads to nutrient limitation in the rhizosphere and stimulates microorganisms to mine SOM to meet their nutrient requirements (Hodge et al., 2000; Kuzyakov and Xu, 2013).

Global ecosystems are experiencing increased inputs of anthropogenically derived N fertilizer, which increase N loading by 30-50% compared with that from natural sources (Canfield et al., 2010; Zang et al., 2016). Increasing N fertilizer inputs affect the above-/belowground distribution of plant C and the fate of plant-derived C in agricultural soils (Kuzyakov et al., 2002; Zang et al., 2016). Plants differ in their capacity to acquire N during growth stages because the rhizosphere microbial composition changes owing to the effects of different root exudates (Kuzyakov and Xu, 2013). The N availability in plant-soil systems, especially the rhizosphere, affects microbial activity and SOM decomposition. In soils with low nutrient availability, microorganisms meet their nutrient demands by increasing enzyme synthesis to mine nutrients from SOM (DeAngelis et al., 2008; Phillips et al., 2011). This accelerates SOM decomposition, resulting in a positive priming effect (PE). Alternatively, in nutrient-rich soils, microorganisms will switch from decomposing SOM (older C) to utilize newly deposited C and mineral N, resulting in a negative PE (Cheng et al., 2014; Dijkstra et al., 2013). Understanding how additional N inputs affect plant-soil ecosystems is becoming increasingly important within the context of C and N budgets and cycling. This is especially the case in paddy soils, as the number of studies on the PE under anaerobic conditions is very limited (i.e., Conrad et al., 2012; Yuan et al., 2014), and the effects on methane (CH₄) emissions are disregarded in nearly all studies.

Flooded rice fields are important wetland ecosystems contributing to significant CH₄ emissions (Cai et al., 2010; Yuan et al., 2014). In contrast to many investigations of the rhizosphere effects on SOM decomposition in upland soils, much less attention has been paid to wetland soils and CH₄ emission. Partitioning CH₄ production to its sources, i.e., plant-derived C and SOC, is crucial for improving processbased modeling of CH4 emission from rice fields, which plays an important role in predicting CH₄ flux and global climate change (Fumoto et al., 2008). However, prediction and partitioning of CH₄ emissions from rice soils is challenging owing to high variability in water regime, availability of organics for microorganisms, SOM content, and organic and mineral fertilizer applications, especially N fertilization (Cai et al., 2010; Khalil et al., 2008). Liu and Greaver (2010) suggested that N fertilizer increased soil CH₄ emission by 97% and reduced CH₄ uptake (oxidation in soil) by 34%. Bodelier (2011) reported that N fertilization stimulated CH₄ production, while inhibiting CH₄ oxidation in soil. Previous studies have also reported that N fertilization stimulates methanotrophic bacteria and increases CH₄ uptake in soil (Prasanna et al., 2002; Shrestha et al., 2010). However, there is little information that quantifies the synergistic effects of living roots and N fertilizers on CH₄ emission in rice paddies, and we hypothesized that root C and SOM contribution to CH₄ emission changes greatly with rice growth and N fertilization.

Here, we investigated the effects of rice rhizodeposits and N fertilization on RPE and its ecological implications in a paddy field ecosystem by applying continuous ¹³C labelling with and without N addition. ¹³C continuous labelling enabled partitioning of total CO₂ and CH₄ efflux for root- and SOM-derived C, allowing estimation of the RPE in a rice field ecosystem and its implications for changing C and nutrient cycling. The activities of three enzymes (β -1,4-glucosidase [BG], β -xylosidase [XYL], and β -1,4-*N*-acetylglucosaminidase [NAG]) were determined to link CO₂ and CH₄ emissions to microbial activities and N transformations. We hypothesized that (i) rice roots accelerate SOM decomposition because their exudates promote microbial and enzyme activities, (ii) N fertilization reduces RPE for both CO₂ and CH₄ emissions via decreasing microbial activity and decreasing competition between roots and microorganisms for N, as well as additional electron acceptors reducing organic matter conversion to CH₄, and (iii) the RPE for CH_4 emission increases with rice growth as O_2 limitation increases during flooding.

2. Materials and methods

2.1. Soil

Typical Stagnic Anthrosol soil developed from granite was collected from a rice field (113° 19′ 52″ E, 28° 33′ 04″ N, 80 m a.s.l.) located at the Changsha Research Station for Agricultural and Environmental Monitoring, Subtropical Region of China. The climate of the study site is subtropical with a mean annual temperature of 17.5 °C and yearly rainfall of 1300 mm. Moist soil samples were collected from the plough layer (0–20 cm) and sieved through < 4 mm mesh to remove visible plant residues. The soil texture was 7.5% clay, 68.4% silt, and 24.1% sand; contained 15.6 g kg⁻¹ organic C, 1.6 g kg⁻¹ total N, and 0.5 g kg⁻¹ total phosphorus; and had a pH of 5.8 (2:5 soil/water ratio).

2.2. Experimental setup

The experiment included a control and three treatments in pots: (1) unplanted soil with no N fertilization; (2) unplanted soil with 100 mg N kg⁻¹; (3) soil planted with rice, with no N fertilization; and (4) soil planted with rice, with 100 mg N kg⁻¹. Because isotopic fractionation between root tissue and rhizosphere respired CO₂, CH₄ in particular, has been increasingly recognized, additional pots filled with silica sand were included (Wang et al., 2016). The sand pots, inoculated with 1% (w/w) of paddy soil before planting, included the treatments of rice planted with and without 100 mg N kg⁻¹ fertilization. The silica sand-filled pots were watered with basal nutrients solution but free of organic C, which was same as the paddy soil nutrient element content. For N fertilization, urea was applied at 160 kg N ha⁻¹ and homogenized with soil before planting. Samples were collected at 40, 52 and 64 days after planting, with four replicates for each treatment.

We used the experimental protocol described previously (Ge et al., 2012, 2017), with some modifications. Briefly, on May 25, 2016, for each replicate, two 20-day-old rice seedlings (Oryza sativa L. 'Two-line hybrid rice Zhongzao 39', average dry matter weight 0.10 g per plant) were transplanted to a pot that was filled with 1.0 kg soil. Rice plants underwent continuous ¹³CO₂ labelling from 22 June (28 days after planting) to 28 July (64 days after planting) during their most vigorous growth. During the labelling period, plants were transferred to an augrowth tomatically controlled gas-tight chamber system (110 \times 250 \times 180 cm). Growth chambers were placed in a rice field with sufficient sunlight for plant growth. Pot surfaces were covered by black plastic sheets to prevent algal photosynthesis and to allow only the rice shoots to be exposed to $^{13}CO_2$. The paddy soil pots were irrigated with deionized water, with a 2-3 cm water layer maintained above the soil surface, throughout the experiment.

The ${}^{13}\text{CO}_2$ (20 atom % ${}^{13}\text{C}$) concentration in the growth chamber was maintained between 360 and 380 μ l·L⁻¹ and monitored using a CO₂ analyser (Shsen-QZD, Qingdao, China). When the CO₂ concentration in the chamber fell below 360 μ l·L⁻¹, ${}^{13}\text{CO}_2$ generated by reacting NaH¹³CO₃ (20 atom % ${}^{13}\text{C}$, Cambridge Isotope Laboratories, Inc.) with H₂SO₄ (0.5 M) was introduced into the chamber. Conversely, when the CO₂ concentration in the chamber was higher than 380 μ l·L⁻¹, a switch diverted gas flow to pass through CO₂ traps comprised of NaOH solution. One temperature and humidity sensor (SNT-96S, Qingdao, China) was installed inside the chamber and another was placed in the surrounding rice field. Air was continuously circulated in the growth chamber, and an air-conditioning system was used to control the temperature inside the chamber to within 1 °C of the ambient temperature in the rice field. Control pots did not undergo 13 C labelling and were placed outdoors 10–15 m away from labelled plants.

2.3. Rhizosphere respiration sampling

At each sampling point (40, 52, and 64 days after planting), each pot was sealed with a respiration collection chamber (Fig. S1; China Patent No. ZL201510242495.3) containing two parts (Fig. S1). The lower part of the chamber was fixed on the top of the pot, with any gaps between the rice stems and the opening in the middle of the chamber sealed with silicone paste. This part was used for sampling CO₂ and CH₄. The upper part of the chamber was fixed onto Part 1 to collect the CH₄ emitted from rice stems and leaves. The respiration collection chamber was flushed with CO₂-free air for 5 min until the outlet airflow had < 10 ppm CO₂ and was then sealed for 60 min by stoppering the tube ends to accumulate soil CO₂ and CH₄ efflux in the chambers of parts 1 and 2 (Mwafulirwa et al., 2016). Immediately thereafter, approximately 35 mL gas was sampled from the chambers using a gas syringe connected to the outlet tubing. One part of the sampled air was injected into a gas chromatograph (Agilent 7890A, Agilent Technologies, Alto Palo, California, USA) equipped with a thermal conductivity detector for measuring CO2 and a flame ionization detector for measuring CH₄. The remaining gas was used to analyse the stable C isotope composition of CO2 and CH4 with an isotope ratio mass spectrometer coupled with a GasBench (Thermo Fisher Scientific, Waltham, Massachusetts, USA).

Total CO₂ respired was calculated per sampling point using the CO₂ concentration. The CO₂ in the lower chamber (Part 1) was collected and regarded as the total rhizosphere-respired CO₂, and the CH₄ in both the lower chamber (Part 1) and upper chamber (Part 2) was collected and considered the total rhizosphere-respired CH₄. Total soil CO₂ and CH₄ efflux were separated into SOM-derived (C_{SOM}) and plant-derived C (C_{plant}) fractions using a two-source mixing model (Kuzyakov and Bol, 2006; Zhu and Cheng, 2012):

$$C_{\text{root}} = (\delta^{13}C_{\text{SOM}} - \delta^{13}C_{\text{total}}) / (\delta^{13}C_{\text{SOM}} - \delta^{13}C_{\text{plant}}) \times C_{\text{total}}$$
(1)

$$C_{SOM} = C_{total} - C_{root}$$
(2)

where C_{total} was the total CO₂ efflux of the planted treatment (mg C day⁻¹ kg⁻¹ soil) and $\delta^{13}C_{total}$ was the corresponding $\delta^{13}C$ value (‰). $\delta^{13}C_{SOM}$ was the mean $\delta^{13}C$ value (‰) of CO₂ from SOM mineralization measured in the unplanted control pots. C_{plant} was the plant-derived CO₂ in the planted pots (mg C day⁻¹ kg⁻¹ soil), and the $\delta^{13}C_{plant}$ value was the $\delta^{13}C$ value (‰) of CO₂ emitted from the sand pots (Wang et al., 2016). The fraction of CH₄ derived from SOM was calculated with an analogous equation.

The priming effect of rice rhizodeposits on SOM decomposition and CO_2 and CH_4 emissions was defined as the amount of CO_2 and CH_4 released from the surface soil, not including CO_2 and CH_4 dissolved in the soil solution. The RPE for CO_2 and CH_4 were calculated as the difference of C_{SOM} between planted and unplanted soils, as shown below in Eq. (3) and Eq. (4).

$$RPE = C_{SOM, Planted} - C_{SOM, Unplanted}$$
(3)

$$RPE = C_{SOM Planted + N} - C_{SOM Unplanted + N}$$
(4)

where $C_{SOM, Planted}$ and $C_{SOM, Unplanted}$ were the CO₂ or CH₄-C derived from SOM in the unfertilized pots with and without rice plants, respectively, and $C_{SOM, Planted+N}$ and $C_{SOM, Unplanted+N}$ were the CO₂ or CH₄-C derived from SOM in the fertilized pots with or without rice plants, respectively.

2.4. Soil microbial biomass and enzyme assays

Directly after gas sampling, soil Eh was measured using a portable Eh meter (PRN-41, DKK-TOA Corporation, Tokyo, Japan), and the total weight of each pot was determined before the pots were harvested. Shoots were cut at the base and dried at 70 °C for 48 h. Soil cores were carefully removed from the pot. Shoots and roots were separated and analysed for δ^{13} C values. A representative homogenized soil sample (400–500 g) was taken from each pot to determine soil moisture, soil mineral N, microbial biomass C (MBC), microbial biomass N (MBN), and extracellular enzyme activities. Soil microbial biomass C and N were calculated by dividing the difference between extracted C and N from fumigated and non-fumigated soil samples with a K_{EC} and K_{EN} factor of 0.45 and 0.54, respectively (Wu et al., 1990). The N contents from nonfumigated soil samples were considered mineral N.

Extracellular enzymes activities were measured using the method described by Marx et al. (2001). Fluorogenic methylumbelliferonebased artificial substrates were used to estimate the activities of BG. XYL, and NAG (Sinsabaugh and Follstad Shah, 2012). Briefly, a soil suspension was made by dissolving 1 g fresh soil sample in 50 mL autoclaved water using low-energy sonication (50 Js⁻¹) for 120 s. An aliquot of 50 µL was dispensed in a 96-well black microplate while stirring the soil suspension to ensure uniformity. Thereafter, 50 µL of 2-(N-morpholino)ethanesulfonic acid buffer (pH 6.5) was added to the well. Finally, 100 µL serial concentrations of substrate solutions (20, 40, 60, 80, 100, 200, and 400 μ mol substrate g⁻¹ soil) were added to the wells. The microplate was rippled and measured fluorometrically using excitation at 360 nm and emission at 450 nm, with an automated fluorometric plate-reader (Victor3 1420-050 Multi-label Counter, PerkinElmer, Waltham, Massachusetts, USA) at 0, 30, 60, and 120 m after substrate addition. To estimate enzyme activity (V), we used the Michaelis-Menten equation for enzyme kinetics:

$$V = (Vmax *[S]) / (Km + [S])$$
(5)

where Vmax is the maximal rate of enzyme activity, Km (Michaelis constant) is the substrate concentration at which Vmax is half, and [S] is the substrate concentration.

2.5. Statistical analysis

One-way ANOVA with Duncan's test (in SPSS 17, SPSS Inc., Chicago, Illinois, USA) was used to compare plant biomass, CO_2 and CH_4 emission, priming effect for CO_2 and CH_4 , soil mineral N, microbial biomass and soil enzyme activities between treatments. A two-way ANOVA was conducted to assess the effects of N addition and rice growth stage on rhizosphere priming effect for CO_2 and CH_4 (Table S1). Redundancy analysis was performed with CANOCO 5.0 for Windows (Microcomputer Power, Ithaca, New York, USA) to identify the relationships between RPE for CO_2 and CH_4 and soil physiochemical parameters, microbial biomass, and extracellular enzymes. Variance decomposition was performed with CANOCO 5.0 to identify the contribution of N fertilization and rice growth to the variations of the RPE for CO_2 and CH_4 .

3. Results

3.1. Plant biomass

Shoot biomass per pot was higher in the N-fertilized plant than in unfertilized plants (p < 0.05), and increased with rice growth (p < 0.05) (Fig. 1). And the root biomass per pot was also higher in N-fertilized plants, although the difference was not statistically significant (p > 0.05). However, the root to shoot ratio was higher in unfertilized plants than N-fertilized plants (p < 0.05).

3.2. Fluxes and sources of CO_2 and CH_4

In the unplanted pots, CO₂ efflux ranged from 0.3 to 2.1 mg C day⁻¹ kg⁻¹ soil, and CH₄ effluxes ranged from 0.02 to 0.13 mg C day⁻¹ kg⁻¹. Total CO₂ and CH₄ effluxes were higher in planted pots. N fertilization increased the total CO₂ efflux but inhibited the CH₄ efflux. The highest CO₂ fluxes were 19.5 and 11.6 mg C day⁻¹ kg⁻¹ soil in N-

Fig. 1. Shoot and root biomass (bars) of rice from the unfertilized (Planted) and N-fertilized (Planted + N) pots over the 64-day period. Letters indicate significant differences at p < 0.05 based on Duncan's multiple range test. Values shown are means (n = 4) \pm one standard error.

fertilized and unfertilized pots, respectively, and the highest CH_4 fluxes were 0.8 and 2.8 mg C day⁻¹ kg⁻¹ soil in N-fertilized and unfertilized pots, respectively (Fig. 2).

The contributions of root- and SOM-derived sources to total CO₂ and CH₄ efflux were calculated based on a linear two-source isotopic mixing model (Fig. 2). Plant-derived CO₂ efflux from fertilized soil was lower than that from unfertilized soil at 40 days after transplanting (p > 0.05). However, plant-derived CO₂ from N-fertilized soil was approximately 50% higher than that from unfertilized soil at the latter two sampling points (Fig. 2). CH₄ derived from root-released C significantly increased during rice growth, but N fertilization inhibited CH₄ efflux (Fig. 2). Both SOM-derived CO₂ and CH₄ were lower in N-fertilized and planted soil compared with unfertilized planted soil.

The RPE for CO₂ was -1.3 and -1.9 mg C day⁻¹ kg⁻¹ soil, respectively, in unfertilized and N-fertilized pots at 40 days, while the RPE for CO₂ was positive at the two latter sampling points (Fig. 2C). The RPE for CH₄ was gradually increased to 1.6 and 0.5 mg C day⁻¹ kg⁻¹ in unfertilized and N-fertilized pots, respectively (p < 0.01) (Fig. 2F). N fertilizer application reduced the RPE for CO₂ and CH₄, which were negatively correlated with soil mineral N (R² = 0.34, p < 0.01) (Fig. 4D). N fertilization and rice growth stage had a significant effect on RPE (p < 0.05, Table S1), contributing 10.5% and 54.6%, respectively, to RPE for CO₂, and 41.6% and 44.5% to RPE for CH₄ (Fig. S2).

3.3. Soil mineral N and microbial biomass

The mineral N content in N-fertilized unplanted soil was approximately 50% higher than that of unfertilized soil, and there were no changes of mineral N content across the three sampling times (Fig. 3A). Because of plant uptake, the mineral N content in planted soil was 19.1 (N-fertilized) or 4.6 (unfertilized) times lower compared to the unplanted control at 40 days after transplanting. The mineral N content in planted pots at 40 days was 25.8 g kg⁻¹ with N fertilization, which was 8.9-fold greater than that in unfertilized pots. However, the mineral N content in the N fertilized planted soil sharply decreased to 3.5 g kg⁻¹ at 64 days, when it was almost equal to that of the unfertilized planted pots.

Soil microbial biomass gradually increased with rice growth. N fertilization decreased MBC by 50% at 40 days after transplanting but did not affect MBC at 52 and 64 days (Fig. 3B). MBN decreased in the planted soil. N fertilization decreased MBN by 30–70% at the first two

sampling points (40 and 52 days) in both planted and unplanted soils (Fig. 3C). The MBC to MBN ratio was higher in the treatment of planted and N-fertilization than in other treatments (p < 0.05) (Fig. 3D). Both MBC and MBN were positively correlated with RPE for both CO₂ and CH₄ (p < 0.05; Fig. 5).

3.4. Soil extracellular enzyme activities

The activities of three enzymes involved in soil C and N mineralization, BG, XYL and NAG, were stimulated by growing plants and reduced by N fertilization (Fig. S3). There was a negative relationship between BG activity and RPE for CO₂ ($R^2 = 0.45$, p < 0.01) and a positive correlation between XYL activity and RPE for CO₂ ($R^2 = 0.29$, p < 0.01). No relationships were observed between BG and XYL activities and RPE for CH₄. The NAG activity was positively correlated with RPEs for both CO₂ and CH₄ ($R^2 = 0.46$, p < 0.01; $R^2 = 0.69$, p < 0.01, respectively) (Fig. 4).

4. Discussion

4.1. Effects of living rice roots on RPE

RPE has been estimated in numerous studies of upland soils (e.g., Cheng et al., 2014; Kuzyakov and Bol, 2006) but have rarely been considered for flooded paddy soils (Conrad et al., 2012; Yuan et al., 2014). Here, we provided measurements of RPE in paddy soil with rice plants based on SOM-derived CO2 and CH4. Previous studies have found that SOM decomposition is affected by plants and their phenology (Cheng et al., 2003; Zhu and Cheng, 2012). In this study, rice plants accelerated SOM decomposition to CO2 and CH4, with the exception of SOM mineralized to CO_2 at the earliest sampling time (≤ 40 days). However, because of very small plant biomass, with was grown before day 28 (before the continuous ¹³C labeling started), we slightly underestimate the contribution of root C to the CO₂ and CH₄ production by sampling at day 40. However, because root-derived CO2 (Kuzyakov and Domanski, 2002; Werth and Kuzyakov, 2008) and CH4 (Dorodnikov et al., 2011) are both produced from very recent assimilates, the contribution of unlabeled C is of very minor importance. Rice growth contributed to variations of the RPE, accounting for 54.6% of CO₂ and 44.5% of CH₄ emission from SOM (Fig. S2). These results indicate that during rice development, root exudates stimulate the growth and activity of rhizosphere microorganisms by providing a source of easily available C, inducing SOM decomposition (Fig. 6).

A negative RPE for CO_2 emission was observed in both N-fertilized and unfertilized planted soils on day 40, but the RPE was positive at the latter two samplings (Fig. 2). This reflects higher rhizodeposition per unit of root biomass at the vegetative stage (40 days) (Nguyen, 2003). Rice roots provided a greater C source for soil microorganisms at the first sampling, inducing microorganisms to switch from using humified organic matter as their main energy source to using easily available rhizodeposits (Ge et al., 2012; Kuzyakov and Xu, 2013). As a result, SOM decomposition decreased.

A positive RPE for CO_2 emission could be explained by the microbial activation hypothesis, wherein rhizodeposits stimulated microbial growth and extracellular enzyme activity and hence promoted SOM decomposition (Phillips et al., 2011; Tian et al., 2013; Yevdokimov et al., 2006; Zhu and Cheng, 2011). However, an excess of easily available C was typically depleted within a few days via microbial uptake, utilization, and decomposition (Kuzyakov and Xu, 2013). Lower rhizodeposits per unit of root biomass have been observed at latter growth stages compared to earlier stages in rice (Cheng et al., 2003). This change might cause microorganisms previously growing on the excess substrate to starve, inducing them to mine SOM for C and nutrients (Blagodatskaya et al., 2011; Kuzyakov and Xu, 2013).

A positive RPE for CH_4 emission was observed across the entire rice growth (Fig. 2F). This was consistent with previous studies

Fig. 2. Total CO₂ and CH₄ effluxes were separated for two sources: plant-derived C (A and D) and SOM-derived C (B and E) using the δ^{13} C after continuous labeling. The rhizosphere priming effect (RPE) for CO₂ (C) and CH₄ (F) is shown in planted unfertilized (Planted) and planted N-fertilized (Planted + N) pots over the 64-day rice growth period. Letters indicate significant differences at p < 0.05 based on Duncan's multiple range test. Values show means (n = 4) ± one standard error.

demonstrating that root exudates were a key source of substrate for microorganisms under anaerobic conditions (Cai et al., 2010; Dorodnikov et al., 2011; Yuan et al., 2014). Rice rhizodeposits (acting as electron donors) created reduced environments favourable for methanogenic production (Reddy and DeLaune, 2008) and provided organic precursors for methanogens, both of which might increase the abundance and activities of methanogenic archaea, and also stimulated additional CH₄ production from SOM (Cheng et al., 2003; Yuan et al., 2014). This hypothesis was supported by the positive correlation of rice root biomass with RPE for CH₄ and the negative relationship with soil redox potential and RPE for CH₄ (Fig. 5).

4.2. Effects of N fertilization on RPE for CO₂

N is the most important limiting nutrient for plant and soil

microorganisms, and N fertilization might strongly increase plant growth, microbial activity, and SOM decomposition (Bobbink et al., 2010). The mechanisms of N fertilization affecting RPE might be primarily through regulating the microbial biomass stoichiometric ratio and extracellular enzyme activity (Kumar et al., 2016; Zhu et al., 2014). Soil microbial biomass could be a sensitive indicator of nutrient availability changes (Guillaume et al., 2016; Heuck et al., 2015). Metaanalysis suggested that mineral N addition decreased microbial biomass by 15–20%, thereby decreasing soil CO₂ emissions (Liu and Greaver, 2010). In the present study, although N fertilization did not show a significant effect on SOM decomposition in unplanted soil (Fig. 2B), it strongly reduced the SOM decomposition under rice plants (Fig. 1). Microbial decomposition did not seem limited by N availability in unplanted soils, as evidenced by MBC/MBN ratios of approximately 16 (Fig. 3). The lower SOM-derived CO₂ emission at 40 days was likely due

Fig. 3. Soil mineral N (A), microbial biomass C (MBC; B), microbial biomass N (MBN; C) and the MBC to MBN ratio (MBC/MBN ratio) in unplanted (Unplanted), unplanted with N fertilization (Unplanted + N), planted unfertilized (Planted), and planted N-fertilized (Planted + N) soils over the 64-day rice growth period. Letters indicate significant differences at p < 0.05 based on Duncan's multiple range test. Values shown are means (n = 4) \pm one standard error.

to the N fertilizer application, which significantly increased rice root biomass and rhizodeposits that presumably resulted in preferential microbial utilization of plant-derived C (negative RPE) (Kuzyakov and Xu, 2013; Lu et al., 2002), as indicated by the consistent MBC regardless of fertilization (Fig. 3). However, a positive RPE for CO₂ emission was observed at the latter two sampling points, which could be attributed to the substantial decrease of mineral N in planted soil. Plant N uptake and a strong increase in competition between plants and microorganisms for N induces N limitation in the rhizosphere (Hodge et al., 2000; Kuzyakov and Xu, 2013). In the planted soil, the higher MBC/MBN ratios also suggested that microbes were N limited. Rhizosphere microorganisms need to take up mineral N to assimilate plant-derived substrates, thereby maintaining stoichiometric ratios of microbial biomass (Dijkstra et al., 2013; Kirkby et al., 2013). As a result, microbes accelerated the mineralization of SOM to obtain nutrients, leading to a positive RPE.

Extracellular enzyme activities reflect the functions of decomposer communities, which are limited by metabolic requirements and nutrient availability (Caldwell, 2005). In the planted soil, the greater microbial activity, stimulated by labile rhizodeposits, was characterized by increased Vmax for BG and XYL in comparison with unplanted soil. Furthermore, Vmax for these enzymes responded negatively to N fertilization (Fig. S2); such a response suggested that the N addition increased rhizodeposits and provided more available C sources for microbes that subsequently reduced carbohydrate hydrolase production (Chen et al., 2014; Sinsabaugh and Follstad Shah, 2012). The positive relationships between BG and XYL activity and RPE for CO_2 (Fig. 4) could indicate a strong correspondence between microbial growth and extracellular enzyme production (Dorodnikov et al., 2009). The amount of mineral N declined significantly with rice growth in planted, fertilized soil (Fig. 2); rhizodeposits might provide a substrate with a high C/N ratio (Fontaine et al., 2011), which caused N limitation for soil microbes that accordingly begun producing N-degrading enzymes to obtain N from SOM (Chen et al., 2014; Fontaine et al., 2011). Our data supported the 'microbial stoichiometry' theory: the increasing potential activity of NAG (Fig. 4C), a common enzyme involved in degrading organic N compounds such as chitin (Sinsabaugh and Follstad Shah, 2012), was consistent with the decrease in mineral N across the three sampling points (Fig. 2). Moreover, the close correlation between the Vmax of NAG and RPE (Fig. 4C) indicated that more N hydrolase was produced under N limitation and more SOM was mineralized to release mineral N (Fig. 6).

4.3. Effects of N fertilization on RPE for CH₄

CH₄ production is the terminal step of anaerobic decomposition, and substrates for CH₄ production are derived from SOM, root C, acetate (from roots and microorganisms), and CO₂ (Conrad et al., 2012; Ye et al., 2015). Presumably rice rhizodeposits provided available C for methanogens, their abundance and activities increase and consequently, they utilize more active SOM produced more SOM-derived CH₄ (positive RPE) (Dorodnikov et al., 2011). However, N fertilization increased root biomass and root exudate secretion (Fig. 1) and effectively reduced the CO₂ emission from SOM (Fig. 2). This results might attribute to the decreased CO₂ concentration causing substrate limitation for hydrogenotrophic methanogenesis (Yuan et al., 2014), resulting in a lower positive RPE for CH₄ compared with that of unfertilized soil. This was evident in the simultaneous decrease of SOM-derived CO₂ and

Fig. 4. Relationships between β -1, 4-glucosidase activity (BG) (A), β -xylosidase (XYL) activity (B), and the rhizosphere priming effect (RPE) for CO₂; β-1,4-*N*-acetbetween ylglucosaminidase activity (NAG) (C), soil mineral N (D) and RPE for CO2 and CH4.

Fig. 5. Redundancy analysis plot showing the relationships of rice root biomass, potential redox (Eh), soil mineral N, soil microbial C (MBC) and N (MBN), and three extracellular enzymes (BG: β-1,4-glucosidase; XYL: β-xylosidase; NAG: β-1,4-N-acetylglucosaminidase) with the rhizosphere priming effect for CO_2 (RPE_{CO2}) and CH₄ (RPE_{CH4}).

increase of SOM-derived CH₄ at the latter sampling points (Fig. 2). Furthermore, N fertilization is known to decrease microbial mining of SOM for nutrients (Fontaine et al., 2011; Sinsabaugh and Follstad Shah, 2012; Chen et al., 2014). N fertilization increased the mineral N in planted soil and released microbes from N limitation, which reduced

Fig. 6. Conceptual diagram of rhizosphere priming effect for CO₂ and CH₄ depending on rice growth an N fertilization.

the SOM-derived CO_2 emission and subsequently lowered the RPE for CH₄. These results were supported by the negative relationship between mineral N and RPE for CH₄ and the positive correlation between NAG and RPE for CH₄ (Fig. 4).

CH₄ emission from soils depends on the balance of CH₄ production and consumption due to oxidation (Dorodnikov et al., 2011), which is controlled by the relative intensity of activity of methanogens for CH₄ production and methanotrophs for CH₄ consumption (Cai et al., 2010; Shrestha et al., 2010). Previous studies reported that N fertilization stimulated methanotrophic bacteria and increased CH₄ uptake in soil (Prasanna et al., 2002; Shrestha et al., 2010). De Visscher and Van Cleemput (2003) reported that NH₄⁺ could stimulate CH₄ oxidation at high CH₄ concentrations; this might imply that N fertilization could ultimately reduce CH₄ production and emission in paddy soil.

CH₄ production is also affected by the presence of electron acceptors (Megonigal et al., 2004; Jungkunst and Fiedler, 2007). N fertilization has various effects related to electron acceptors: 1) Increased root biomass and associated secreted O2 increase Eh, thereby lowering generally CH₄ production and the RPE for CH₄ (Ye et al., 2015; Yuan et al., 2014). This was supported by the negative relationship between Eh and RPE for CH₄ (Fig. 5). 2) N added by fertilization as nitrate (NO_3^{-}) is additional electron acceptor by reduction to NH_4^{+} (Liu and Greaver, 2009) and so, reduce CH₄ production. 3) N addition might increase the activity of dissimilatory reducing bacteria and promote Fe^{3+} and $\mathrm{SO_4}^{2-}$ reduction, which consump electrons and so, lead to decrease of CH₄ production (Gauci et al., 2008; Ye et al., 2015). Because of these mechanisms, CH₄ emission is reduced by N fertilization in paddy soils (Fig. 6). These results implied that applying mineral N fertilizers could mitigate greenhouse gas emissions (both CO2 and CH4) in rice cropping paddy systems.

5. Conclusions

The effects of rice rhizodeposits on total and SOM derived CO_2 and CH_4 emissions were measured in paddy soil by continuous ¹³ CO_2 labelling. Rice root growth and rhizodeposits affected the direction of the RPE for CO_2 , which changed from negative (before 40 days) to positive (after 52 days). The RPE for CH_4 was positive, gradually increased with rice growth (correspondingly to amount of rhizodeposits), and was well correlated with the decrease of soil redox potential. N fertilization reduced N competition between rice roots and microorganisms, provided additional electron acceptors, decreased extracellular enzyme activities, and lowered the magnitude of RPE for both CO_2 and CH_4 . Overall, N fertilization and rice growth affected the RPE for CO_2 and CH_4 by altering microbial activity in paddy soil. Thus, optimized N fertilization is necessary to mitigate greenhouse gas emissions from rice field ecosystems by maintaining high C input by roots and so, high C sequestration.

Acknowledgments

This study was supported by the National Natural Science Foundation of China [grant numbers 41671292, 41501321, 41771337], the National Key Research and Development program [grant number 2016YFE0101100], the Youth Innovation Team Project of Institute of Subtropical Agriculture, Chinese Academy of Sciences [grant number 2017QNCXTD_GTD], and the Open Fund of Key Laboratory of Agroecological Processes in Subtropical Region, Chinese Academy of Sciences [grant number ISA2017301]. We thank Public Service Technology Center, Institute of Subtropical Agriculture, Chinese Academy of Sciences for technical assistance. The publication was prepared with the support of the "RUDN University program 5-100".

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx. doi.org/10.1016/j.soilbio.2017.11.001.

References

- Amundson, R., 2001. The carbon budget in soils. Annual Review of Earth and Planetary Sciences 29, 535–562.
- Blagodatskaya, E., Yuyukina, T., Blagodatsky, S., Kuzyakov, Y., 2011. Turnover of soil organic matter and of microbial biomass under C3–C4 vegetation change: consideration of ¹³C fractionation and preferential substrate utilization. Soil Biology and Biochemistry 43, 159–166.
- Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications 20, 30–59.
- Bodelier, P.L.E., 2011. Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Current Opinion in Environmental Sustainability 3, 379–388.
- Bond-Lamberty, B., Thomson, A., 2010. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582.
- Cai, Z., Shan, Y., Xu, H., 2010. Effects of nitrogen fertilization on CH₄ emissions from rice fields. Soil Science and Plant Nutrition 76, 649–651.
- Caldwell, B.A., 2005. Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49, 637–644.
- Canfield, D.E., Glazer, A.N., Falkowski, P.G., 2010. The evolution and future of Earth's nitrogen cycle. Science 330, 192–196.
- Chen, R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Lin, X., Blagodatskaya, E., Kuzyakov, Y., 2014. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biology 20, 2356–2367.
- Cheng, W., Johnson, D.W., Fu, S., 2003. Rhizosphere effects on decomposition. Soil Science Society of America Journal 67, 1418–1427.
- Cheng, W., Parton, W.J., Gonzalezmeler, M.A., Phillips, R., Asao, S., Mcnickle, G.G., Brzostek, E., Jastrow, J.D., 2014. Synthesis and modeling perspectives of rhizosphere priming. New Phytologist 201, 31.
- Conrad, R., Klose, M., Yuan, Q., Lu, Y.H., Chidthaisong, A., 2012. Stable carbon isotope fractionation, carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter. Soil Biology and Biochemistry 49, 193–199.
- DeAngelis, K.M., Lindow, S.E., Firestone, M.K., 2008. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microbiology Ecology 66, 197–207.
- De Visscher, A., Van Cleemput, O., 2003. Induction of enhanced CH₄ oxidation in soils: NH₄⁺ inhibition patterns. Soil Biology and Biochemistry 35, 907–913.
- Dijkstra, F.A., Carrillo, Y., Pendall, E., Morgan, J.A., 2013. Rhizosphere priming: a nutrient perspective. Frontiers in Microbiology 4, 216.
- Dorodnikov, M., Blagodatskaya, E., Blagodatsky, S., Marhan, S., Fangmeier, A., Kuzyakov, Y., 2009. Stimulation of microbial extracellular enzyme activities by elevated CO₂ depends on soil aggregate size. Global Change Biology 15, 1603–1614.
- Dorodnikov, M., Knorr, K.H., Kuzyakov, Y., Wilmking, M., 2011. Plant-mediated CH₄ transport and contribution of photosynthates to methanogenesis at a boreal mire: a C-14 pulse-labeling study. Biogeosciences 8, 2365–2375.
- Fontaine, S., Henault, C., Aamor, A., Bdioui, N., Bloor, J.M.G., Maire, V., Mary, B., Revaillot, S., Maron, P.A., 2011. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology and Biochemistry 43, 86–96.
- Fumoto, T., Kobayashi, K., Li, C., Yagi, K., Hasegawa, T., 2008. Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes. Global Change Biology 14, 382–402.
- Ge, T., Yuan, H., Zhu, H., Wu, X., Nie, S., Liu, C., Tong, C., Wu, J., Brookes, P., 2012. Biological carbon assimilation and dynamics in a flooded rice – soil system. Soil Biology and Biochemistry 48, 39–46.
- Ge, T., Li, B., Zhu, Z., Hu, Y., Yuan, H., Dorodnikov, M., Jones, D.L., Wu, J., Kuzyakov, Y., 2017. Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biology and Fertility of Soils 53, 37–48.
- Gauci, V., Dise, N.B., Howell, G., Jenkins, M.E., 2008. Suppression of rice methane emission by sulfate deposition in simulated acid rain. Journal of Geophysical Research 113, 159–169.
- Guillaume, T., Maranguit, D., Murtilaksono, K., Kuzyakov, Y., 2016. Sensitivity and resistance of soil fertility indicators to land-use changes: new concept and examples from conversion of Indonesian rainforest to plantations. Ecological Indicators 67, 49–57.
- Heuck, C., Weig, A., Spohn, M., 2015. Soil microbial biomass C: N:P stoichiometry and microbial use of organic phosphorus. Soil Biology and Biochemistry 85, 119–129.
- Hodge, A., Stewart, J., Robinson, D., Griffiths, B.S., Fitter, A.H., 2000. Competition between roots and soil micro-organisms for nutrients from nitrogen-rich patches of varying complexity. Journal of Ecology 88, 150–164.
- Jungkunst, H.F., Fiedler, S., 2007. Latitudinal differentiated water table control of carbon dioxide, methane and nitrous oxide fluxes from hydromorphic soils: feedbacks to climate change. Global Change Biology 13, 2668–2683.
- Khalil, M.A.K., Shearer, M.J., Rasmussen, R.A., Xu, L., Liu, J.L., 2008. Methane and nitrous oxide emissions from subtropical rice agriculture in China. Journal of Geophysical Research Biogeosciences 113, 219–220.
- Kirkby, C.A., Richardson, A.E., Wade, L.J., Batten, G.D., Blanchard, C., Kirkegaard, J.A., 2013. Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biology and Biochemistry 60, 77–86.
- Kumar, A., Kuzyakov, Y., Pausch, J., 2016. Maize rhizosphere priming: field estimates using ¹³C natural abundance. Plant and Soil 409, 87–97.

- Kuzyakov, Y., 2006. Sources of CO₂ efflux from soil and review of partitioning methods. Soil Biology and Biochemistry 38, 425–448.
- Kuzyakov, Y., 2010. Priming effects: interactions between living and dead organic matter. Soil Biology and Biochemistry 42, 1363–1371.
- Kuzyakov, Y., Bol, R., 2006. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar. Soil Biology and Biochemistry 38, 747–758.
- Kuzyakov, Y., Domanski, G., 2002. Model for rhizodeposition and CO₂ efflux from planted soil and its validation by ¹⁴C pulse labelling of ryegrass. Plant and Soil 239, 87–102.
- Kuzyakov, Y., Xu, X., 2013. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist 198, 656.
- Kuzyakov, Y., Siniakina, S.V., Ruehlmann, J., Domanski, G., Stahr, K., 2002. Effect of nitrogen fertilisation on below-ground carbon allocation in lettuce. Journal of the Science of Food and Agriculture 82, 1432–1441.
- Liu, L.L., Greaver, T.L., 2009. A review of nitrogen enrichment effects on three biogenic GHGs: the CO₂ sink may be largely offset by stimulated N₂O and CH₄ emission. Ecology Letters 12, 1103–1117.
- Liu, L.L., Greaver, T.L., 2010. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters 13, 819–828.
- Lu, Y., Watanabe, A., Kimura, M., 2002. Contribution of plant-derived carbon to soil microbial biomass dynamics in a paddy rice microcosm. Biology and Fertility of Soils 36, 136–142.
- Marx, M.C., Wood, M., Jarvis, S.C., 2001. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biology and Biochemistry 33, 1633–1640.
- Megonigal, J.P., Hine, M.E., Visscher, P.T., 2004. Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Schlesinger, W.H. (Ed.), Biogeochemistry. Elsevier-Pergamon, Oxford, UK, pp. 317–424.
- Mwafulirwa, L., Baggs, E.M., Russell, J., George, T., Morley, N., Sim, A., de la Fuente Cantó, C., Paterson, E., 2016. Barley genotype influences stabilization of rhizodeposition-derived C and soil organic matter mineralization. Soil Biology and Biochemistry 95, 60–69.
- Nguyen, C., 2003. Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23, 375–396.
- Prasanna, R., Kumar, V., Kumar, S., Kumar Yadav, A., Tripathi, U., Kumar Singh, A., Jain, M.C., Gupta, P., Singh, P.K., Sethunathan, N., 2002. Methane production in rice soil is inhibited by cyanobacteria. Microbiological Research 157, 1–6.
- Phillips, R.P., Finzi, A.C., Bernhardt, E.S., 2011. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO₂ fumigation. Ecology Letters 14, 187–194.

- Reddy, K.R., DeLaune, R.D., 2008. Biogeochemistry of Wetlands: Science and Applications. FL CRC Press, Boca Raton.
- Shahzad, T., Chenu, C., Genet, P., Barot, S., Perveen, N., Mougin, C., Fontaine, S., 2015. Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the PE induced by grassland species. Soil Biology and Biochemistry 80, 146–155.
- Shrestha, M., Shrestha, P.M., Frenzel, P., Conrad, R., 2010. Effect of nitrogen fertilization on methane oxidation, abundance, community structure, and gene expression of methanotrophs in the rice rhizosphere. The ISME Journal 4, 1545–1556.
- Sinsabaugh, R.L., Follstad Shah, J.J., 2012. Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics 43, 313–343.
- Tian, J., Dippold, M., Pausch, J., Blagodatskaya, E., Fan, M., Li, X., Kuzyakov, Y., 2013. Microbial response to rhizodeposition depending on water regimes in paddy soils. Soil Biology and Biochemistry 65, 195–203.
- Wang, X., Tang, C., Severi, J., Butterly, C.R., Baldock, J.A., 2016. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation. New Phytologist 211, 864–873.
- Werth, M., Kuzyakov, Y., 2008. Root-derived carbon in soil respiration and microbial biomass determined by ¹⁴C and ¹³C. Soil Biology and Biochemistry 40, 625–637.
- Wu, J., Joergensen, R.G., Pommerening, B., Chaussod, R., Brookes, P.C., 1990. Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biology and Biochemistry 22, 1167–1169.
- Ye, R., Doane, T.A., Morris, J., Horwath, W.R., 2015. The effect of rice straw on the priming of soil organic matter and methane production in peat soils. Soil Biology and Biochemistry 81, 98–107.
- Yevdokimov, I., Ruser, R., Buegger, F., Marx, M., Munch, J.C., 2006. Microbial immobilisation of ¹³C rhizodeposits in rhizosphere and root-free soil under continuous ¹³C labelling of oats. Soil Biology and Biochemistry 38, 1202–1211.
- Yuan, Q., Pump, J., Conrad, R., 2014. Straw application in paddy soil enhances methane production also from other carbon sources. Biogeosciences 11, 237–246.
- Zang, H., Wang, J., Kuzyakov, Y., 2016. N fertilization decreases soil organic matter decomposition in the rhizosphere. Applied Soil Ecology 108, 47–53.
- Zhu, B., Cheng, W., 2011. PE increases the temperature sensitivity of soil organic matter decomposition. Global Change Biology 17, 2172–2183.
- Zhu, B., Cheng, W., 2012. Nodulated soybean enhances PEs on soil organic matter decomposition more than non-nodulated soybean. Soil Biology and Biochemistry 51, 56–65.
- Zhu, B., Gutknecht, J.L.M., Herman, D.J., Keck, D.C., Firestone, M.K., Cheng, W., 2014. PEs on soil carbon and nitrogen mineralization. Soil Biology and Biochemistry 76, 183–192.