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Abstract—Compressed sensing (CS) magnetic resonance ima-
ging (MRI) reconstruction reduces the scan time by under-
sampling the data but increases the image reconstruction time
because a non-linear optimization problem must be iteratively
solved to reconstruct the images. The growing demand for redu-
cing the examination time in cardiac MRI led us to investigate
opportunities to accelerate this non-linear optimization problem
to facilitate the migration of CS into the clinical environment.
Using 3D steady-state free precession MRI images from 5
patients, we compared the speed and output quality of CS
reconstruction using central processing unit (CPU), CPU with
OpenMP parallelization, and graphics processing unit (GPU)
platforms. Mean reconstruction time was 13.1 ± 3.8 minutes
for the CPU, 11.6 ± 3.6 minutes for the CPU with OpenMP
parallelization, and 2.5 ± 0.3 minutes for the CPU with OpenMP
plus GPU. GPU and CPU reconstructed image quality as assessed
by image subtraction were comparable. Additional developments
needed for implementation of rapid CS image reconstruction in
the clinical environment are discussed.

I. INTRODUCTION

Cardiac magnetic resonance imaging (MRI) has become an
essential part of procedural planning and monitoring of children
and adults with congenital heart disease [1][2]. An important
MRI method for acquiring high-resolution anatomic datasets
of the entire thorax is the electrocardiogram and respiratory-
gated three-dimensional steady-state free precession (3D-SSFP)
sequence [3][4]. A notable limitation of this sequence is its
relatively long imaging time, typically 10-15 minutes for 1.2
mm3 isotropic resolution [5]. A patient’s heart rate, breathing
pattern, and position may change during such a long scan time,
potentially leading to non-diagnostic image quality. Accelera-
tion techniques such as compressed sensing (CS) may be used
to reduce the imaging time and minimize the negative effects
of variations in heart rate, breathing pattern, and gross motion
of patients on image quality [6]. Although CS significantly
reduces the scan time, it prolongs the image reconstruction
time, since it requires execution of a computationally intensive

non-linear optimization algorithm that iteratively estimates the
whole image from undersampled data. Therefore, it is important
to accelerate the CS reconstruction process so that CS can be
used in the clinical setting.

Different approaches have been reported for accelerating
CS reconstruction on many types of 1- or 2-dimensional data
including Barzilai-Borwein and Split Bergman formulations on
a single GPU [7][8] and multiple GPUs [9]. GPU implementa-
tion was also used to accelerate CS reconstruction on 2D cine
MRI datasets [10]. Although these efforts were successful in
speeding up CS reconstruction, they are only suitable for 1D
or 2D datasets and lack a general and expandable structure to
be suitable for 3D CS reconstruction.

Different methods have also been proposed to accelerate
CS reconstructions for 3D MRI and computed tomography
datasets using GPU and Intel’s many integrated core architec-
tures [11][12][13][14]. These acceleration techniques, however,
were not applied to 3D datasets from patients. Thus, the aim of
this study was to accelerate the `1-ESPIRiT CS reconstruction
algorithm [15] for 3D MRI patient datasets using GPUs, and
compared the processing time and image quality with CS
reconstructions using CPUs.

The rest of the paper is organized as follows: Section II
provides brief information about CS image reconstruction and
describes our experimental setup. Following that, Section III
summarizes our results. Section IV analyzes our experiments
and results and touches on future work. Finally, Section V
concludes the paper.

II. METHODS

A. Compressed Sensing (CS) Image Reconstruction

CS reconstruction is based on an iterative non-linear optimiz-
ation algorithm which aims to estimate and reconstruct images
from very few randomly sampled image data. This algorithm
is based on 2 principles: a) the samples should be randomly
acquired, and b) for image reconstruction, the images shouldxxx-x-xxxx-xxxx-x/xx/$xx c©2016 IEEE
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be sparse in a certain domain. This algorithm then reconstructs
the images by iteratively optimizing a non-linear cost function
ensuring that the output images are consistent with the acquired
samples and sparse in a given domain after each iteration.

The `1-ESPIRiT CS reconstruction algorithm that we utilized
in this study has 4 main stages. First, the undersampled data is
modulated by a complex exponential in the frequency domain
(FFTMOD). Then, the data from receiver coils (up to 25 coils
for our datasets) are projected onto 8 orthogonal channels in the
coil compression stage (CC). In the ESPIRiT calibration stage
(ECALIB), the coil sensitivities of the 8 compressed channels
are estimated. Finally, in the parallel imaging compressed
sensing reconstruction stage (PICS), the CS reconstruction is
performed.

To implement `1-ESPIRiT CS reconstruction on the CPU
and GPU, we used the Berkeley Advanced Reconstruction
Toolbox (BART) [16]. BART is an open-source framework
for computational MRI. It has a programming library which
includes common operations on multi-dimensional arrays, such
as Fourier and wavelet transforms. Furthermore, BART has
generic implementations of iterative optimization algorithms
and a toolbox of command line programs which provide direct
access to basic operations and efficient implementations of
many calibration and reconstruction algorithms for CS.

The CPU node that we used had dual Intel E5 2650 CPUs
@ 2.00 GHz and 128 GByte of RAM and the GPU node
had NVIDIA Tesla K20m GPU with 2496 computing cores
and 4.8 GB of global memory with the processor and RAM
configuration similar to the CPU node. For CS reconstruction
of the 5 datasets on the GPU, a mean of 591 ± 101 MB of
GPU memory was utilized.

B. Experimental Setup

To compare `1-ESPIRiT CS reconstruction on a CPU and
GPU, 5 patients (3 females, age 22.6 ± 11.1 years) with
congenital heart disease referred for cardiac MRI exams
were recruited. For each patient, a 3D-SSFP sequence was
acquired with the following parameters: field of view about
386×230×120 mm3, voxel size 1.5 mm3 reconstructed to 0.75
mm3, flip angle 90◦, echo time 2.4 ms, repetition time 4.7 ms,
and bandwidth 542 Hz. The datasets acquired from patients had
slightly different dimensions because the patients had different
thorax sizes. The 3D-SSFP data were randomly undersampled
using a variable density Poisson disc sampling pattern for about
a 6-fold reduction of imaging time (Figure 1). After completing
the scan, the data was reconstructed using the `1-ESPIRiT CS
algorithm on 1) a CPU without any parallelization, 2) a CPU
with 24 thread OpenMP parallelization, and 3) a CPU with
OpenMP + a GPU, all with 100 iterations. For the CPU with
OpenMP + GPU reconstructions, only the PICS stage was
accelerated on a GPU; the FFTMOD, CC, and ECALIB stages
were performed on a CPU with OpenMP parallelization.

The execution times of `1-ESPIRiT CS reconstruction for
CPU, CPU with OpenMP parallelization, and CPU with
OpenMP + GPU implementations were evaluated by coarse
grain profiling of the 4 main stages in the algorithm (i.e.,

FFTMOD, CC, ECALIB, and PICS). To ensure that the results
were statistically robust, the reconstructions were repeated 10
consecutive times for each dataset in all 3 implementations, and
the mean execution time was reported. Then, the bottlenecks
in the execution times were determined using the profiling
results. Image quality using the 3 different reconstructions was
quantitatively compared by calculating the mean difference
error between the reconstructed images. When image quality
is similar, the mean difference error should be close to zero.
A two-tailed paired Student’s t-test was used to compare the
execution times and the mean difference error. A p-value≤0.05
was considered statistically significant.

a) Fully sampled data b) Undersampled data

Figure 1: (a) Pattern of fully sampled dataset compared with
(b) pattern of variable density Poisson disc undersampled data
to achieve about 6 fold reduction in 3D-SSFP acquisition time.

The Boston Children’s Hospital Committee on Clinical
Investigation approved this study, and written informed consent
was obtained from the patients.

III. RESULTS

The acquisitions and reconstructions were successfully com-
pleted on all 5 patients. The acquisition time for the 3D-SSFP
datasets with about 6× undersampling had a mean of 3.4 ±
1.0 minutes.

Table I and Figures 2, 3, and 4 show the CS reconstruction
times for CPU, CPU with OpenMP, and CPU with OpenMP +
GPU, respectively. The mean processing time to reconstruct the
five 3D patient datasets was 13.08 ± 3.82 minutes on the CPU,
11.56 ± 3.59 minutes on the CPU with OpenMP, and 2.52 ±
0.30 minutes on the CPU with OpenMP + GPU. The pairwise
differences between the execution times on CPU, CPU with
OpenMP, and CPU with OpenMP + GPU for all datasets were
significant as all p-value<0.01.

Figure 5 shows 3D-SSFP images acquired from a patient
before and after image reconstruction using a CPU and a
GPU, and the difference between the images reconstructed on
CPU and GPU. For all 5 patient datasets, the mean difference
between the CPU and GPU reconstructed images was 2.2e-06
and the mean maximum error was 6.9e-04.
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Table I: Execution times of PICS on CPU and GPU as well as total execution times of `1-ESPIRiT CS algorithm on CPU,
CPU with OpenMP parallelization, and CPU with OpenMP parallelization plus GPU for PICS for 3D datasets in 5 patients.

PICS execution time (minutes) Total execution time (minutes)

Data Size CPU GPU CPU CPU with OpenMP CPU with OpenMP + GPU

Patient 1 256×128×113 6.36 0.98 7.83 6.50 2.11

Patient 2 256×145×96 8.97 0.97 10.52 9.46 2.30

Patient 3 256×141×128 12.19 1.33 13.98 12.30 2.66

Patient 4 256×170×121 14.14 1.50 16.00 14.28 2.76

Patient 5 256×157×124 15.17 1.47 16.96 15.28 2.81
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Figure 2: Execution times of the 4 main stages in the `1-
ESPIRiT CS reconstruction algorithm on the CPU for 3D
datasets in 5 patients (ordered according to increasing data
size).
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Figure 4: Execution times of the 4 main stages in the
`1-ESPIRiT CS reconstruction algorithm on the CPU with
OpenMP + GPU for 3D datasets in 5 patients (ordered
according to increasing data size). Only PICS was implemented
on GPU while the other 3 stages were performed on CPU with
OpenMP parallelization.
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Figure 3: Execution times of the 4 main stages in the
`1-ESPIRiT CS reconstruction algorithm on the CPU with
OpenMP parallelization for 3D datasets in 5 patients (ordered
according to increasing data size).

IV. DISCUSSION

Using MRI 3D-SSFP datasets from patients with congenital
heart disease, we evaluated the execution time of the `1-
ESPIRiT CS reconstruction algorithm using a CPU, a CPU
with OpenMP parallelization, and a CPU with OpenMP
parallelization + a GPU. The CPU with OpenMP decreased
the execution time of `1-ESPIRiT CS reconstruction algorithm
on average 11% compared with CPU without OpenMP. The
CPU with OpenMP + GPU reduced the execution time of
the CS algorithm on average 80% compared to the CPU
without OpenMP and did not compromise the image quality.
Implementing only PICS stage on a GPU greatly sped up
the CS reconstruction about 5.5× compared to the CPU with
OpenMP.

The total execution time of CS reconstruction on the CPU,
CPU with OpenMP, and CPU with OpenMP + GPU varied for
the datasets with different sizes. However, this variation was
smaller on the CPU with OpenMP + GPU compared to the
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a) Raw image b) CS reconstructed image on CPU c) CS reconstructed image on GPU d) Difference image (b-c)

Figure 5: An example of 3D-SSFP images in sagittal view acquired from a patient with congenital heart disease: (a) raw image
before CS reconstruction, (b) `1-ESPIRiT CS reconstructed image on CPU, (c) `1-ESPIRiT CS reconstructed image on GPU,
and (d) the absolute difference between the reconstructed images on CPU and GPU. The mean difference error between the
CPU and GPU reconstructed images was 1.37e-05 with the maximum error of 6.49e-05.

CPU implementation (0.3 minutes vs. 3.6 minutes). This could
partially stem from the fact that the GPU computation limits
are not yet reached and the speedup is only bounded by the data
transfer bandwidth and latency to the GPU. After accelerating
the PICS stage using a GPU, the execution time of PICS
became comparable to the ECALIB processing time. Hence,
the calibration stage (ECALIB) could be the next component
to investigate for the possibilities of parallelism using GPUs.

The execution times of the FFTMOD, CC, and ECALIB
stages for the CPU implementation were longer than their
execution times for the CPU with OpenMP and CPU with
OpenMP + GPU implementations, because of the OpenMP
parallelization that was used in these stages for the CPU with
OpenMP and CPU with OpenMP + GPU implementations.

The mean difference between the images reconstructed on
CPU and GPU were on the order of 1e-05, and the images
were very similar. This small mean difference is potentially
due to the fact that different order of operations could lead
to different results in floating-point arithmetic. In our study,
the PICS stage was implemented using sequential coding on
the CPU and parallel coding on the GPU, which yielded to
different order of operations and therefore unequal results [17].

Limitations and Future Work

The number of subjects in our study was small. We are plan-
ning to apply the CS MRI algorithm on more patients in clinical
settings. Currently, only the PICS stage was implemented on a
GPU while other stages were executed on a CPU with OpenMP
parallelization. These stages can be also implemented on GPUs
for further reduction of CS reconstruction time. We also aim to
enhance the library components that are used in BART. In addi-
tion to custom designed library components, BART uses third
party implementations of linear algebra package (LAPACK)
and GNU scientific library for linear algebraic and matrix
operations, such as Cholesky decomposition, and CUDA library

for GPU implementation of fast Fourier transform. We plan to
upgrade these libraries to latest versions or replace them with
more optimized ones to improve reconstruction performance.
This may require changes to the structure of BART to support
the new versions of these libraries. A single GPU node was used
in our study for accelerating the `1-ESPIRiT reconstruction
algorithm. A multi-GPU implementation using message passing
interface and CUDA can be used for further improvement in
the reconstruction time for 3D or higher dimensional datasets.

V. CONCLUSIONS

To the best of our knowledge, this is the first study which
evaluates `1-ESPIRiT CS reconstruction algorithm on a GPU
for 3D cardiac MRI datasets with different sizes acquired
from patients. We show that utilization of a GPU reduces the
CS image reconstruction time to less than 3 minutes without
compromising image quality. We show that by using the CS
acceleration technique in MRI to shorten the imaging time
and parallel programming to reduce the corresponding CS
image reconstruction time, the total MRI processing time can
be significantly minimized. This advance should facilitate the
use of CS MRI in clinical settings. Future work will explore
further acceleration of CS reconstruction with a goal of less
than one minute processing time per 3D cardiac MRI dataset
using heterogeneous computing platforms.
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