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Abstract—We present our BART Toolbox for computational Magnetic
Resonance Imaging (MRI). The main motivation for the development
of this toolbox was the simultaneous need for rapid prototyping of
new computational imaging methods for MRI and for highly efficient
implementations. The main philosophy is the use of generic numerical
algorithms and re-usable and highly configurable software components.
The BART toolbox consists of programming libraries and flexible
command-line tools. It contains tools for simulation, pre-processing,
calibration, and image reconstruction.

I. COMPRESSED SENSING AND PARALLEL IMAGING

Compressed sensing is based on the idea that a sparse signal can
be recovered using iterative denoising from undersampled data if the
aliasing is incoherent. This idea can be applied to MRI and also
combined with parallel imaging [1], [2]. In parallel imaging, the
signal can be modelled as samples of the Fourier transform of the
magnetization image ρ modulated by the receive-coil sensitivities cj
along a given k-space trajectory k(t):

yj(t) =

∫
d~r ρ(~r)cj(~r)e−2πi~k(t)·~r

If the coil sensitivities cj are known, image reconstruction can
be formulated as a linear inverse problem [3]. For autocalibrating
parallel imaging the sensitivities must be estimated from the data.
This yields a bilinear problem which is similar to blind multi-
channel deconvolution. Three different reconstruction approaches are
implemented in BART: non-linear inversion (NLINV) [4], structured
low-rank matrix completion (SAKE) [5], and ESPIRiT [6] which is
based on identification of the signal subspace.

II. GENERALIZED RECONSTRUCTION

Many recent methods are based on high-dimensional reconstruc-
tion problems which include additional time and parametric dimen-
sions (see Fig. 1 for examples). To facilitate experimentation, BART
implements a generic framework based on the following optimization
problem [7]:

argmin
x

∑
j

‖W (PF
∑
k

Sj
kxk − yj)‖22 +

N∑
i

λifi(Bix)

Here, F is a multi-dimensional Fourier transform, P is a sampling
operator, S the multiplication with the sensitivities, W a weighting
matrix, the Bi are linear operators, fi convex functions, λi regulariza-
tion parameters. For arbitrary combinations of certain regularization
terms and transforms along arbitrary dimensions, this problem can
be solved using ADMM and a library of proximity functions using
the following BART command:

> bart pics -Rf :B:C:λ -R ... [-t P] -p W y S x

III. CONCLUSION

BART provides a flexible and efficient framework for rapid proto-
typing of advanced computational methods in MRI.

Fig. 1. Reconstruction of high-dimensional data using BART. Top: Highly
accelerated 4D-flow [9]. Bottom: Dynamic contrast-enhanced MRI using
GRASP [10]. Data courtesy of Joseph Y. Cheng and Tobias Block.
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