
1

Comparison of a k-NN approach and 
regression techniques for single tree

biomass estimation

8th FIA Symposium of the USDA Forest Service, 
October 16-19 Monterey CA

Lutz Fehrmann & Christoph Kleinn



2

Introduction

• On the way to more general biomass estimation
approaches on single tree level a compilation of 
readily available datasets is required and useful.
– This might be very challaging because the willingness

to share data is not always well developed

• Once a comprehensive enough database is
given, also instance based methods like the k-
NN approach can be applied



3

The k-NN approach

• The k-NN method is based on a non-parametric
pattern recogition algorithm

• Basic idea is to classify an unknown feature of 
an instance according to its similarity to other
known instances stored in a database
– Based on a calculated distance the k nearest (most

similar) neighbours to a certain query point are
identified and under the assumption that they are
also similar concerning their target values, used to 
derive an estimation
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The k-NN approach

• Different to regression analysis or process
model approaches no functional relationships
between the variables have to be formulated

• The estimations are derived as local
approximations, not as a global function
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Distance function
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• As distance function given multivariate
measures from cluster- or discriminant analyses
can be used:

dw = weighted distance between two instances
n = number of variables
wr = wheigh assigned to the variable r
r = rth variable of an instance
(xi,xj) = instances
δr = standardisation factor (range of variable or multiple of σ of variable r)
c = >=1 Minkowski constant (2= euclidean distance)
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Implementation

• To run the k-NN Algorithm a suitable software
application and database is necessary
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Size of the Neighbourhood

• Instance based methods come along with a 
typical bias-variance dilemma that is in parts
influenced by asymmetric neighbourhoods at the
edges of the feature space of  the training data
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Cross validation

• To determine the parameters for the distance-
and weighting function as well as k cross-
validation methods are suitable
– Therefore an estimation for every tree is derived

based on the remaining N-1 trees of the training
data.

– The definition of optimal weighting factors, the size
of the neighbourhood and parameters of the
distance function can be approximated by an 
iterative process or by means of optimazation
algorithms.
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Example

• A large dataset of Norway spruce and Scots pine
trees (provided by the METLA) was used to 
evaluate the k-NN approach in comparison to 
regression models
– Datasets where split into „modelling“ (n=143 for

spruce, n=145 for pine) and „test“ (n=60 each) 
subsets

– Modelling subsets where used to estimate regression
coefficiants and as training data for the k-NN 
algorithm (independent variables are dbh and height)
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Example

• Predictions for the „test“ datasets were used to 
compare the performance of both approaches
by means of different error criterions
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Example

• Multiple cross-validation was used to minimize the
RMSE and bias by an approximation of optimal feature
weights and parameter settings.
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Example

• Alternative to a fixed number of neighbours also 
a kernel- method was applied
– In this case neighbours are considered up to a 

defined standardized distance
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Example

• Linear mixed effect models and simple linear 
models were used as reference
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Example results

• The RMSE could be reduced in comparison to 
regression models for both species:

Regression models / Approach RMSE rMSE% MAPE ME 

Scots pine 
    

kikikiki ehdagb +++= lnlnlnln χβα  20.68 15.79 9.67 -2.562 

kikikikki ehdaagb ++++= lnlnlnlnln χβα  19.76 15.00 9.21 -1.718 

k-NN 19.41 14.54 12.61 0.009 

Norway Spruce 
    

( ) kikikiki edhdagb +++= lnlnlnln χβα  22.91 19.85 13.80 -1.630 

( ) kikikikki edhdaagb ++++= χβα lnlnlnln  20.31 17.36 13.73 -0.398 

k-NN 19.19 16.42 13.98 -0.493 
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Outlook

• The k-NN method offers the possibility to include
additional variables (for example meta information
about sites or tree species) without knowledge about
the cause-and-effect relationships

• In case of using multiple search variables the
implementation of optimazation approaches, like the
genetic algorithm (Tomppo and Halme, 2004), for
feature weighting is required and useful.
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•Thank you!

This study was conducted in close collaboration with the Finnish Forest Research 
Institute (METLA). We thank Errki Tomppo and Aleksi Lehtonen!
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