

Soil Biology & Biochemistry 40 (2008) 625-637

Soil Biology & Biochemistry

www.elsevier.com/locate/soilbio

Root-derived carbon in soil respiration and microbial biomass determined by ¹⁴C and ¹³C

M. Werth^{a,*}, Y. Kuzyakov^b

^aDepartment of Systematic Botany and Ecology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany ^bDepartment of Agroecosystem Research, University of Bayreuth, 95440 Bayreuth, Germany

Received 13 March 2007; received in revised form 11 September 2007; accepted 19 September 2007 Available online 16 October 2007

Abstract

Two approaches to quantitatively estimating root-derived carbon in soil CO₂ efflux and in microbial biomass were compared under controlled conditions. In the ¹⁴C labelling approach, maize (*Zea mays*) was pulse labelled and the tracer was chased in plant and soil compartments. Root-derived carbon in CO₂ efflux and in microbial biomass was estimated based on a linear relationship between the plant shoots and the below-ground compartment. Since the maize plants were grown on C₃ soil, in a second approach the differences in ¹³C natural abundance between C₃ and C₄ plants were used to calculate root-derived carbon in the CO₂ efflux and in the microbial biomass. The root-derived carbon in the total CO₂ efflux was between 69% and 94% using the ¹⁴C labelling approach and between 86% and 94% in the natural ¹³C labelling approach. At a ¹³C fractionation measured to be 5.2‰ between soil organic matter (SOM) and CO₂, the root-derived contribution to CO₂ ranged from 70% to 88% and was much closer to the results of the ¹⁴C labelling approach. Root-derived contributions to the microbial biomass carbon ranged from 2% to 9% using ¹⁴C labelling and from 16% to 36% using natural ¹³C labelling. At a 3.2‰ ¹³C fractionation between SOM and microbial biomass, both labelling approaches yielded an equal contribution of root-derived C in the microbial biomass. Both approaches may therefore be used to partition CO₂ efflux and to quantify the C sources of microbial biomass. However, the assumed ¹³C fractionation strongly affects the contributions of individual C sources. © 2007 Elsevier Ltd. All rights reserved.

Keywords: ¹⁴C pulse labelling; ¹³C natural abundance; Isotopic fractionation; Rhizosphere; Soil organic matter; Soil respiration

1. Introduction

Carbon dioxide (CO₂) efflux from soils is an important component of the global carbon (C) cycle and related to global climatic change because increasing amounts of CO₂ in the atmosphere promote the greenhouse effect. Small changes in the turnover intensity of soil organic matter (SOM) could significantly alter the CO₂ concentration in the atmosphere: the amount of C in SOM approximately doubles the amount of C in the atmosphere (Grace, 2004). These small variations in the decomposition intensity of SOM cannot be determined directly by measuring organic C contents because changes in soil organic C are very small during short periods (e.g. 1-3% during a single vegetative growth season). Alternatively, measuring CO₂ efflux from soil is commonly used to investigate short-term SOM turnover. This method is sensitive enough to detect small and actual changes, especially for recently altered ecosystems (Kuzyakov and Cheng, 2001). Most soils, however, are covered with vegetation, which also contributes to the CO₂ efflux from soil. Therefore, CO₂ efflux from planted soil consists of SOM- and root-derived CO₂. The latter can be further subdivided into root respiration and rhizomicrobial respiration of rhizodeposits (exudates, lysates, etc.). This separation is exceptionally difficult, since plant roots and rhizosphere microorganisms use the same C source, i.e. plant assimilates. It is much easier to separate CO₂ from microbial decomposition of SOM and root-derived CO₂, i.e. the sum of root respiration and respiration of rhizosphere microorganisms consuming rhizodeposits. Since root-derived CO₂ is not part of soil C loss, partitioning the total CO_2 efflux from soil is very important to identify individual sinks or sources of CO₂.

^{*}Corresponding author. Tel.: +497315022693; fax +497315022720. *E-mail address:* martin.werth@uni-ulm.de (M. Werth).

^{0038-0717/\$ -} see front matter \odot 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.soilbio.2007.09.022

CO₂ derived from SOM decomposition and that derived from the roots can be partitioned and quantified by isotopic labelling of plants with ¹³C or ¹⁴C isotopes and tracing the label in root-derived CO₂ (Warembourg and Paul, 1977; Andrews et al., 1999). Besides artificial labelling techniques, the difference in the natural abundances of ¹³C in C₃ plants $(-35\% \leq \delta^{13}C \leq -20\%)$ and in C₄ plants $(-15\% \leq \delta^{13}C \leq -7\%)$ can also be used as a natural C tracer (Cheng, 1996; Qian et al., 1997; Rochette and Flanagan, 1997: Ekblad and Högberg, 2001: Kuzvakov and Cheng, 2001). The difference between the labelled fraction and the total CO₂ efflux represents CO₂ from SOM decomposition. Non-isotopic methods to separate root- from SOM-derived CO₂, such as a combination of trenching and excised-root methods, have also been used (Kelting et al., 1998; Chen et al., 2006). The results vary strongly depending on plants, soils and environmental and experimental conditions. By in situ¹⁴C labelling of Canadian prairie grass, Warembourg and Paul (1977) found low contributions (19%) of root-derived CO_2 to the total CO_2 efflux from soil. On the other hand, under controlled conditions, Chen et al. (2006) reported very high contributions of root-derived CO₂, with values of up to 99% in a ryegrass (Lolium perenne L.) rhizosphere. Various studies under controlled conditions have found results within this range (Robinson and Scrimgeour, 1995; Qian et al., 1997; Kuzyakov and Cheng, 2001; Lin et al., 2001), with an average contribution of 59+23% root-derived CO₂. The broad variability of these results indicates that there is urgent need to find a reproducible standard method including a protocol for standardized soil preparation, plant age and growing conditions and analytical procedures.

The turnover of SOM and rhizodeposits is caused by the soil microbial biomass, which derives its energy from oxidising soil organic C. Both the plant residue C and the rhizodeposits pass through the soil microbial biomass at least once as they are transferred from one C pool to another and finally mineralised to CO₂ (Ryan and Aravena, 1994). In a system of C₃-C₄-vegetation change, active microorganisms can be identified by high contributions of the C₄ source to their δ^{13} C signature, since this is an indicator of food uptake from recently assimilated C. Alternatively, active rhizosphere microorganisms can be determined by the ¹⁴C tracer after labelling of plants followed by a rhizodeposition of this tracer. Root-derived C—i.e. C₄-derived C—ranges for instance from 9% to 52% in the soil microbial biomass after 110 days of maize growth (Liang et al., 2002). Several other studies using ^{13}C or ¹⁴C labelling techniques have found contributions of root-derived C within this range (Merckx et al., 1987; Ryan and Aravena, 1994; Angers et al., 1995; Bruulsema and Duxbury, 1996; Qian and Doran, 1996; Rochette et al., 1999; Gregorich et al., 2000).

Fractionations between the substrate, the microbial biomass, and the microbially respired CO_2 have not always been considered in earlier studies or it was assumed that the fractionation is not significantly different from zero (Cheng, 1996; Ekblad and Högberg, 2000; Ekblad et al., 2002).

However, control treatments without plants allow these fractionations to be determined. Several studies have considered ¹³C fractionations between the substrate, the microbial biomass, and the CO₂ (Mary et al., 1992; Schweizer et al., 1999; Šantrůčková et al., 2000; Fernandez and Cadisch, 2003; Kristiansen et al., 2004). In order to identify the impact of isotopic fractionation on root-derived C contributions, we used the natural ¹³C labelling technique with and without consideration of ¹³C fractionation.

Determining root-derived contributions to belowground C pools using the ¹⁴C pulse labelling technique and the natural ¹³C labelling technique has often led to different, sometimes contrasting results. This is because both methods are based on different assumptions, their sensitivity strongly differs and the distributions of the tracer could vary. The ¹⁴C pulse labelling technique allows the distribution of recently assimilated C at specific plant development stages to be determined, but the partitioning of the tracer into plant and soil pools has to be completed on the sampling date. The distribution of plant-derived C to below-ground pools can only be determined for the whole growth period by repeated labelling pulses. In contrast, natural ¹³C labelling is equivalent to a continuous labelling approach, which does not focus on recently assimilated carbon but on the total plant-derived carbon in plant and soil pools, i.e. sampling can be done at any time. On short time scales, however, both methods should produce similar results. It is unclear whether differences between the two methods reflect differences in plants, soils, experimental conditions, etc. or whether they are methodological artefacts. This calls for applying both methods under exactly the same experimental conditions, preferably in the same experiment.

The objective of this study was to determine the contributions of maize-root-derived carbon to the CO₂ efflux from soil and to the soil microbial biomass. Two approaches were compared: (a) the ¹⁴C pulse labelling approach and (b) the natural ¹³C labelling technique. In the former, maize plants were artificially labelled with ¹⁴CO₂ and the tracer was chased in plant and soil pools. The amount of total root-derived C in CO2 or microbial biomass was then calculated with a linear function according to Kuzyakov et al. (1999). In the natural ¹³C labelling technique (Balesdent and Mariotti, 1996), ¹³C natural abundance was used by growing maize as a C₄ plant on a soil developed solely under C₃ vegetation ('C₃ soil'). Hence, four specific δ^{13} C values were used in mass balances to determine the contributions of root-derived C to CO₂ efflux and microbial biomass.

2. Materials and methods

2.1. Experimental set-up

Maize plants (*Zea mays* L.) were grown under controlled laboratory conditions in 20 pots filled with a loamy Haplic Luvisol from loess with C_3 vegetation history (*Lolium*)

perenne L.), collected from the University of Hohenheim's research farm 'Heidfeldhof' in Stuttgart, Germany. The maize seeds (cv. Tassilo) were germinated on wet filter paper. One day after germination the seedlings were transferred to 250 ml polycarbonate filtration devices (SM16510/11, Sartorius, Göttingen, Germany) filled with 400 g of the C₃ soil (pH(CaCl₂) = 6.0), one plant per container (Fig. 1). A control treatment with one unplanted pot per sampling date was established, which was treated exactly in the same way as the planted treatment. One day before the start of CO₂ trapping, the holes in the pots around the plant shoots were sealed with a 1-cm-thick silicone rubber layer (TACOSIL 145, Thauer & Co., Dresden, Germany) between roots and shoots, and the seal was tested for air leaks. Trapping of CO₂ from soil air started on day 9 after germination in a closed system for each plant (or control treatment). Air was pumped through every single pot from bottom to top by a membrane pump (Type 113, Rietschle Thomas, Memmingen, Germany; pumping rate $100 \,\mathrm{ml\,min^{-1}}$), which was connected to the pot by a polyvinyl chloride (PVC) tube (Fig. 1). Another PVC tube was connected to the top outlet of the filter device and to a CO₂ trapping tube filled with 20 ml 1 M

sodium hydroxide (NaOH) solution. The output of the

Fig. 1. Experimental set-up for trapping of below-ground CO_2 in NaOH solution (redrawn from Werth et al., 2006). White arrows show airflow.

trapping tube was connected to the input of the membrane pump. Therefore, the air containing CO_2 evolved from soil respiration circulated in a closed system. Firstly, the air was pumped through the pot, with any CO_2 from total soil respiration being trapped in NaOH solution. Secondly, the remaining CO_2 -free air coming from the NaOH trapping tube was pumped back through the pot. Thus, the air cycling was closed and was done continuously by the membrane pump. This completely prevented CO_2 losses and contamination with air CO_2 .

The soil moisture was maintained at about 25% of the gravimetrical water content throughout the experiment by controlling the pots' weights after the first water addition. On days 9, 15, 21, 27 and 33 after germination, a full fertilizer (5 kg nitrate-N ha⁻¹, 0.4 kg monophosphate-P ha⁻¹, 10 kg K⁺ ha⁻¹; see Werth and Kuzyakov 2005 for further details) was added with the water to the soil from 1–5 times depending on the date of sampling of the pots.

2.2. ¹⁴C pulse labelling

On day 9 after germination, the 20 maize plants were labelled for the first time. All sealed pots with plants were placed into a Plexiglas chamber $(0.5 \times 0.5 \times 0.6 \text{ m}^3)$ for the labelling procedure described in detail by Cheng et al. (1993). Briefly, the chamber was connected by tubing with a flask containing 2.0 ml 1 mM Na¹⁴₂CO₃ solution to which $5 \text{ ml s} H_2SO_4$ was added to produce ${}^{14}CO_2$. The plants were labelled during 2.5 h in the ${}^{14}CO_2$ atmosphere. Usually, about 30 min of labelling time are required for C₄ plants to reach the CO₂ compensation point (Kuzyakov and Cheng, 2004). A longer time period was used in our experiment to increase the ¹⁴C incorporation into plant biomass. Before opening the labelling chamber, the chamber air was pumped through 1 M NaOH solution to remove unassimilated $^{14}CO_2$. Activities of unassimilated 14 CO₂ and of the 14 C residue in the Na₂¹⁴CO₃ source were subtracted from the total ¹⁴C present in the flask prior to labelling in order to calculate the total ¹⁴C input activity. The latter was divided by the number of plants in the labelling chamber, yielding an input activity of 246.7 kBq per plant. After labelling, the chamber was opened and the trapping of CO₂ evolved by root respiration was started. The same labelling procedure was repeated on days 15, 21, 27 and 33 with a total of 16, 12, 8 and 4 plants in the chamber, respectively. The ¹⁴C input activity was adjusted by the reduced numbers of plants in the labelling chamber (0.1 ml 1 mM Na¹⁴₂CO₃ solution per plant).

2.3. Sampling and analyses

One week after labelling, soil and plants were destructively sampled in four replicates (i.e. one replicate for the control treatment) on days 16, 22, 28, 34 and 40 after germination. At harvest, each shoot was cut at the base, the lid of the pot was opened and each root-soil column pulled out of the pot. Bulk soil was sampled by cutting a small wedge into the soil column from the edge towards the centre. We then loosened the soil column from the edge and discarded the soil falling down. The soil still adhering to the roots was collected as the inner rhizosphere fraction and was used later on for microbial biomass δ^{13} C analyses. The moist soil samples were immediately frozen until preparation for microbial biomass. The roots were carefully washed with deionised water to remove soil particles. Shoots and roots were dried at 40 °C. CO₂ trapped in NaOH was sampled on the harvest days and additionally once to twice between two harvest days.

To estimate total CO₂ efflux, the CO₂ trapped in NaOH solution was precipitated with 0.5 M barium chloride (BaCl₂) solution and then the NaOH was titrated with 0.2 M hydrochloric acid (HCl) against phenolphthalein indicator (Zibilske, 1994). Soil microbial biomass was determined by the chloroform fumigation extraction method (modified after Vance et al., 1987): roots were removed from the unfrozen soil by handpicking, and 10 g of soil were extracted with 40 ml of 0.05 M potassium sulphate (K_2SO_4) solution. Another 10 g of soil were firstly fumigated with chloroform for 24 h and then extracted in the same way. The K₂SO₄ and soil mixtures were shaken for 1 h at 200 rev min⁻¹, centrifuged at 3000 rev min⁻¹ for 10 min, and then filtrated through a ceramic vacuum filter. The extracts were frozen until analyses for total C concentrations were done with a Dimatoc-100 TOC/TIC analyser (Dimatec, Essen, Germany). The microbial biomass C concentration was calculated from these results using a $k_{\rm EC}$ value of 0.45 (Wu et al., 1990) and is presented in percent of dry soil. The soil water content was determined in another 10g of soil, which was dried at 105 °C. These soil samples and the plant samples were ground with a ball mill before analysis. The C concentration in shoots, roots, and soil was measured with a Euro EA C/N analyser (EuroVector, Milan, Italy).

The ¹⁴C activity of ¹⁴CO₂ trapped in NaOH solution was measured in 2ml aliquots added to 4ml scintillation cocktail Rotiszint Eco Plus (Carl Roth, Karlsruhe, Germany) after decay of chemiluminescence. ¹⁴C activity was measured using a Wallac 1411 Liquid Scintillation Counter (Wallac Oy, Turku, Finland). The ¹⁴C counting efficiency was about 85% and the ¹⁴C activity measurement error did not exceed 2%. The absolute ¹⁴C activity was standardised by addition of NaOH solution as quencher to the scintillation cocktail and using the spectrum of an external standard (SQP(E) method). ¹⁴C in solid samples (dried shoots, roots, and soil) was measured on the liquid scintillation counter after combustion of 200 mg of plant samples or 1g of soil samples within an oxidizer unit (Model 307, Canberra Packard Ltd., Meriden, USA), absorption of the ¹⁴C in Carbo-Sorb E (Perkin-Elmer, Inc., Boston, USA), and addition of the scintillation cocktail Permafluor E^+ (Perkin-Elmer, Inc.).

A Thermo Finnigan MAT Delta plus Advantage isotope ratio mass spectrometer (IRMS from Thermo Electron Corporation, Waltham, USA) was coupled to the C/N analyser to measure δ^{13} C values in shoots, roots and soil. Since only solid samples could be analysed by the IRMS unit, the CO_2 and microbial biomass samples had to be specifically prepared. Any CO₂ trapped as sodium carbonate (Na₂CO₃) in 5 ml of NaOH was precipitated with 5 ml of 0.5 M strontium chloride (SrCl₂) aqueous solution. To prevent fractionation in this step, carbonate was completely precipitated to a maximum of 2.6×10^{-5} % of the total CO₂-C absorbed by NaOH remaining in the solution. The maximum residue in the NaOH solution was calculated according to the SrCO₃ solubility product. The NaOH solutions containing the SrCO₃ precipitants were then centrifuged three times at 3000 rev min⁻¹ for 10 min and washed in between with deionised and degassed water to remove NaOH and to reach a pH of 7. Keeping the tubes opened for washing as briefly as possible prevented contamination by atmospheric CO₂ during sample preparation. After washing, the remaining water was removed from the vials and the SrCO₃ was dried at 105 °C. The SrCO₃ was analysed on the IRMS for δ^{13} C values. For the microbial biomass, an aliquot of the K₂SO₄ samples was pipetted directly into tin capsules and dried at 60 °C prior to IRMS analyses.

2.4. Calculations

The ¹⁴C activity found in a certain compartment (a_{ct} , i.e. shoot, root, soil, CO₂ or microbial biomass) was related to the total ¹⁴C recovery after sampling, i.e. the sum of ¹⁴C activity in shoots (a_{shoot}), roots (a_{root}), soil (a_{soil}) and CO₂ (a_{CO_2}), and was termed ¹⁴C_{ct} (data are shown in Fig. 3):

$$^{14}C_{\rm ct} = \frac{a_{\rm ct}}{a_{\rm shoot} + a_{\rm root} + a_{\rm soil} + a_{\rm CO_2}} \times 100\%.$$
 (1)

Root-derived C in CO₂ and microbial biomass were calculated based on ¹⁴C activity in the plant shoots (¹⁴C_{shoot}); the total amount of carbon in the shoots (C_{shoot}) and the ¹⁴C activity in CO₂ (¹⁴C_{CO₂}) and microbial biomass (¹⁴C_{MB}) according to Kuzyakov et al. (1999) (data are shown in Table 1 and Fig. 3):

$$C_{\text{maize-ct}} = C_{\text{shoot}} \times \frac{{}^{14}C_{\text{ct}}}{{}^{14}C_{\text{shoot}}},$$
(2)

where $C_{\text{maize-ct}}$ is the amount of maize-derived C in a compartment (CO₂ or microbial biomass) and ¹⁴C_{ct} is the ¹⁴C activity in that compartment related to the total recovery (Eq. (1)). The ¹⁴C activity and the amount of C in the shoots were chosen as a reference because these can be measured more accurately in the shoots compared with the roots, where adhering soil particles increase the root mass in all replicates. The amount of maizederived carbon ($C_{\text{maize-ct}}$) was then related to the amount of total carbon in a compartment ($C_{\text{total-ct}}$) and was termed $f_{\text{maize-ct}}$:

$$f_{\text{maize-ct}} = \frac{C_{\text{maize-ct}}}{C_{\text{total-ct}}} \times 100\%.$$
(3)

Table 1

Days of maize growth	Shoots C (mg)	Roots C (mg)	Soil C (mg)	CO ₂ C (mg)	Microbial biomass C (mg)
Maize on C_3 soil					
16	265 ± 12	86 ± 11	5886 ± 211	111 ± 5	125 ± 13
22	451 ± 31	108 ± 11	5831 ± 198	181 ± 17	80 ± 13
28	634 ± 46	153 ± 7	5697 ± 944	232 ± 11	98 ± 9
34	872 ± 97	198 ± 23	5846 ± 190	286 ± 11	84 ± 11
40	1329 ± 66	228 ± 6	5659 ± 205	359 ± 9	83 ± 4
Unplanted C_3 soil					
16	n.a.	n.a.	5972	63	122
22	n.a.	n.a.	5930	72	81
28	n.a.	n.a.	6003	80	68
34	n.a.	n.a.	5857 ± 3	113 ± 11	74
40	n.a.	n.a.	5651 ± 175	121 ± 5	83

Carbon in shoots, roots, bulk soil, cumulative CO₂ efflux and microbial biomass on five sampling dates of maize grown on C₃ soil (means \pm SD, n = 4) and of unplanted C₃ soil (means \pm SD, $1 \le n \le 2$).

n.a.: not applicable.

CO2 was trapped for 7, 14, 21, 28 and 35 days on sampling days 16, 22, 28, 34 and 40, respectively

A mass balance equation was used to determine the δ^{13} C value of microbial biomass ($\delta^{13}C_{MB}$):

$$\delta^{13} C_{\rm MB} = \frac{\delta^{13} C_{\rm fum} \times C_{\rm fum} - \delta^{13} C_{\rm nf} \times C_{\rm nf}}{C_{\rm fum} - C_{\rm nf}},\tag{4}$$

where $\delta^{13}C_{\text{fum}}$ and $\delta^{13}C_{\text{nf}}$ are the $\delta^{13}C$ values of the funigated and non-funigated samples, respectively, and C_{fum} and C_{nf} are the amounts of C in the funigated and non-funigated K₂SO₄ samples, respectively.

In the beginning of every CO_2 trapping, a small volume of atmospheric CO_2 was present in the closed system, especially in the soil pore space and in the trapping tube above the NaOH solution. We eliminated this atmospheric CO_2 from the measured $\delta^{13}C$ value using a mass balance equation

$$\delta^{13}C_{\rm CO_2} = \frac{\delta^{13}C_{\rm total} \times C_{\rm total} - \delta^{13}C_{\rm air} \times C_{\rm air}}{C_{\rm total} - C_{\rm air}},\tag{5}$$

where $\delta^{13}C_{\rm CO_2}$ is the corrected δ^{13} C value of soil air without atmospheric air, $\delta^{13}C_{\rm total}$ is the measured δ^{13} C value of CO₂, $\delta^{13}C_{\rm air}$ is the δ^{13} C value of ambient air (-7.8‰, see Boutton, 1991), $C_{\rm total}$ is the amount of CO₂-C trapped in NaOH, and $C_{\rm air}$ is the amount of C in the soil pore space and the trapping tube in our closed system (0.024 mg C) calculated from a CO₂ concentration of 345 mg kg⁻¹ (Boutton, 1991) and the volume of air in the system.

After having calculated the δ^{13} C of microbial biomass (Eq. (4)) and the corrected δ^{13} C of total CO₂ efflux (Eq. (5)), it became possible to calculate the contributions of the C₄ plant source C to below-ground CO₂ ($f_{C_4-CO_2}$) and to microbial biomass (f_{C_4-MB}):

$$f_{C_4-CO_2} = \frac{\delta^{13} C_{CO_2} - \delta^{13} C_{SOM}}{\delta^{13} C_{maize} - \delta^{13} C_{SOM}} \times 100\%,$$
(6)

$$f_{C_4-MB} = \frac{\delta^{13}C_{MB} - \delta^{13}C_{SOM}}{\delta^{13}C_{maize} - \delta^{13}C_{SOM}} \times 100\%,$$
(7)

where $\delta^{13}C_{\text{maize}}$ is the δ^{13} C value of maize roots and $\delta^{13}C_{\text{SOM}}$ is the δ^{13} C value of SOM from unplanted soil (data are shown in Table 2).

Isotopic fractionations were considered between SOM and SOM-derived CO₂, between SOM and microbial biomass, and between rhizodeposits and microbial biomass. The fractionation between maize rhizodeposits and microbial biomass was assumed to be the same as the fractionation between SOM and microbial biomass. Since the δ^{13} C value of root-derived CO₂ is dominated by the δ^{13} C value of CO₂ from root respiration, we assumed no ¹³C fractionation between root-derived C and CO₂ according to Werth and Kuzyakov (2006). Considering these fractionations, $\delta^{13}C_{\text{SOM}}$ in Eq. (6) was replaced by $\delta^{13}C_{\text{SOM}-\text{CO}_2}$, $\delta^{13}C_{\text{SOM}}$ in Eq. (7) was replaced by $\delta^{13}C_{\text{SOM}-\text{MB}}$, and $\delta^{13}C_{\text{maize}}$ in Eq. (7) was replaced by $\delta^{13}C_{\text{maize}-\text{MB}}$:

$$\delta^{13}C_{\text{SOM-CO}_2} = \delta^{13}C_{\text{SOM}} + \varepsilon_{\text{SOM-CO}_2},\tag{8}$$

$$\delta^{13}C_{\text{SOM-MB}} = \delta^{13}C_{\text{SOM}} + \varepsilon_{\text{SOM-MB}},\tag{9}$$

$$\delta^{13}C_{\text{maize-MB}} = \delta^{13}C_{\text{maize}} + \varepsilon_{\text{SOM-MB}},\tag{10}$$

where $\varepsilon_{\text{SOM}-\text{CO}_2}$ and $\varepsilon_{\text{SOM}-\text{MB}}$ are ¹³C isotopic fractionations as absolute values in ‰ between SOM and CO₂ and between SOM and microbial biomass from unplanted soil, respectively.

Standard deviations (SD) were calculated as a variability parameter for all our results. We used a one-way analysis of variance (ANOVA) to identify differences between δ^{13} C values of various below-ground carbon pools, between 14 C recoveries at the five sampling dates in a certain pool, between maize-derived CO₂ contributions calculated by 14 C or 13 C tracers at a certain sampling date, and between maize-derived C contributions to the microbial biomass calculated by 14 C or 13 C tracers at a certain sampling date. A Fisher LSD test was used as *post hoc* test to identify individual differences. Where variances were not equal, Table 2

 δ^{13} C values of shoots, roots, bulk soil, CO₂ efflux and microbial biomass on five sampling dates of maize grown on C₃ soil (means ± SD, n = 4) and of unplanted C₃ soil (means ± SD, $1 \le n \le 2$)

		δ ¹³ C (‰)						
Shoots	Roots	Soil	CO ₂	Microbial biomass				
-15.2 ± 0.1	-14.9 ± 0.2	-26.7 ± 0.4	-16.9 ± 0.0	-24.6 ± 0.9				
-15.8 ± 0.1	-15.7 ± 0.3	-26.9 ± 0.1	-16.7 ± 0.5	-25.1 ± 0.2				
-16.2 ± 0.1	-16.0 ± 0.1	-26.9 ± 0.1	-17.9 ± 0.2	-23.4 ± 0.3				
-16.0 ± 0.1	-16.1 ± 0.2	-26.5 ± 0.4	-16.8 ± 0.3	-23.0 ± 0.5				
-16.2 ± 0.1	-16.2 ± 0.2	-26.7 ± 0.1	-16.7 ± 0.8	-22.5 ± 0.7				
n.a.	n.a.	-26.8	-18.6	n.d.				
n.a.	n.a.	-27.0	-21.9	-23.0				
n.a.	n.a.	-27.3	-21.2	-23.1				
n.a.	n.a.	-26.9 ± 0.1	-21.7	-24.9 ± 0.6				
n.a.	n.a.	-26.8 ± 0.1	-22.6	-24.2				
	Shoots -15.2 ± 0.1 -15.8 ± 0.1 -16.2 ± 0.1 -16.0 ± 0.1 -16.2 ± 0.1 n.a. n.a. n.a. n.a. n.a. n.a.	ShootsRoots -15.2 ± 0.1 -14.9 ± 0.2 -15.8 ± 0.1 -15.7 ± 0.3 -16.2 ± 0.1 -16.0 ± 0.1 -16.0 ± 0.1 -16.1 ± 0.2 -16.2 ± 0.1 -16.2 ± 0.2 n.a.n.a.n.a.n.a.n.a.n.a.n.a.n.a.n.a.n.a.n.a.n.a.n.a.n.a.	ShootsRootsSoil -15.2 ± 0.1 -14.9 ± 0.2 -26.7 ± 0.4 -15.8 ± 0.1 -15.7 ± 0.3 -26.9 ± 0.1 -16.2 ± 0.1 -16.0 ± 0.1 -26.9 ± 0.1 -16.0 ± 0.1 -16.1 ± 0.2 -26.5 ± 0.4 -16.2 ± 0.1 -16.2 ± 0.2 -26.7 ± 0.1 n.a.n.a.n.a. -27.0 n.a.n.a. -27.3 n.a.n.a. -26.9 ± 0.1 n.a.n.a. -26.8 ± 0.1	ShootsRootsSoil CO_2 -15.2 ± 0.1 -14.9 ± 0.2 -26.7 ± 0.4 -16.9 ± 0.0 -15.8 ± 0.1 -15.7 ± 0.3 -26.9 ± 0.1 -16.7 ± 0.5 -16.2 ± 0.1 -16.0 ± 0.1 -26.9 ± 0.1 -17.9 ± 0.2 -16.0 ± 0.1 -16.1 ± 0.2 -26.5 ± 0.4 -16.8 ± 0.3 -16.2 ± 0.1 -16.2 ± 0.2 -26.7 ± 0.1 -16.7 ± 0.8 n.a.n.a. -26.8 -18.6 n.a.n.a. -27.3 -21.2 n.a.n.a. -27.3 -21.2 n.a.n.a. -26.9 ± 0.1 -21.7 n.a.n.a. -26.8 ± 0.1 -22.6				

n.a. - not applicable.

n.d. - not determined.

a Studentised maximum modulus test had to be applied as *post hoc* test. Statistics were calculated with the SPSS 10.0 package.

3. Results

3.1. Plant and soil carbon pools

Between days 16 and 34 the amount of C in the maize shoots increased linearly by 33.4 mg C d^{-1} (Fig. 2a). Continuing this linear trend would lead to 1057 mg C on average in the shoots on day 40, but the actual amount of C was about 300 mg higher on the last sampling date (Table 1). Hence, the shoot biomass was no longer increasing linearly between days 34 and 40 (but rather exponentially). The maize roots grew linearly and gained 142 mg C within the whole sampling period of 24 days (Fig. 2b). Such a linear increase of shoot and root biomass is a prerequisite for calculating the root-derived C contributions to the microbial biomass and the CO₂ efflux by Eq. (3).

The amount of C in the soil planted with maize was constant during the whole growth period, averaging 5784 mg C (Table 1). Although the roots were growing and increasing amounts of rhizodeposits should have been supplied, the amount of C in the microbial biomass was also constant at 86 mg C on average from days 22-40 (Table 1). On the first sampling date, however, the amount of C in the microbial biomass was significantly higher (P < 0.05) compared with the following dates. Significant differences could not be tested between the maize soil and the unplanted soil because only one to two soil samples per date were available for the unplanted soil. Since total C of the unplanted soil was always within the standard deviation of the related sample in the planted soil, no significant difference between the two treatments can be assumed. A similar relationship between planted and

unplanted treatments was found for the amounts of C in the microbial biomass. The cumulative CO_2 efflux from the planted soil increased linearly from 8.5 mg C d⁻¹ between days 22 and 28 to 12.3 mg C d⁻¹ between days 34 and 40 (Table 1). In contrast, the control pots without plants showed a reduced rate of increase (from 1.4 mg C d⁻¹ minimum between days 34 and 40 to 5.4 mg C d⁻¹ maximum between days 24 and 34).

3.2. ¹⁴C activities

The mean ¹⁴C activities recovered from the inputs per plant from sampling dates 16-40 were: 62.1+17.8%, $47.8 \pm 9.7\%$, $37.7 \pm 4.8\%$, $35.7 \pm 5.8\%$ and $36.0 \pm 2.6\%$ (Table 3). After every additional ¹⁴C pulse, the total radioactivity, however, increased in all pools. Most ¹⁴C was allocated to the maize shoots. A maximum of 9 kBg ¹⁴C was translocated into the soil at the end of the experiment. The ¹⁴C activity in the soil microbial biomass made up about one-third at maximum of the ¹⁴C activity in the soil. The loss of ¹⁴C label by shoot respiration increased from one-third to two-third of the input until the end of the experiment. The partitioning of ¹⁴C activity into the five different pools in relation to the total recovery was constant throughout the experiment (Fig. 3). It amounted on average to $67.1\pm1.6\%$ for shoots, $10.2\pm0.8\%$ for roots, $1.9\pm0.6\%$ for the soil, $20.7\pm1.4\%$ for the CO₂ efflux, and $0.5 \pm 0.3\%$ for the microbial biomass (the latter not shown in Fig. 3). Only on the first sampling there was significantly more ¹⁴C in the soil than on the other sampling dates (P < 0.05).

3.3. $\delta^{13}C$ values

Between days 16 and 40, the δ^{13} C values of maize shoots and roots decreased significantly (*P*<0.001), by 1.0‰ for the shoots and by 1.3‰ for the roots (Table 2). The δ^{13} C of

Fig. 2. Linear regressions of amounts of carbon (closed diamonds) in (a) maize shoots and (b) maize roots towards time of maize growth (n = 4). The amounts of carbon on day 40 in the shoots (open diamonds) are not included in the linear function.

Table 3	
Average 1	4 C activity (n = 4) per plant container in plant and soil pools after repeated labelling of maize shoots in a 14 CO ₂ atmosphere

	Days of maize growth				
	16	22	28	34	40
Days of 14 C pulse labelling ${}^{14}C$ activity (kBq)	9	9, 15	9, 15, 21	9, 15, 21, 27	9, 15, 21, 27, 33
Total input	246.4	493.1	739.7	986.4	1233.0
Shoots	102.3 ± 44.8	163.9 ± 46.5	182.7 ± 25.1	238.7 ± 39.9	302.4 ± 31.0
Roots	16.0 ± 3.5	23.8 ± 2.2	29.2 ± 2.8	36.9 ± 6.1	39.5 ± 3.4
Soil	4.1 ± 0.6	4.1 ± 0.3	3.4 ± 0.6	6.6 ± 2.2	8.8 ± 1.2
CO ₂	30.6 ± 19.5	43.9 ± 7.7	63.2 ± 8.5	70.0 ± 19.0	93.5 ± 1.8
Sum of recovery	153.1 ± 43.9	235.5 ± 47.9	278.6 ± 35.5	352.1 ± 57.4	444.1 ± 32.4
Microbial biomass Loss by shoot respiration	1.3 ± 0.3 93.4 ± 43.9	0.5 ± 0.2 257.5 ± 47.9	0.9 ± 0.2 461.2 ± 35.5	$\begin{array}{c} 2.1 \pm 0.6 \\ 634.2 \pm 57.4 \end{array}$	2.0 ± 0.6 788.9 ± 32.4

Fig. 3. Partitioning of ¹⁴C activity into maize shoots (hatched shading), roots (white shading), bulk soil (black shading), and CO₂ efflux (dotted shading). Shoots were consecutively pulse-labelled, 7 days before the harvest date indicated on the figure (total of 1–5 pulses). Values are means (n = 4) with standard deviations shown to one side of the bars only. Significant differences between sampling dates within one type of pool are labelled as *, i.e. P < 0.05.

the total CO₂ efflux from planted soil (-16.9‰ on average over time) was, by 1‰, significantly more negative (P < 0.05) than the δ^{13} C of the roots. Nevertheless, δ^{13} C values of roots and CO₂ were very close. The δ^{13} C values of CO₂ presented in Table 2 were corrected by Eq. (5) for small amounts of air CO₂ remaining in the soil pores and in the trapping tube. This correction made the δ^{13} C values of below-ground CO₂ slightly more negative compared with uncorrected data, but this difference was less than 0.02‰. The δ^{13} C of SOM was constant and amounted to -26.8‰. Until day 40, the δ^{13} C of microbial biomass increased from -24.6‰ to -22.5‰; the mean value was -23.7‰, which was significantly more positive than the mean δ^{13} C value of SOM (P < 0.001).

The average δ^{13} C of SOM in unplanted soil (-27.0‰) was the same as in planted soil (Table 2). In the total CO₂ efflux of unplanted soil, the mean δ^{13} C between days 22 and 40 was -21.8‰. The mean δ^{13} C of microbial biomass

between days 22 and 40 was intermediate between these two values (-23.8‰). Consequently, there was a ¹³C fractionation of about 3.2‰ between organic matter in unplanted soil and microbial biomass ($\varepsilon_{\text{SOM}-\text{MB}}$, P < 0.001), and of 2.0‰ between microbial biomass and microbially respired CO₂ (P < 0.05). The fractionation $\varepsilon_{\text{SOM}-\text{CO}_2}$ between SOM and microbial CO₂ was 5.2‰ (P < 0.001).

3.4. Contributions of maize roots to CO_2 efflux and microbial biomass

The comparisons between the two different methods for calculating the contributions of root-derived CO₂ to total CO₂ efflux showed the following results (Fig. 4): First, no significant difference was found on day 16 between these contributions as calculated by the ¹⁴C approach and the ¹³C approach with and without fractionation. Second, only the ¹³C approach without fractionation yielded significantly more root-derived CO2 (91% on day 22, 94% on day 34) versus the ¹⁴C approach (P < 0.05). Consideration of ¹³C fractionation between SOM and CO₂ led to equal percentages of root-derived CO₂ on those days. Third, the results on day 28 from both ¹³C methods were significantly smaller (without ¹³C fractionation P < 0.05, with ¹³C fractionation P < 0.001) than the 94% calculated by the ¹⁴C approach. Fourth, the root-derived CO₂ contribution based on the ¹⁴C method exceeded the 100% level by 16% on the last sampling day. The result from the ¹³C method without fractionation was below 100%, but not significantly different from the ¹⁴C result. Considering the ¹³C fractionation led to a significantly smaller root-derived CO_2 contribution (91%) than the ¹⁴C approach (P < 0.05).

The contributions of root-derived C to microbial biomass C calculated by the two methods increased with the age of the maize (Fig. 5). Using 14 C labelling, this

Fig. 4. Contributions of root-derived CO₂ to total CO₂ efflux from a C₃ soil planted with maize. Methods used to calculate the root-derived CO₂ contributions are: the ¹⁴C labelling technique (hatched shading), the natural ¹³C labelling technique (dotted shading), and the natural ¹³C labelling technique with a fractionation of 5.2‰ between SOM and CO₂ (black shading). Error bars show standard deviations (n = 4). On each day, significant differences are shown for the natural ¹³C labelling technique with and without fractionation when compared with the ¹⁴C labelling technique (*P < 0.05, ***P < 0.001).

Fig. 5. Contributions of root-derived carbon to total microbial biomass C from a C₃ soil planted with maize. Methods used to calculate the root-derived carbon contributions are: the ¹⁴C labelling technique (hatched shading), the natural ¹³C labelling technique (dotted shading), and the natural ¹³C labelling technique with a fractionation of 3.2‰ between SOM and microbial biomass and between rhizodeposits and microbial biomass (black shading). Error bars show standard deviations (n = 4). On each day, significant differences are shown for the natural ¹³C labelling technique with and without fractionation when compared with the ¹⁴C labelling technique (*P < 0.05, **P < 0.01, ***P < 0.001).

increase was significant on day 34 (P < 0.05). On the first two sampling dates, the ¹³C approach without fractionation yielded significantly higher values—up to eight times as high—than the ¹⁴C approach. Incorporating ¹³C fractionation on those 2 days led to negative values, which were significantly different to the ¹⁴C approach. On the last three sampling dates, the contribution calculated by the ¹³C approach without fractionation was from 3–11 times as high as the contribution calculated by the ¹⁴C approach. There was no significant difference to the ¹⁴C method when ¹³C fractionation was considered on the last three sampling dates.

4. Discussion

4.1. Comparison of the ${}^{14}C$ pulse labelling and natural ${}^{13}C$ labelling approaches to estimate maize-root-derived carbon contributions

Both methods showed similar contributions to total CO_2 efflux from the maize rhizosphere when ¹³C fractionations between SOM and CO_2 were considered (Fig. 4). In a previous publication on maize grown on C₃ soil (Werth et al., 2006), we concluded that the natural ¹³C labelling technique overestimated root respiration by comparing observed CO_2 partitioning into three sources with literature results. By validating the ¹³C results with ¹⁴C results, we now determined that the root-derived carbon was between 69% and 94% of below-ground CO_2 efflux. Thus, the results from Werth et al. (2006) were correct rather than an overestimation. Under controlled conditions, other comparable studies report root-derived C values of about 75% for 38-day-old spring wheat (*Triticum aestivum* L.)

(Kuzyakov and Cheng, 2001) or between 35% and 41% for 42-day-old ryegrass (*Lolium perenne* L.) (Chen et al., 2006). Our values therefore correspond with the upper range of these studies. The broad range of root-derived CO_2 already mentioned in the introduction reveals, however, that CO_2 efflux partitioning very much depends on the observed plants, their growth stage, controlled or field conditions, soil preparation, etc. This problem always has to be considered when comparisons between different studies are made.

The exceeding of 100% of the total CO_2 efflux on day 40 using the ¹⁴C labelling technique reflects non-linear plant growth up to that day (Table 1, Fig. 2). The linear model of Kuzyakov et al. (1999) to calculate root-derived C amounts from ¹⁴C activity was not applicable on day 40. Had the plants grown linearly up to day 40, the root-derived contribution would have been 91%—another comparable result to ¹³C labelling including fractionation. Hence, 116% on day 40 (Fig. 4) is an error and should not be compared with the ¹³C method.

The airflow in our tubing system enabled us not only to trap CO_2 , it also assured against leakage of CO_2 out of the system or into the PVC tube's wall. We chose PVC tubes since they generally are airtight. Small errors in our CO_2 budget could have arisen, however, by a minimum of diffusion through the walls (either into or out of the tube). If these errors were present, they would affect both methods in the total amount of CO_2 , i.e. ¹⁴C pulse labelling in Eq. (3) and natural ¹³C labelling in Eq. (5).

On the last three sampling dates, the ¹⁴C and ¹³C techniques showed similar results for the root-derived C in the microbial biomass C (when ¹³C fractionation between SOM and microbial biomass was considered; Fig. 5). Without fractionation, values were significantly different to the ¹⁴C approach on all sampling dates. Hence, like for the CO₂ efflux, fractionations should be considered. Rootderived C contributions to total microbial biomass C ranging from 1% to 11% after 42 days of maize growth (Qian and Doran, 1996), from 8% to 10% within one growth period (Rochette et al., 1999), or up to 23% after a single year of maize growth (Bruulsema and Duxbury, 1996) confirm our findings of 2-11% with ¹³C fractionation (Fig. 5). Our previous publication showed thatwithout fractionation between the substrate and the CO₂ in calculating the δ^{13} C value of microbial CO₂—about 37% of the microbial biomass in the rhizosphere was active, i.e. feeding on a C₄ source (Werth et al., 2006). In that study, also assuming a 5% fractionation in the microbial substrate respiration when calculating the $\delta^{13}C$ of microbial respiration would reduce the amount of C₄derived C in the microbial biomass to 9%. This closely corresponds with the 7-11% root-derived C in the microbial biomass on the last two sampling dates of the present study.

Soil samples for microbial biomass extraction were prepared by hand-picking roots. Small amounts of fine roots could still have been present in the samples resulting in destruction of their cell membranes after chloroform fumigation and a contribution of the cell content to the microbial biomass extract. Consequently, total carbon in microbial biomass, ¹⁴C activity, and C₄ plant contribution to the δ^{13} C value could have been overestimated. This source of error could be overcome by a more complex preparation of soil microbial biomass samples, e.g. by preextraction with K₂SO₄, wet sieving or centrifuging (Mueller et al., 1992). The same error, however, has to be considered in all the other studies compared with the present experiment.

To be consistent in the assumption of linear shoot growth (used when calculating CO_2 efflux partitioning), we also consider such growth up to day 40 when calculating root-derived carbon in the microbial biomass by the ¹⁴C technique: this assumption yields a decrease from 14% to 9%. This result would be closer to the root-derived C contribution calculated by the ¹³C approach with fractionation. Hence, due to non-linear plant growth, the ¹⁴C approach should not be used between days 34 and 40. On days 16 and 22, ¹³C with fractionation yielded negative values. This reflects the high average fractionation (3.2%)between SOM and microbial biomass, leading to more positive δ^{13} C values of SOM than of microbial biomass. Using the maximum possible fractionation ε_{SOM-MB} in the maize treatment (2.2% on day 16 and 1.9% on day 22), the contribution of root-derived C to the microbial biomass on days 16 and 22 would be zero. This result would again closely reflect the ¹⁴C result. It is therefore important to determine the actual fractionation on every sampling dayand not an average fractionation over time-with an appropriate number of replicates and consequently include time changes of the fractionation.

While both methods—¹⁴C pulse labelling and natural ¹³C labelling—worked sufficiently in the determination of root-derived C in the CO₂ efflux from soil, this was much more problematic with the microbial biomass. Although chloroform fumigation-extraction has become a standard method in soil biology, the absence of plant effect on microbial biomass size (Table 1) and $\delta^{13}C$ (Table 2) makes an estimation of root-derived C to microbial biomass very uncertain using this coarse method. As a substitute, molecular methods like biomarkers could be used in combination with isotopic tracer methods to identify C₄-derived C contributions to certain community parts of the soil microbial biomass (δ^{13} C of phospholipid fatty acids (PLFA)), or to determine plant-derived or microbial residues (individual sugars) (reviewed by Glaser, 2005).

4.2. Advantages and limitations of the ${}^{14}C$ pulse labelling approach

General advantages and limitations of the ¹⁴C method are presented in Table 4. The method of transforming ¹⁴C activity into amounts of C in particular pools has been used before (Kuzyakov et al., 1999, 2001, 2003; Kuzyakov

Table 4

Advantages and limitations of 14 C pulse labelling and natural 13 C labelling techniques for estimating the contribution of root-derived C to the total CO₂ efflux from soil and to the soil microbial biomass

¹⁴ C pulse labelling	Natural ¹³ C labelling
 Advantages High sensitivity of the contribution of plant-derived C to CO₂ and to microbial biomass Information on distribution of assimilated C in individual stages of plant development Allows estimating the incorporation of plant C into pools with low and very low turnover rates One or many pulses are possibly easy to handle Cheap purchase costs and individual analyses 	 Continuous labelling of plants and soil pools No labelling equipment required No radioactivity precautions necessary Easy usage under laboratory and field conditions
 Limitations Uncompleted distribution of labelled C between plant organs and below-ground pools if sampling is done too early after the labelling Recalculation of total rhizodeposition is suitable only for linear growth periods Provides only distribution of recently assimilated C at specific development stages of plants Both non-recent and recent assimilates can be traced if labelling pulses are repeated No recalculation of distribution to whole growth period Radioactivity hazards Laborious labelling sessions with chambers required 	 Very low sensitivity of the contribution of plant-derived C to CO₂ and to microbial biomass Only incorporation of plant-derived C into pools with high turnover rates during one vegetation period is possible Applicable only on pure C₃ or C₄ soil Contamination with air CO₂ possible High variation of C in CO₂ or microbial biomass possible Results are strongly affected by ¹³C fractionation Results are strongly affected by preferential isotope utilisation Expensive purchase costs and individual analyses

and Cheng, 2001). A similar method that also considered small increases of plant biomass between individual labelling pulses was suggested by Remus et al. (2006). Our calculation method, however, allows only a rough estimate of the C that passed through each flow because the parameters of Eq. (2) are not constant during plant development. This method can be used only after completed ¹⁴C distribution in the plant. For grasses and cereals, this completion takes 5 days after assimilation (Domanski et al., 2001). In accordance with that study, the distribution of the ¹⁴C tracer between the plant-soil compartments was completed on all sampling days in our study, since there were no significant differences between sampling days (Fig. 3). Hence, the equation was applicable in our study. Due to non-linear carbon assimilation after day 34, however, the linear equation can no longer be applied at the end of the growth period.

Another limitation of the ¹⁴C method is that pulse labelling can effectively track inputs derived from recent assimilates, but that this input is unlikely to constitute the most abundant source of substrate to microbial communities in the rhizosphere (Thornton et al., 2004). Nonrecent assimilates, i.e. more complex organic forms, will be exuded much later than recent assimilates; they will also be processed at different rates and most likely by different microorganisms. This problem, however, can be overcome by a series of ¹⁴C labelling pulses as used in our study or by continuous labelling techniques, like natural ¹³C labelling. The triplication of root-derived C in the microbial biomass on day 34 (Fig. 5) indicates that both recent and non-recent assimilates contribute to the root-derived C in the microbial biomass from that day onwards.

4.3. Advantages and limitations of the natural ^{13}C labelling approach

In contrast to the artificial ¹⁴C labelling technique, the natural ¹³C labelling approach corresponds to continuous labelling of plants and plant-derived soil pools (Table 4). A major limitation is that four assumptions are involved concerning ¹³C isotopic effects during root- and SOM-derived respiration and during utilization of rhizodeposits and SOM by the microbial biomass:

- (1) The $\delta^{13}C$ isotope signature of root-derived CO₂ is the same as the $\delta^{13}C$ value of the roots.
- (2) The δ^{13} C isotope signature of SOM-derived CO₂ equals the δ^{13} C value of SOM.
- (3) The δ^{13} C isotope signature of root-derived microbial biomass corresponds to the δ^{13} C value of roots and rhizodeposits.
- (4) The δ^{13} C isotope signature of SOM-derived microbial biomass is equal to the δ^{13} C value of SOM.

According to Werth and Kuzyakov (2006) we can only accept the first assumption, since the δ^{13} C value of rootderived CO₂ is dominated by the δ^{13} C value of CO₂ from root respiration. Our unplanted control treatment refutes the last three assumptions. We had to consider mean ¹³C fractionations of 3.2‰ between SOM and microbial biomass and of 5.2‰ between SOM and microbially respired CO₂. Henn and Chapela (2000) have shown that the ¹³C fractionation differs during decomposition of C_3 and C₄-derived sucrose by three specific fungi. However, we assumed the fractionation between maize rhizodeposits and microbial biomass in Eq. (7) and (10) to be equal to the fractionation between SOM and microbial biomass $(\varepsilon_{\text{SOM}-\text{MB}} = 3.2\%)$. In line with earlier studies (Balesdent and Mariotti, 1996; Boutton, 1996; Bol et al., 2003), we accepted this assumption because we had no direct measure to determine the actual fractionation between rhizodeposits and the microbial biomass. This determination is a future challenge, requiring that rhizodeposits be decomposed by exactly the same microbial community as developed in our C₄ plant containers. In the present study, however, we assumed equal fractionations for C3- and C4-derived substrates because the root-derived contributions calculated with and without ${}^{13}C$ fractionation for the C₄ substrate were not significantly different. In Fig. 5, the latter would read -11%, -17%, 8%, 9% and 16% on sampling dates 16-40, respectively.

The fractionations between SOM and microbial biomass and between SOM and CO₂ do not only include isotopic effects per se. They also include preferential utilisation of substrates with different biological availability and different δ^{13} C values. The first fractionation step leading to a ¹³C-enriched microbial biomass compared with SOM can be explained by isotope discrimination during biosynthesis of new microbial biomass (Potthoff et al., 2003). Compared with SOM, water-soluble organic compounds with a heavier isotopic composition are preferentially used by soil microorganisms (Henn and Chapela, 2000; Pelz et al., 2005). The second fractionation step yields more ¹³Cenriched microbial CO2 compared with the microbial biomass and the substrate. Usually, CO₂ from microbial respiration is ¹³C-depleted compared with the feeding substrate (Blair et al., 1985; Mary et al., 1992; Potthoff et al., 2003). Opposite results, i.e. ¹³C enrichment of CO₂ versus source, can be explained by a selective use of $^{13}C^{-1}$ enriched SOM compounds by microorganisms (Ågren et al., 1996; Werth et al., 2006). This selection was more pronounced than the ¹³C depletion effect of the metabolism itself (Šantrůčková et al., 2000), resulting in ¹³C-enriched CO₂. The δ^{13} C value of CO₂ changes during increasing decomposition of plant residues by -5% to +2%compared with the δ^{13} C value of the original substrate (Hamer et al., 2004). This requires considering both average fractionations on a single sampling date and their changes during a study. Total fractionation between SOM and microbial biomass and between SOM and CO₂including kinetic fractionation and preferential utilisation-is important when using ¹³C natural abundance methods. Compared with other pools like plants or bulk soil, the δ^{13} C values of CO₂ and microbial biomass often have the highest variation, which will affect the accuracy of below-ground carbon partitioning. Hence, fractionations should be determined with a large number of replicates to ensure exact calculations of plant-derived C to the CO_2 efflux and to the soil microbial biomass. Otherwise, problems could occur like the negative root-derived C contributions to the microbial biomass reported in this study.

5. Conclusions

The ¹⁴C pulse labelling technique and the natural ¹³C labelling technique yielded similar contributions of rootderived C to the CO₂ efflux from soil, when ¹³C fractionation in the latter approach was considered between SOM and CO₂. Both methods also yielded similar contributions of root-derived C to the microbial biomass when ¹³C fractionation between SOM and microbial biomass was considered. This calls for accounting for ¹³C fractionation in calculations of maize-derived C contributions. Rhizodeposition and root-derived CO₂ efflux should only be estimated by the ¹⁴C labelling method when plant biomass increases linearly.

Acknowledgements

The German Research Foundation (DFG) supported this study. The authors thank I. Subbotina and G. Bermejo-Dominguez for their practical support during the experiment, Dr. V. Cercasov for usage of the scintillation counter and Dr. W. Armbruster and E. Dachtler for the IRMS analyses.

References

- Ågren, G.I., Bosatta, E., Balesdent, J., 1996. Isotope discrimination during decomposition of organic matter: a theoretical analysis. Soil Science Society of America Journal 60, 1121–1126.
- Andrews, J.A., Harrison, K.G., Matamala, R., Schlesinger, W.H., 1999. Separation of root respiration from total soil respiration using carbon-13 labeling during free-air carbon dioxide enrichment (FACE). Soil Science Society of America Journal 63, 1429–1435.
- Angers, D.A., Voroney, R.P., Côté, D., 1995. Dynamics of soil organic matter and corn residues affected by tillage practices. Soil Science Society of America Journal 59, 1311–1315.
- Balesdent, J., Mariotti, A., 1996. Measurement of soil organic matter turnover using ¹³C natural abundance. In: Boutton, T.W., Yamasaki, S.I. (Eds.), Mass Spectrometry of Soils. Marcel Dekker, New York, USA, pp. 83–111.
- Blair, N., Leu, A., Munoz, E., Olsen, J., Kwong, E., Des Marais, D., 1985. Carbon isotope fractionation in heterotrophic microbial metabolism. Applied and Environmental Microbiology 50, 996–1001.
- Bol, R., Moering, J., Kuzyakov, Y., Amelung, W., 2003. Quantification of priming and CO₂ respiration sources following slurry-C incorporation into two grassland soils with different C content. Rapid Communications in Mass Spectrometry 17, 1–6.
- Boutton, T.W., 1991. Stable carbon isotope ratios of natural materials: II. atmospheric, terrestrial, marine, and freshwater environments. In: Coleman, D.C., Fry, B. (Eds.), Carbon Isotope Techniques. Isotopic Techniques in Plant, Soil, and Aquatic Biology. Academic Press, Inc., San Diego, pp. 173–185.
- Boutton, T.W., 1996. Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. In: Boutton, T.W., Yamasaki, S.I. (Eds.), Mass Spectrometry of Soils. Marcel Dekker, New York, pp. 47–82.

- Bruulsema, T.W., Duxbury, J.M., 1996. Simultaneous measurement of soil microbial nitrogen, carbon, and carbon isotope ratio. Soil Science Society of America Journal 60, 1787–1791.
- Chen, C.R., Condron, L.M., Xu, Z.H., Davis, M.R., Sherlock, R.R., 2006. Root, rhizosphere and root-free respiration in soils under grassland and forest plants. European Journal of Soil Science 57, 58–66.
- Cheng, W., 1996. Measurement of rhizosphere respiration and organic matter decomposition using natural ¹³C. Plant and Soil 183, 263–268.
- Cheng, W., Coleman, D.C., Carroll, C.R., Hoffman, C.A., 1993. In situ measurement of root respiration and soluble C concentrations in the rhizosphere. Soil Biology & Biochemistry 25, 1189–1196.
- Domanski, G., Kuzyakov, Y., Siniakina, S.V., Stahr, K., 2001. Carbon flows in the rhizosphere of ryegrass (*Lolium perenne*). Journal of Plant Nutrition and Soil Science 164, 381–387.
- Ekblad, A., Högberg, P., 2000. Analysis of δ^{13} C of CO₂ distinguishes between microbial respiration of added C₄-sucrose and other soil respiration in a C₃-ecosystem. Plant and Soil 219, 197–209.
- Ekblad, A., Högberg, P., 2001. Natural abundance of ¹³C in CO₂ respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127, 305–308.
- Ekblad, A., Nyberg, G., Högberg, P., 2002. ¹³C-discrimination during microbial respiration of added C₃-, C₄- and ¹³C-labelled sugars to a C₃-forest soil. Oecologia 131, 245–249.
- Fernandez, I., Cadisch, G., 2003. Discrimination against C-13 during degradation of simple and complex substrates by two white rot fungi. Rapid Communications in Mass Spectrometry 17, 2614–2620.
- Glaser, B., 2005. Compound-specific stable-isotope ¹³C analysis in soil science. Journal of Plant Nutrition and Soil Science 168, 633–648.
- Grace, J., 2004. Understanding and managing the global carbon cycle. Journal of Ecology 92, 189–202.
- Gregorich, E.G., Liang, B.C., Drury, C.F., Mackenzie, A.F., McGill, W.B., 2000. Elucidation of the source and turnover of water soluble and microbial biomass carbon in agricultural soils. Soil Biology & Biochemistry 32, 581–587.
- Hamer, U., Dalhus, W., Marschner, B., Schulte, U., Gleixner, G., 2004. Isotopic ¹³C fractionation during the mineralisation of organic substrates. In: Hamer, U. (Ed.) Priming effects of Dissolved Organic Substrates on the Mineralisation of Lignin, Peat, Soil Organic Matter and Black Carbon determined with ¹⁴C and ¹³C Isotope Techniques, Ph.D. Thesis Ruhr-Universität Bochum, Germany, pp. 129–150.
- Henn, M.R., Chapela, I.H., 2000. Differential C isotope discrimination by fungi during decomposition of C₃- and C₄-derived sucrose. Applied and Environmental Microbiology 66, 4180–4186.
- Kelting, D.L., Burger, J.A., Edwards, G.S., 1998. Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil Biology & Biochemistry 30, 961–968.
- Kristiansen, S.M., Brandt, M., Hansen, E.M., Magid, J., Christensen, B.T., 2004. ¹³C signature of CO₂ evolved from incubated maize residues and maize-derived sheep faeces. Soil Biology & Biochemistry 36, 99–105.
- Kuzyakov, Y., Cheng, W., 2001. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology & Biochemistry 33, 1915–1925.
- Kuzyakov, Y., Cheng, W., 2004. Photosynthesis controls of CO₂ efflux from maize rhizosphere. Plant and Soil 263, 85–99.
- Kuzyakov, Y., Kretzschmar, A., Stahr, K., 1999. Contribution of *Lolium perenne* rhizodeposition to carbon turnover of pasture soil. Plant and Soil 213, 127–136.
- Kuzyakov, Y., Ehrensberger, H., Stahr, K., 2001. Carbon partitioning and below-ground translocation by *Lolium perenne*. Soil Biology & Biochemistry 33, 61–74.
- Kuzyakov, Y., Raskatov, A., Kaupenjohann, M., 2003. Turnover and distribution of root exudates of Zea mays. Plant and Soil 254, 317–327.
- Liang, B.C., Wang, X.L., Ma, B.L., 2002. Maize root-induced change in soil organic carbon pools. Soil Science Society of America Journal 66, 845–847.

- Lin, G., Rygiewicz, P.T., Ehleringer, J.R., Johnson, M.G., Tingey, D.T., 2001. Time-dependent responses of soil CO₂ efflux components to elevated atmospheric [CO₂] and temperature in experimental forest mesocosms. Plant and Soil 229, 259–270.
- Mary, B., Mariotti, A., Morel, J.L., 1992. Use of ¹³C variations at natural abundance for studying the biodegradation of root mucilage, roots and glucose in soil. Soil Biology & Biochemistry 24, 1065–1072.
- Merckx, R., Dijkstra, A., den Hartog, A., van Veen, J.A., 1987. Production of root-derived material and associated microbial growth in soil at different nutrient levels. Biology and Fertility of Soils 5, 126–132.
- Mueller, T., Joergensen, R.G., Meyer, B., 1992. Estimation of soil microbial biomass C in the presence of living roots by fumigation–extraction. Soil Biology & Biochemistry 24, 179–181.
- Pelz, O., Abraham, W.-R., Saurer, M., Siegwolf, R., Zeyer, J., 2005. Microbial assimilation of plant-derived carbon in soil traced by isotope analysis. Biology and Fertility of Soils 41, 153–162.
- Potthoff, M., Loftfield, N., Buegger, F., Wick, B., John, B., Jörgensen, R.G., Flessa, H., 2003. The determination of δ^{13} C in soil microbial biomass using fumigation–extraction. Soil Biology & Biochemistry 35, 947–954.
- Qian, J.H., Doran, J.W., 1996. Available carbon released from crop roots during growth as determined by carbon-13 natural abundance. Soil Science Society of America Journal 60, 828–831.
- Qian, J.H., Doran, J.W., Walters, D.T., 1997. Maize plant contributions to root zone available carbon and microbial transformations of nitrogen. Soil Biology & Biochemistry 29, 1451–1462.
- Remus, R., Augustin, J., Hüve, K., Plugge, J., 2006. Dynamik des Eintrages und der Umsetzung von Assimilat-Kohlenstoff im Boden bei Roggen und Mais: Modellierung der C-Flüsse nach ¹⁴C-Pulsbegasung. In: Merbach, W., Gans, W., Augustin, J. (Eds.), Reaktionen und Stoffflüsse im wurzelnahen Raum—16. Borkheider Seminar zur Ökophysiologie des Wurzelraumes. Beiträge aus der Hallenser Pflanzenernährungsforschung, No. 11. Verlag Grauer, Beuren, Stuttgart, pp. 40–48.
- Robinson, D., Scrimgeour, C.M., 1995. The contribution of plant C to soil CO_2 measured using $\delta^{13}C$. Soil Biology & Biochemistry 27, 1653–1656.
- Rochette, P., Flanagan, L.B., 1997. Quantifying rhizosphere respiration in a corn crop under field conditions. Soil Science Society of America Journal 61, 466–474.
- Rochette, P., Angers, D.A., Flanagan, L.B., 1999. Maize residue decomposition measurement using soil surface carbon dioxide fluxes and natural abundance of carbon-13. Soil Science Society of America Journal 63, 1385–1396.
- Ryan, M.C., Aravena, R., 1994. Combining ¹³C natural abundance and fumigation–extraction methods to investigate soil microbial biomass turnover. Soil Biology & Biochemistry 26, 1583–1585.
- Šantrůčková, H., Bird, M.I., Frouz, J., Šustr, V., Tajovský, K., 2000. Natural abundance of ¹³C in leaf litter as related to feeding activity of soil invertebrates and microbial mineralisation. Soil Biology & Biochemistry 32, 1793–1797.
- Schweizer, M., Fear, J., Cadisch, G., 1999. Isotopic (¹³C) fractionation during plant residue decomposition and its implications for soil organic matter studies. Rapid Communications in Mass Spectrometry 13, 1284–1290.
- Thornton, B., Paterson, E., Midwood, A.J., Sim, A., Pratt, S.M., 2004. Contribution of current carbon assimilation in supplying root exudates of *Lolium perenne* measured using steady-state ¹³C labelling. Physiologia Plantarum 120, 434–441.
- Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry 19, 703–707.
- Warembourg, F.R., Paul, E.A., 1977. Seasonal transfers of assimilated ¹⁴C in grassland: plant production and turnover, soil and plant respiration. Soil Biology & Biochemistry 9, 295–301.

- Werth, M., Kuzyakov, Y., 2005. Below-ground partitioning (14 C) and isotopic fractionation (δ^{13} C) of carbon recently assimilated by maize. Isotopes in Environmental and Health Studies 41, 237–248.
- Werth, M., Kuzyakov, Y., 2006. Assimilate partitioning affects ¹³C fractionation of recently assimilated carbon in maize. Plant and Soil 284, 311–325.
- Werth, M., Subbotina, I., Kuzyakov, Y., 2006. Three-source partitioning of CO₂ efflux from soil planted with maize by ¹³C natural abundance fails due to inactive microbial biomass. Soil Biology & Biochemistry 38, 2772–2781.
- Wu, J., Jörgensen, R.G., Pommerening, B., Chaussod, R., Brookes, P.C., 1990. Measurement of soil microbial biomass-C by fumigation–extraction—an automated procedure. Soil Biology & Biochemistry 22, 1167–1169.
- Zibilske, L.M., 1994. Carbon mineralization. In: Weaver, R.W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A. (Eds.), Methods of Soil Analysis, Part 2, Microbiological and Biochemical Properties. Soil Science Society of America Book Series, vol. 5, Soil Sci. Soc. Am., Inc., Madison, pp. 835–864.