
Reinforcement Learning

Im
ag

e:
 W

ik
ip

ed
ia

teacher
(smart)

student
(imitates teacher)

“Supervised learning”

final level limited by teacher

!
!

(most neural network applications)

student/scientist
(tries out things)

“Reinforcement learning”

?

?

?

final level: unlimited (?)

Reinforcement learning

Self-driving cars, robotics:
Observe immediate environment & move
Games:
Observe board & place stone
Observe video screen & move player

Challenge: the “correct” action is not known!
Therefore: no supervised learning!

Reward will be rare (or decided only at end)

“agent” “environment”

observation

action

fully observed vs.
partially observed
“state” of the
environment

Reinforcement learning

Challenge: We could use the final reward to define a cost
function, but we cannot know how the environment
reacts to a proposed change of the actions that were
taken!

Training a network to produce actions based on rare
rewards (instead of being told the ‘correct’ action!)

Use reinforcement learning:

(unless we have a model of the environment)

Reinforcement Learning: Basic setting

observation

RL-environmentRL-agent

action

“policy”
state action

state = position x,y
action = move (direction)

state = position x,y
action = move (direction)
reward for picking up box

Policy Gradient
=REINFORCE (Williams 1992): The simplest model-free
general reinforcement learning technique

Basic idea: Use probabilistic action choice. If the
reward at the end turns out to be high, make
all the actions in this sequence more likely
(otherwise do the opposite)
This will also sometimes reinforce ‘bad’ actions,
but since they occur more likely in trajectories
with low reward, the net effect will still be to
suppress them!

observation

RL-environmentRL-agent

action

“policy”
state action

Policy: ⇡✓(at|st) – probability to pick action
given observed state

at
st

at time t

observation

RL-environmentRL-agent

action

“policy”
state action

observation

RL-environment

neural
network

RL-agent

action

Policy Gradient

Probability to take action a, given the current state s
⇡✓(a|s)

Probabilistic policy:

parameters of the network

Environment: makes (possibly stochastic) transition to a new state
s’, and possibly gives a reward r

P (s0|s, a)Transition function

down
up
left
right

0.1
0.6
0.2
0.1

as π
π

Policy Gradient

Probability for having a certain trajectory of actions
and states: product over time steps

Expected overall reward (='return'):
sum over all trajectories

return for this sequence (sum over
individual rewards r for all times)R̄ = E[R] =

@R̄

@✓
=?

Try to maximize expected return by changing
parameters of policy:

a = a0, a1, a2, . . .
s = s1, s2, . . . (state 0 is fixed)

trajectory:

sum over all actions at all times
and over all states at all times >0

⌧ = (a, s)

X

⌧

P✓(⌧)R(⌧)

X

⌧

. . . =
X

a0,a1,a2,...,s1,s2,...

. . .

P✓(⌧) = ⇧tP (st+1|st, at)⇡✓(at|st)

Policy Gradient

@ ln⇡✓(at|st)
@✓

@R̄

@✓
=

X

t

E[R
@ ln⇡✓(at|st)

@✓
]

�✓ = ⌘
@R̄

@✓

Main formula of policy gradient method:

E[. . .]

Stochastic gradient descent:

where is approximated via the
value for one trajectory (or a batch)

@R̄

@✓
=

X

t

X

⌧

R(⌧)
@⇡✓(at|st)

@✓

1

⇡✓(at|st)
⇧t0P (st0+1|st0 , at0)⇡✓(at0 |st0)

Policy Gradient

Increase the probability of all action choices in the
given sequence, depending on size of return R.
Even if R>0 always, due to normalization of probabilities
this will tend to suppress the action choices in
sequences with lower-than-average returns.

@R̄

@✓
=

X

t

E[R
@ ln⇡✓(at|st)

@✓
]

@R̄

@✓k
= E[RGk]

Gk =
@ lnP✓(⌧)

@✓k
=

X

t

@ ln⇡✓(at|st)
@✓k

Abbreviation:

Policy Gradient: reward baseline

Challenge: fluctuations of estimate for return gradient
can be huge. Things improve if one subtracts a constant
baseline from the return.

@R̄

@✓
=

X

t

E[(R� b)
@ ln⇡✓(at|st)

@✓
]

This is the same as before. Proof:

However, the variance of the fluctuating random
variable (R-b)G is different, and can be smaller
(depending on the value of b)!

= E[(R� b)G]

E[Gk] =
X

⌧

P✓(⌧)
@ lnP✓(⌧)

@✓k
=

@

@✓k

X

⌧

P✓(⌧) = 0

E[Gk] =
X

⌧

P✓(⌧)
@ lnP✓(⌧)

@✓k
=

@

@✓k

X

⌧

P✓(⌧) = 0

Gk =
@ lnP✓(⌧)

@✓k

�✓k = �⌘E[Gk(R� bk)]

bk =
E[G2

kR]

E[G2
k]

Xk = (R� bk)Gk

Var[Xk] = E[X2
k]� E[Xk]

2 = min

@Var[Xk]

@bk
= 0

Optimal baseline

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

For more in-depth treatment, see David Silver’s course on
reinforcement learning (University College London):

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

The simplest RL example ever

A random walk, where the probability to go “up” is
determined by the policy, and where the return is given
by the final position (ideal strategy: always go up!)
(Note: this policy does not even depend on the current state)

time

po
si

tio
n

re
w

ar
d

The simplest RL example ever

A random walk, where the probability to go “up” is
determined by the policy, and where the return is given
by the final position (ideal strategy: always go up!)
(Note: this policy does not even depend on the current state)

R = x(T)⇡✓(up) =
1

1 + e�✓
policy return

�✓ = ⌘
X

t

⌧
R
@ ln⇡✓(at)

@✓

�
RL update

at = up or down

@ ln⇡✓(at)

@✓
= ±e�✓⇡✓(at) = ±(1� ⇡✓(at))

+ for up, - for down 1� ⇡✓(up)
�⇡✓(up)

= for up
for down

X

t

@ ln⇡✓(at)

@✓
= Nup �N⇡✓(up)

N=number of time steps

number of ‘up-steps’

The simplest RL example ever

R = x(T)return

�✓ = ⌘
X

t

⌧
R
@ ln⇡✓(at)

@✓

�
RL update

at = up or down

= Nup �Ndown = 2Nup �N

*
R
X

t

@ ln⇡✓(at)

@✓

+
= 2

⌧
(Nup � N

2
)(Nup � N̄up)

�

Initially, when ⇡✓(up) =
1

2

�✓ = 2⌘

⌧
(Nup � N

2
)2
�

= 2⌘Var(Nup) = ⌘
N

2
> 0

(binomial distribution!)

:

(general analytical expression for
average update, rare)

The simplest RL example ever

*
R
X

t

@ ln⇡✓(at)

@✓

+
= 2

⌧
(Nup � N

2
)(Nup � N̄up)

�

= 2

⌧✓
(Nup � N̄up) + (N̄up � N

2
)

◆
(Nup � N̄up)

�

= 2VarNup + 2(N̄up � N

2
)
⌦
Nup � N̄up

↵

= 2VarNup = 2N⇡✓(up)(1� ⇡✓(up))

⇡✓(up)

⇡
✓
(u
p
)(
1
�
⇡
✓
(u
p
))

In general:

(general analytical
expression for average
update, fully simplified,
extremely rare)

The simplest RL example ever

trajectory (=training episode)

pr
ob

ab
ili

ty

3 learning attempts

strong fluctuations!

(This plot for N=100 time steps in a
trajectory; eta=0.001)

⇡
✓
(u
p
)

Spread of the update step

Y = Nup � N̄up c = N̄up �N/2 X = (Y + c)Y

p
Var(X)

⇡✓(up)

⇠ N1

⇠ N
3
2

(This plot for N=100)

X=update
(except
prefactor of 2)

hXi

(Note: to get Var X, we need central moments
of binomial distribution up to 4th moment)

Optimal baseline suppresses spread!

Y = Nup � N̄up c = N̄up �N/2 X = (Y + c)Y

p
Var(X)

hXi

⇡✓(up)

⇠ N1

⇠ N
3
2

(This plot for N=100)

X 0 = (Y + c� b)Y b =

⌦
Y 2(Y + c)

↵

hY 2i

with optimal baseline:

p
Var(X 0)

�X =
MX

j=1

Xj

h�Xi = M hXi
p
Var�X =

p
M

p
VarX

⇠ 1p
M

Note: Many update steps reduce relative spread

relative spread
p
Var�X

h�Xi

M = number of update steps

Homework

Implement the RL update including the optimal
baseline and run some stochastic learning
attempts. Can you observe the improvement
over the no-baseline results shown here?

Note: You do not need to simulate the individual
random walk trajectories, just exploit the
binomial distribution.

The second-simplest RL example

po
si

tio
n

time

“target site”

“walker”

return=number of time steps on target

See code on website: “SimpleRL_WalkerTarget”

actions: move or stay

output = action probabilities (softmax)

⇡✓(a|s)

a=0 ("stay") a=1 ("move")

input = s = "are we on target"? (0/1)

policy

Policy gradient: all the steps

execute action,
record new state

apply neural network to state,
thus obtain action probabilities

from probabilities, obtain
action for next step

Obtain one "trajectory":

Policy gradient: all the steps

Do one trajectory

Obtain overall sum of rewards (=return)
for each trajectory

apply policy gradient training
(enhance probabilities for all

actions in a high-return trajectory)

For each trajectory:

(in reality: a batch of trajectories)

RL in keras: categorical cross-entropy trick

output = action
probabilities (softmax)

⇡✓(a|s)

a=0 a=1 a=2

input = state

C = �
X

a

P (a) ln⇡✓(a|s)

P (a) = R

P (a) = 0

Set

for a=action that was taken

for all other actions a

�✓ = �⌘
@C

@✓
implements policy gradient

categorical cross-entropy

desired
distribution

distr. from net

net.train_on_batch(observed_inputs,desired_outputs)

Encountered N states (during repeated runs)

array N x state-size

array N x number-of-actions

After setting categorical cross-entropy as cost function,
just use the following simple line to implement policy
gradient:

Here desired_outputs[j,a]=R for the state
numbered j, if action a was taken during a run that
gave overall return R

RL in keras: categorical cross-entropy trick

AlphaGo

Among the major board games, “Go” was
not yet played on a superhuman level by any
program (very large state space on a 19x19
board!)
alpha-Go beat the world’s best player in 2017

First: try to learn from human expert players

Silver et al.,“Mastering the game of Go with deep neural networks
and tree search” (Google Deepmind team), Nature, January 2016

AlphaGo

Second: use policy gradient RL on games played
against previous versions of the program

Silver et al.,“Mastering the game of Go with deep neural networks
and tree search” (Google Deepmind team), Nature, January 2016

AlphaGo

Silver et al.,“Mastering the game of Go with deep neural networks
and tree search” (Google Deepmind team), Nature, January 2016

AlphaGo

*Note: beyond policy-
gradient type methods,
this also includes another
algorithm, called Monte
Carlo Tree Search

No training on human expert knowledge
– eventually becomes even better!

AlphaGoZero

Silver et al, Nature 2017

Ke Jie stated that "After humanity spent thousands of
years improving our tactics, computers tell us that humans
are completely wrong... I would go as far as to say not a
single human has touched the edge of the truth of Go."

AlphaGoZero

Q-learning

Q-learning

Introduce a quality function Q that predicts the
future reward for a given state s and a given
action a. Deterministic policy: just select
the action with the largest Q!

An alternative to the policy gradient approach

"value" of a state as color

"quality" of the action "going up" as color

Q-learning

Introduce a quality function Q that predicts the
future reward for a given state s and a given
action a. Deterministic policy: just select
the action with the largest Q!

Q(st, at) = E[Rt|st, at]

Rt =
TX

t0=t

rt0�
t0�t

“Discounted”
future reward:

0 < �  1Discount factor:
Reward at time step t: rt

(assuming future
steps to follow the
policy!)

How do we obtain Q?

learning somewhat
easier for smaller
factor (short
memory times)

depends on state
and action at time t

Note: The ‘value’ of a state is V (s) = maxaQ(s, a)

Q-learning: Update rule

Bellmann equation: (from optimal control theory)

In practice, we do not know the Q function yet, so
we cannot directly use the Bellmann equation.
However, the following update rule has the correct Q
function as a fixed point:

Qnew(st, at) = Qold(st, at) + ↵(rt + �maxaQ
old(st+1, a)�Qold(st, at))

will be zero, once
we have converged
to the correct Qsmall (<1) update

factor

If we use a neural network to calculate Q, it will be
trained to yield the “new” value in each step.

Q(st, at) = E[rt + �maxaQ(st+1, a)|st, at]

Q(a=up,s)

Q(a=up,s)

Q(a=up,s)

Q-learning: Exploration

Initially, Q is arbitrary. It will be bad to follow this Q all
the time. Therefore, introduce probability of
random action (“exploration”)!

✏

✏-greedy“ “

Reduce this randomness later!

Follow Q: “exploitation”
Do something random (new): “exploration”

Example: Learning to play Atari Video Games

last four 84x84 pixel images as input [=state]
motion as output [=action]

“Human-level control through deep reinforcement learning”, Mnih et al., Nature, February 2015

“Human-level control through deep reinforcement learning”, Mnih et al., Nature, February 2015

Example: Learning to play Atari Video Games

“Human-level control through deep reinforcement learning”, Mnih et al., Nature, February 2015

Example: Learning to play Atari Video Games

t-SNE visualization of
last hidden layer

Apply RL to solve the challenge of finding, as fast
as possible, a "treasure" in:
- a fixed given labyrinth
- an arbitrary labyrinth (in each run, the player

finds itself in another labyrinth)

Advanced Exercise

Use the labyrinth generator on Wikipedia "Maze
Generation Algorithm"

Wikipedia: "Maze Generation Algorithm /
Python Code Example"

