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teacher
(smart)

student
(imitates teacher)

“Supervised learning”

final level limited by teacher

!
!

(most neural network applications)



student/scientist
(tries out things)

“Reinforcement learning”

?

?

?

final level: unlimited (?)



Reinforcement learning

Self-driving cars, robotics:
Observe immediate environment & move
Games: 
Observe board & place stone
Observe video screen & move player

Challenge: the “correct” action is not known!
Therefore: no supervised learning!

Reward will be rare (or decided only at end)

“agent” “environment”

observation

action

fully observed vs.
partially observed 
“state” of the 
environment



Reinforcement learning

Challenge: We could use the final reward to define a cost 
function, but we cannot know how the environment 
reacts to a proposed change of the actions that were 
taken! 

Training a network to produce actions based on rare 
rewards (instead of being told the ‘correct’ action!)

Use reinforcement learning:

(unless we have a model of the environment)



Reinforcement Learning: Basic setting



observation

RL-environmentRL-agent

action

“policy”
state    action



state = position x,y
action = move (direction)



state = position x,y
action = move (direction)
reward for picking up box



Policy Gradient
=REINFORCE (Williams 1992): The simplest model-free 
general reinforcement learning technique

Basic idea: Use probabilistic action choice. If the 
reward at the end turns out to be high, make 
all the actions in this sequence more likely 
(otherwise do the opposite)
This will also sometimes reinforce ‘bad’ actions, 
but since they occur more likely in trajectories 
with low reward, the net effect will still be to 
suppress them!



observation

RL-environmentRL-agent

action

“policy”
state    action

Policy: ⇡✓(at|st) – probability to pick action
given observed state 

at
st

at time t



observation

RL-environmentRL-agent

action

“policy”
state    action



observation

RL-environment

neural
network

RL-agent

action



Policy Gradient

Probability to take action a, given the current state s 
⇡✓(a|s)

Probabilistic policy:

parameters of the network

Environment: makes (possibly stochastic) transition to a new state 
s’, and possibly gives a reward r

P (s0|s, a)Transition function

down
up
left
right

0.1
0.6
0.2
0.1

as π
π



Policy Gradient

Probability for having a certain trajectory of actions 
and states: product over time steps

Expected overall reward (='return'): 
sum over all trajectories

return for this sequence (sum over 
individual rewards r for all times)R̄ = E[R] =

@R̄

@✓
=?

Try to maximize expected return by changing 
parameters of policy:

a = a0, a1, a2, . . .
s = s1, s2, . . . (state 0 is fixed)

trajectory:

sum over all actions at all times 
and over all states at all times >0

⌧ = (a, s)

X

⌧

P✓(⌧)R(⌧)

X

⌧

. . . =
X

a0,a1,a2,...,s1,s2,...

. . .

P✓(⌧) = ⇧tP (st+1|st, at)⇡✓(at|st)



Policy Gradient

@ ln⇡✓(at|st)
@✓

@R̄

@✓
=

X

t

E[R
@ ln⇡✓(at|st)

@✓
]

�✓ = ⌘
@R̄

@✓

Main formula of policy gradient method:

E[. . .]

Stochastic gradient descent:

where is approximated via the
value for one trajectory (or a batch)

@R̄

@✓
=

X

t

X

⌧

R(⌧)
@⇡✓(at|st)

@✓

1

⇡✓(at|st)
⇧t0P (st0+1|st0 , at0)⇡✓(at0 |st0)



Policy Gradient

Increase the probability of all action choices in the
given sequence, depending on size of return R.
Even if R>0 always, due to normalization of probabilities 
this will tend to suppress the action choices in 
sequences with lower-than-average returns.

@R̄

@✓
=

X

t

E[R
@ ln⇡✓(at|st)

@✓
]

@R̄

@✓k
= E[RGk]

Gk =
@ lnP✓(⌧)

@✓k
=

X

t

@ ln⇡✓(at|st)
@✓k

Abbreviation:



Policy Gradient: reward baseline

Challenge: fluctuations of estimate for return gradient 
can be huge. Things improve if one subtracts a constant 
baseline from the return.

@R̄

@✓
=

X

t

E[(R� b)
@ ln⇡✓(at|st)

@✓
]

This is the same as before. Proof:

However, the variance of the fluctuating random 
variable (R-b)G is different, and can be smaller 
(depending on the value of b)!

= E[(R� b)G]

E[Gk] =
X

⌧

P✓(⌧)
@ lnP✓(⌧)

@✓k
=

@

@✓k

X

⌧

P✓(⌧) = 0

E[Gk] =
X

⌧

P✓(⌧)
@ lnP✓(⌧)

@✓k
=

@

@✓k

X

⌧

P✓(⌧) = 0



Gk =
@ lnP✓(⌧)

@✓k

�✓k = �⌘E[Gk(R� bk)]

bk =
E[G2

kR]

E[G2
k]

Xk = (R� bk)Gk

Var[Xk] = E[X2
k ]� E[Xk]

2 = min

@Var[Xk]

@bk
= 0

Optimal baseline



http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

For more in-depth treatment, see David Silver’s course on 
reinforcement learning (University College London):

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html


The simplest RL example ever

A random walk, where the probability to go “up” is 
determined by the policy, and where the return is given 
by the final position (ideal strategy: always go up!)
(Note: this policy does not even depend on the current state)

time

po
si

tio
n

re
w

ar
d



The simplest RL example ever

A random walk, where the probability to go “up” is 
determined by the policy, and where the return is given 
by the final position (ideal strategy: always go up!)
(Note: this policy does not even depend on the current state)

R = x(T )⇡✓(up) =
1

1 + e�✓
policy return

�✓ = ⌘
X

t

⌧
R
@ ln⇡✓(at)

@✓

�
RL update

at = up or down

@ ln⇡✓(at)

@✓
= ±e�✓⇡✓(at) = ±(1� ⇡✓(at))

+ for up, - for down 1� ⇡✓(up)
�⇡✓(up)

= for up
for down

X

t

@ ln⇡✓(at)

@✓
= Nup �N⇡✓(up)

N=number of time steps

number of ‘up-steps’



The simplest RL example ever

R = x(T )return

�✓ = ⌘
X

t

⌧
R
@ ln⇡✓(at)

@✓

�
RL update

at = up or down

= Nup �Ndown = 2Nup �N

*
R
X

t

@ ln⇡✓(at)

@✓

+
= 2

⌧
(Nup � N

2
)(Nup � N̄up)

�

Initially, when ⇡✓(up) =
1

2

�✓ = 2⌘

⌧
(Nup � N

2
)2
�

= 2⌘Var(Nup) = ⌘
N

2
> 0

(binomial distribution!)

:

(general analytical expression for 
average update, rare)



The simplest RL example ever

*
R
X

t

@ ln⇡✓(at)

@✓

+
= 2

⌧
(Nup � N

2
)(Nup � N̄up)

�

= 2

⌧✓
(Nup � N̄up) + (N̄up � N

2
)

◆
(Nup � N̄up)

�

= 2VarNup + 2(N̄up � N

2
)
⌦
Nup � N̄up

↵

= 2VarNup = 2N⇡✓(up)(1� ⇡✓(up))

⇡✓(up)

⇡
✓
(u
p
)(
1
�
⇡
✓
(u
p
))

In general:

(general analytical 
expression for average 
update, fully simplified, 
extremely rare)



The simplest RL example ever

trajectory (=training episode)

pr
ob

ab
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ty

3 learning attempts

strong fluctuations!

(This plot for N=100 time steps in a 
trajectory; eta=0.001)

⇡
✓
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p
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Spread of the update step

Y = Nup � N̄up c = N̄up �N/2 X = (Y + c)Y

p
Var(X)

⇡✓(up)

⇠ N1

⇠ N
3
2

(This plot for N=100)

X=update 
(except 
prefactor of 2)

hXi

(Note: to get Var X, we need central moments 
of binomial distribution up to 4th moment)



Optimal baseline suppresses spread!

Y = Nup � N̄up c = N̄up �N/2 X = (Y + c)Y

p
Var(X)

hXi

⇡✓(up)

⇠ N1

⇠ N
3
2

(This plot for N=100)

X 0 = (Y + c� b)Y b =

⌦
Y 2(Y + c)

↵

hY 2i

with optimal baseline:

p
Var(X 0)



�X =
MX

j=1

Xj

h�Xi = M hXi
p
Var�X =

p
M

p
VarX

⇠ 1p
M

Note: Many update steps reduce relative spread

relative spread
p
Var�X

h�Xi

M = number of update steps



Homework

Implement the RL update including the optimal 
baseline and run some stochastic learning 
attempts. Can you observe the improvement 
over the no-baseline results shown here?

Note: You do not need to simulate the individual 
random walk trajectories, just exploit the 
binomial distribution.



The second-simplest RL example

po
si

tio
n

time

“target site”

“walker”

return=number of time steps on target

See code on website: “SimpleRL_WalkerTarget”

actions: move or stay



output = action probabilities (softmax)

⇡✓(a|s)

a=0 ("stay") a=1 ("move")

input = s = "are we on target"? (0/1)

policy



Policy gradient: all the steps

execute action,
record new state

apply neural network to state,
thus obtain action probabilities

from probabilities, obtain
action for next step

Obtain one "trajectory":



Policy gradient: all the steps

Do one trajectory

Obtain overall sum of rewards (=return)
for each trajectory

apply policy gradient training
(enhance probabilities for all

actions in a high-return trajectory)

For each trajectory:

(in reality: a batch of trajectories)



RL in keras: categorical cross-entropy trick

output = action 
probabilities (softmax)

⇡✓(a|s)

a=0 a=1 a=2

input = state

C = �
X

a

P (a) ln⇡✓(a|s)

P (a) = R

P (a) = 0

Set

for a=action that was taken

for all other actions a

�✓ = �⌘
@C

@✓
implements policy gradient

categorical cross-entropy

desired 
distribution

distr. from net



    
net.train_on_batch(observed_inputs,desired_outputs)

Encountered N states (during repeated runs)

array N x state-size

array N x number-of-actions

After setting categorical cross-entropy as cost function,
just use the following simple line to implement policy 
gradient:

Here desired_outputs[j,a]=R for the state 
numbered j, if action a was taken during a run that 
gave overall return R

RL in keras: categorical cross-entropy trick



AlphaGo

Among the major board games, “Go” was 
not yet played on a superhuman level by any 
program (very large state space on a 19x19 
board!)
alpha-Go beat the world’s best player in 2017



First: try to learn from human expert players

Silver et al.,“Mastering the game of Go with deep neural networks 
and tree search” (Google Deepmind team), Nature, January 2016

AlphaGo



Second: use policy gradient RL on games played 
against previous versions of the program

Silver et al.,“Mastering the game of Go with deep neural networks 
and tree search” (Google Deepmind team), Nature, January 2016

AlphaGo



Silver et al.,“Mastering the game of Go with deep neural networks 
and tree search” (Google Deepmind team), Nature, January 2016

AlphaGo

*Note: beyond policy-
gradient type methods, 
this also includes another
algorithm, called Monte 
Carlo Tree Search



No training on human expert knowledge
– eventually becomes even better!

AlphaGoZero

Silver et al, Nature 2017



Ke Jie stated that "After humanity spent thousands of 
years improving our tactics, computers tell us that humans 
are completely wrong... I would go as far as to say not a 
single human has touched the edge of the truth of Go."

AlphaGoZero



Q-learning



Q-learning

Introduce a quality function Q that predicts the 
future reward for a given state s and a given 
action a. Deterministic policy: just select 
the action with the largest Q!

An alternative to the policy gradient approach





"value" of a state as color



"quality" of the action "going up" as color



Q-learning

Introduce a quality function Q that predicts the 
future reward for a given state s and a given 
action a. Deterministic policy: just select 
the action with the largest Q!

Q(st, at) = E[Rt|st, at]

Rt =
TX

t0=t

rt0�
t0�t

“Discounted” 
future reward:

0 < �  1Discount factor:
Reward at time step t: rt

(assuming future 
steps to follow the 
policy!)

How do we obtain Q?

learning somewhat 
easier for smaller 
factor (short 
memory times)

depends on state 
and action at time t

Note: The ‘value’ of a state is V (s) = maxaQ(s, a)



Q-learning: Update rule

Bellmann equation: (from optimal control theory)

In practice, we do not know the Q function yet, so 
we cannot directly use the Bellmann equation. 
However, the following update rule has the correct Q 
function as a fixed point:

Qnew(st, at) = Qold(st, at) + ↵(rt + �maxaQ
old(st+1, a)�Qold(st, at))

will be zero, once 
we have converged 
to the correct Qsmall (<1) update 

factor

If we use a neural network to calculate Q, it will be 
trained to yield the “new” value in each step.

Q(st, at) = E[rt + �maxaQ(st+1, a)|st, at]



Q(a=up,s)



Q(a=up,s)



Q(a=up,s)



Q-learning: Exploration

Initially, Q is arbitrary. It will be bad to follow this Q all 
the time. Therefore, introduce probability       of 
random action (“exploration”)!

✏

✏-greedy“ “

Reduce this randomness later!

Follow Q: “exploitation”
Do something random (new): “exploration”



Example: Learning to play Atari Video Games

last four 84x84 pixel images as input [=state]
motion as output [=action]

“Human-level control through deep reinforcement learning”, Mnih et al., Nature, February 2015



“Human-level control through deep reinforcement learning”, Mnih et al., Nature, February 2015

Example: Learning to play Atari Video Games



“Human-level control through deep reinforcement learning”, Mnih et al., Nature, February 2015

Example: Learning to play Atari Video Games

t-SNE visualization of 
last hidden layer



Apply RL to solve the challenge of finding, as fast 
as possible, a "treasure" in:
- a fixed given labyrinth
- an arbitrary labyrinth (in each run, the player 

finds itself in another labyrinth)

Advanced Exercise

Use the labyrinth generator on Wikipedia "Maze 
Generation Algorithm"



Wikipedia: "Maze Generation Algorithm /
Python Code Example"


