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Introduction

* On the way to more general biomass estimation
approaches on single tree level a compilation of
readily available datasets 1s required and useful.
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— This might be very challaging because the willingness

to share data is not always well developed

* Once a comprehensive enough database 1s
otven, also instance based methods like the £-

NN approach can be applied




The £-NN approach

* The £-NN method is based on a non-parametric
pattern recogition algorithm

* Basic idea is to classify an unknown feature of
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an instance according to its similarity to other

known instances stored in a database

— Based on a calculated distance the £ nearest (most
similar) neighbours to a certain query point are
identified and under the assumption that they are
also similar concerning their target values, used to
derive an estimation
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The £NN approach

* Different to regression analysis or process
model approaches no functional relationships
between the variables have to be formulated

* The estimations are derived as local
approximations, not as a global function

) Zk: ka(xk )
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Distance function

* As distance function given multivariate
measures from cluster- or discriminant analyses
OO can be used: B
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d, = weighted distance between two instances

n = number of variables

w, = wheigh assigned to the variable r

r = rhvariable of an instance

(X)) = instances

or = standardisation factor (range of variable or multiple of ¢ of variable r)
c = >=] Minkowski constant (2= euclidean distance)
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Implementation

* To run the £-NN Algorithm a suitable software

application and database 1s necessary

procecrs
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Size of the Neighbourhood

* Instance based methods come along with a
typical bias-variance dilemma that is in parts
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influenced by asymmetric neighbourhoods at the
edges of the feature space of the training data
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Cross validation

* To determine the parameters for the distance-
and weighting function as well as £ cross-
validation methods are suitable
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— Therefore an estimation for every tree is dertved
based on the remaining N-1 trees of the training
data.

— The definition of optimal weighting factors, the size
of the neighbourhood and parameters of the
distance function can be approximated by an
iterative process or by means of optimazation
algorithmes.




Example

* A large dataset of Norway spruce and Scots pine
trees (provided by the METILLA) was used to
evaluate the £-NN approach in comparison to
regression models
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— Datasets where split into ,,modelling* (»=143 for
spruce, #=145 for pine) and ,,test (#=60 each)
subsets

— Modelling subsets where used to estimate regression

coetficiants and as training data for the £-NN
algorithm (independent variables are dbh and height)




Example

* Predictions for the ,,test® datasets were used to
compare the performance of both approaches
by means of different error criterions
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Example

* Multiple cross-validation was used to minimize the
RMSE and bias by an approximation of optimal feature
weights and parameter settings.
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Example

* Alternative to a fixed number of neighbours also
a kernel- method was applied

— In this case neighbours are considered up to a
defined standardized distance
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Example

* Linear mixed effect models and simple linear

models were used as reference
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Example results

* The RMSE could be reduced in comparison to
regression models for both species:

Regression models / Approach RMSE tMSE% MAPE ME
Scots pine

Inagh, =lna+ fInd,, + yInh_ +e, 20.68 15.79 9.67 -2.562
Inagh, =lna+Ina, + flnd,_ + yInh_ +e, 19.76 ~ 15.00 921  -1.718
k-NN 19.41 14.54 12.61 0.009
Norway Spruce

Inagh, =Ina+ Blnd, + yIn(h/d), +e, 2291 19.85 13.80 -1.630
]nagbki =lna + ]nak +ﬂlndki +Z(h/d)kz +e, 20.31 17.36 13.73 -0.398
k-NN 19.19 16.42 13.98  -0.493
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Outlook

* The £-NN method offers the possibility to include
additional variables (for example meta information
about sites or tree species) without knowledge about
the cause-and-effect relationships

* In case of using multiple search variables the
implementation of optimazation approaches, like the
genetic algorithm (Tomppo and Halme, 2004), for
feature weighting is required and useful.
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*Thank youl

This study was conducted in close collaboration with the Finnish Forest Research
Institute (METLA). We thank Errki Tomppo and Aleksi Lehtonen!
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