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ABSTRACT

4D flow MRI is a promising method for providing global
quantification of cardiac flow in a single acquisition, yet its
use in clinical application suffers from low velocity-to-noise
ratio. In this work, we present a novel noise reduction pro-
cessing for 4D flow MRI data using divergence-free wavelet
transform. Divergence-free wavelets have the advantage of
enforcing soft divergence-free conditions when discretization
and partial voluming result in numerical non-divergence-free
components and at the same time, provide sparse represen-
tation of flow in a generally divergence-free field. Efficient
denoising is achieved by appropriate shrinkage of divergence-
free and non-divergence-free wavelet coefficients. To verify
its performance, divergence-free wavelet denoising was per-
formed on simulated flow and compared with existing meth-
ods. The proposed processing was also applied on in vivo
data and was demonstrated to improve visualization of flow
data while preserving quantifications of flow data.

Index Terms— 4D flow MRI, divergence-free, wavelets,
denoising, visualization

1. INTRODUCTION

Time-resolved 3D phase-contrast MRI (4D flow MRI) has the
potential to provide both anatomy and function of cardiac
flow globally in a single acquisition [1]. However, 4D flow
data are often compromised by low velocity-to-noise ratio,
potentially caused by MRI accelerated acquisitions or high
velocity encodes (high vencs). These methods are oftentimes
neccesary to provide practical scan time and to avoid veloc-
ity aliasing when the dynamic range of velocites is high. To
reduce noise level, physical properties of blood flow can be
exploited to identify important features and separate the noise
from the flow data. Since blood flow is incompressible, it
is approximately divergence-free. Therefore, most of the di-
vergence components in the flow field originate from either
noise or artifacts, which can be reduced by enforcing the flow
to be divergence-free. However, in practice, discrete approxi-
mation and partial voluming of flow cannot be fully captured
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by strict divergence-free representation. This situation often
occurs in places near edges of flow, static tissue or turbu-
lent flow. Strict divergence-free enforcement across bound-
aries may result in significant error propagation throughout
the flow field. Hence, we assert that a practical and effective
divergence-free enforcing processing of flow data should have
all of the following properties:

1. It should enforce appropriate divergence-free con-
straints on different parts of the flow data.

2. It should have multiscale enforcement of divergence-
free constraints.

3. It should be adaptive to noise.
4. It should be computationally fast.

In this current paper, we present and analyze a noise re-
duction processing that accomplishes the above goals by us-
ing divergence-free wavelet transform. In addition, we show
that divergence-free wavelets provide a sparse representation
of flow data, which we utilized for further denoising by per-
forming wavelet shrinkage [2].

2. BRIEF REVIEW OF PREVIOUS WORKS

Among previous works, Song et al. [3] solved for a divergence-
free field using finite difference method (FDM), which was
partly solved by a fast sine transform, while Busch et al. [4]
constructed a divergence-free field by projecting the noisy
flow field onto divergence-free radial basis functions (RBF)
using iterative least squares. Both were shown to be effective
as a denoising process [5]. However, both methods enforce
the flow field to be strictly divergence-free and require ac-
curate segmentation to prevent unwanted divergence-free
enforcing near edges. This could result in error propagation
in response to errors near boundaries.

3. APPROACH

3.1. Wavelet Denoising

Signal denoising through wavelet shrinkage was popular-
ized by Donoho and Johnstone [2] in the 90s and is now
widely used in many imaging applications. The popularity of
wavelet denoising is encouraged by many attractive properties
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of wavelet methods, such as efficient multiscale decomposi-
tions, edge preserving transforms, and sparse representation
of signals, while accounting to only O(N) complexity, where
N is the data size. These appealing features of wavelet de-
noising motivate us to find a suitable wavelet domain for
similar processing on 4D flow data.

3.2. Divergence-free Wavelets

Like many scientific and engineering fields, the computa-
tional fluid dynamics (CFD) community was significantly
impacted by the introduction of wavelets in the late 1980s.
In particular, Lemarie-Rieusset [6] designed compactly sup-
ported divergence-free wavelets, which have been investi-
gated in several CFD applications. Among these applica-
tions, divergence-free wavelet was shown to provide a sparse
representation for simulated flow data in [7] and was demon-
strated to have the capability of separating statistically ran-
dom flow in [8]. These two properties encourage us to apply
divergence-free wavelet denoising in the context of flow MRI.

Despite the name of divergence-free wavelet transform,
3D divergence-free wavelets span the entire set of 3D vector
fields and separate flow data into divergence-free and non-
divergence-free components. Thus, to effectively denoise
flow data, we propose soft-thresholding divergence-free
wavelet coefficients to encourage sparsity; in addition, we
soft-threshold non-divergence-free wavelet coefficients with a
higher threshold to softly enforce divergence-free constraints
instead of eliminating all divergence. Soft-thresholding non-
divergence-free coefficients allows the flexibility to adjust
the cutoff so that important non-divergence-free components,
such as those arising near edges, persist. Hence, this opera-
tion does not enforce strict divergence-free constraints across
edges and is more tolerable to errors near boundaries.

The construction of divergence-free wavelets relies on the
following proposition that relates two different wavelets by
differentiation [7]:
Proposition: Let φ1(x) and ψ1(x) be a 1D derivable scal-
ing function and wavelet function respectively. Then we can
build another 1D scaling function φ0(x) and wavelet function
ψ0(x) such that

φ1
′(x) = φ0(x)− φ0(x− 1) ψ1

′(x) = 4ψ0(x)

As noted in [8], for compactly supported wavelets, only
biorthogonal 1D wavelets can satisfy the proposition, which
implies that eliminating non-divergence-free components is
not an orthogonal projection onto the space of divergence-free
vector fields. However, if we choose appropriate wavelets,
such as spline wavelets, which are known for its near-
orthogonality, then divergence-free wavelets are close to
orthogonal as shown in [8].

Using the above proposition, divergence-free wavelets
can then be explicitly constructed by combining tensor prod-
ucts of these functions. For example, a 2D divergence-free
scaling and wavelet function can be of the form:

Φdivfree(x, y) =

(
φ1(x)[φ0(y)− φ0(y − 1)]
−[φ0(x)− φ0(x− 1)]φ1(y)

)
Ψdivfree(x, y) =

(
ψ1(x)ψ0(y)
−ψ0(x)ψ1(y)

)
which can be verified to have zero divergence. Similar pro-
cedure can be extended to the case of three-dimensional and
used to generate a complete set of 21 divergence-free wavelet
functions following the instructions in [7]. Some examples of
divergence-free wavelet basis functions are shown in Fig. 1.
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Fig. 1: Examples of 2D slices of divergence-free wavelet basis func-
tions: divergence-free (A,B,C) and non-divergence-free (D,E,F)

More importantly, tensor combination of 1D wavelet
functions implies that computation of divergence-free wavelet
coefficients is reduced to a simple linear combination of
wavelet coefficients generated by standard 3D wavelet trans-
form using φ0, ψ0, φ1 and ψ1. Thus, the procedure of
divergence-free wavelet denoising is only different from stan-
dard 3D wavelet transforms in that we have to linearly com-
bine wavelet coefficients before and after soft-thresholding
and maintains O(N) complexity as illustrated in Fig. 2.
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Fig. 2: Flow diagram of divergence-free wavelet denoising.
[FWT:Forward Wavelet Transform, IWT:Inverse Wavelet Transform,
WC:Wavelet Coefficient, df:divergence-free, n:non-divergence-free,
(a,b,c):( {φa(x), ψa(x)}, {φb(x), ψb(y)}, {φc(x), ψc(z)} )]

4. RESULTS AND DISCUSSION

To validate the performance of divergence-free wavelet de-
noising, the processing was tested on simulated flow data and
in-vivo 4D flow data. Divergence-free wavelet denoising was
implemented in Matlab (The MathWorks, Natick, MA, USA)
on a Intel Core 2 Duo laptop with 4GB of RAM, following the
instructions in [7]. Linear spline wavelet (Cohen-Daubechies-
Feauveau 2.2) was used for φ0 and ψ0, and quadratic spline
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wavelet (Cohen-Daubechies-Feauveau 3.1) was used for φ1
and ψ1. Thresholds were chosen to balance visualization and
data consistency. Non-divergence-free threshold was set to be
roughly twice the divergence-free threshold.
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Fig. 3: (in color) Calculated Couette velocity field (A). Velocity
RMSE (cm/s) v. VNR (B). Mean velocity magnitude error (unitless)
v. VNR (C). Mean absolute flow direction error (from 0 to 1) v. VNR
(D). [λ1: Thresholds fixed at 4σ and 7σ for div-free and non-div-free
coefficients. λ2: Thresholds fixed at 7σ for all coefficients]

4.1. Simulation

For our simulation, we constructed a 323 Couette flow field
(shown in Fig. 3), which had the form:

vx = −(Ar+B/r)sinθ, vy = (Ar+B/r)cosθ, vz = 0

where r =
√
x2 + y2, θ = tan−1(y/x) and A and B are con-

stants such that maximum speed is 300 cm/s. We simulated
complex data acquired with a 5-point balanced phase-contrast
method and assumed fully-sampled Fourier transform recon-
struction. The complex data magnitude in image domain
was set to one where velocity field was nonzero and zero
otherwise, while the complex signal phase was constructed
by adding or subtracting velocity components according to
the 5-point balanced phase-contrast method, with the con-
stant phase assumed to be zero. Different levels of complex
Gaussian noise with variance σ2 were added to the complex
data. Divergence-free wavelet denoising was applied on the
flow data extracted from phase and was compared with exist-
ing methods using FDM and RBF, following the instructions
in [3, 4]. For divergence-free wavelet denoising, we consid-
ered two cases of thresholding: (λ1) Thresholds fixed at 4σ
and 7σ for divergence-free and non-divergence-free coeffi-
cients, and (λ2) thresholds fixed at 7σ for all coefficients. For
RBF, the size of basis functions was set to be 73. Image mag-
nitude was used to remove phase in zero magnitude regions

for all methods. Velocity-to-noise ratios (VNR) and mean
errors were estimated by averaging over 50 experiments and
over voxels with nonzero image magnitude. We defined ve-
locity magnitude error and absolute flow direction error for
each voxel as:

‖vcalc‖ − ‖vprocessed‖
‖vcalc‖

, 1− |vcalc · vprocessed|
‖vcalc‖‖vprocessed‖

Displayed in Fig. 3, the results showed that the proposed
divergence-free wavelet denoising (λ1) performed better than
other methods in velocity magnitude error and absolute flow
direction error, while achieving low root-mean-square-error
(RMSE), second only to RBF in high VNR. We also note that
divergence-free wavelet denoising with threshold (λ1) per-
formed better than threshold (λ2).

Fig. 4: (in color) Visualization of cardiac flow magnitudes before
denoising (A) with closeup of segmented aorta slice (B), and after
denoising (C) with closeup of segmented aorta slice (D).

4.2. In-vivo flow data

Divergence-free wavelet denoising was further tested on in-
vivo data. In-vivo 4D cardiac flow data were acquired in 8 pa-
tients with 20 cardiac phases, 122-144 slices and an average
spatial resolution of 1.56x1.56x1.43mm3 on a 1.5T GE Signa
Scanner. The acquisition was undersampled by 4 to achieve
practical scan time and was reconstructed using L1-SPIRiT, a
compressed sensing and parallel imaging reconstruction [9].
Flow data were extracted from eddy-current corrected phase
of reconstructed images. Segmentations were done manually
on aorta and pulmonary trunk. Net flow rate(volume/time)
and regurgitant fraction(%) were calculated for each segmen-
tation. Since the net flow difference between aorta and pul-
monary trunk should generally be zero, we defined flow in-
consistency as the absolute difference between flow rates in
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the aorta and pulmonary trunk. Divergence-free wavelet de-
noising was applied on 3D volumes for each cardiac phase.
The computation for each phase took less than half a minute
using a Matlab implementation.

Studies were evenly separated into a group with regurgi-
tant fractions less than 5% (mean net flow=2.945 L/min) and
a group with regurgitant fractions more than 30% (mean net
flow=2.212 L/min). For the first group, the average flow in-
consistency before denoising was 0.395 L/min and after de-
noising was 0.353 L/min, yielding a 10.7% improvement. Av-
erage change in regurgitant fraction was 0.08%. For the sec-
ond group, the average flow inconsistency before denoising
was 1.151 L/min and after denoising was 0.926 L/min, yield-
ing a 19.5% improvement. Average change in regurgitant
fraction was 1.88%. Here, we emphasize that the change in
regurgitant fraction for both groups was small, which suggests
that divergence-free wavelet denoising can be safely applied
on clinical data while improving visualization (Fig. 4).
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Fig. 5: Normalized absolute value of wavelet coefficients with re-
spect to largest coefficient v. percentile of ordered wavelet coeffi-
cients of a in-vivo dataset

Analyzing in-vivo datasets, we demonstrated the sparsity
of flow data in divergence-free wavelet domain in Fig. 5, in
which we plotted normalized absolute value of wavelet co-
efficients with respect to the largest coefficient versus per-
centile of ordered wavelet coefficients (0 being the largest
wavelet coefficient and 1 being the smallest wavelet coeffi-
cient). We observed that even for the noisy acquired data,
more than 97% of wavelet coefficients were smaller than 1%
of the largest wavelet coefficient. In addition, in Fig. 6, we
showed the effect of applying thresholds on non-divergence-
free wavelet coefficients. Notice that the non-divergence-free
coefficients near edges were largely intact and hence did not
enforce divergence-free constraints across edges.

5. CONCLUSION

Divergence-free wavelet denoising was shown to enhance the
visual quality of 4D flow data and improve quantification of
flow at aorta and pulmonary trunk. The processing was shown
to be comparable to other processing on simulated data while
providing computational efficiency and tolerance to boundary
errors. Divergence-free wavelet transform was also demon-
strated to provide a sparse transformation for 4D flow data.
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