
c05 – Roots of One or More Transcendental Equations c05ubc

nag zero nonlin eqns deriv 1 (c05ubc)

1. Purpose

nag zero nonlin eqns deriv 1 (c05ubc) finds a solution of a system of nonlinear equations by a
modification of the Powell hybrid method. The user must provide the Jacobian.

2. Specification

#include <nag.h>
#include <nagc05.h>

void nag_zero_nonlin_eqns_deriv_1(Integer n, double x[], double fvec[],
double fjac[], Integer tdfjac,
void (*f)(Integer n, double x[], double fvec[],

double fjac[], Integer tdfjac, Integer *userflag),
double xtol, Nag_User *comm, NagError *fail)

3. Description

The system of equations is defined as:

fi(x1, x2, . . . , xn) = 0, for i = 1, 2, . . . , n.

nag zero nonlin eqns deriv 1 is based upon the MINPACK routine HYBRJ1 (Moré et al (1980)).
It chooses the correction at each step as a convex combination of the Newton and scaled gradient
directions. Under reasonable conditions this guarantees global convergence for starting points far
from the solution and a fast rate of convergence. The Jacobian is updated by the rank-1 method
of Broyden. At the starting point the Jacobian is calculated, but it is not recalculated until the
rank-1 method fails to produce satisfactory progress. For more details see Powell (1970).

4. Parameters

n
Input: the number of equations, n.
Constraint: n > 0.

x[n]
Input: an initial guess at the solution vector.
Output: the final estimate of the solution vector.

fvec[n]
Output: the function values at the final point, x.

fjac[n][tdfjac]
Output: the orthogonal matrix Q produced by the QR factorization of the final approximate
Jacobian.

tdfjac
Input: the last dimension of array fjac as declared in the function from which
nag zero nonlin eqns deriv 1 is called.
Constraint: tdfjac ≥ n.

f
Depending upon the value of userflag, f must either return the values of the functions fi at a
point x or return the Jacobian at x.

[NP3275/5/pdf] 3.c05ubc.1

nag zero nonlin eqns deriv 1 NAG C Library Manual

The specification of f is:

void f(Integer n, double x[], double fvec[], double fjac[],
Integer tdfjac, Integer *userflag)

n
Input: the number of equations, n

x[n]
Input: the components of the point x at which the functions or the Jacobian
must be evaluated.

fvec[n]
Output: if userflag = 1 on entry, fvec must contain the function values fi(x)
(unless userflag is set to a negative value by f).
If userflag = 2 on entry, fvec must not be changed.

fjac[n ∗ tdfjac]
Output: if userflag = 2 on entry, fjac[(i−1)∗tdfjac+j−1] must contain the value
of ∂fi/∂xj at the point x, for i = 1, 2, . . . , n; j = 1, 2, . . . , n (unless userflag is
set to a negative value by f).
If userflag = 1 on entry, fjac must not be changed.

tdfjac
Input: the last dimension of array fjac as declared in the function from which
nag zero nonlin eqns deriv 1 is called.

userflag
Input: userflag = 1 or 2.
If userflag = 1, fvec is to be updated.
If userflag = 2, fjac is to be updated.

Output: in general, userflag should not be reset by f. If, however, the user wishes
to terminate execution (perhaps because some illegal point x has been reached),
then userflag should be set to a negative integer. This value will be returned
through fail.errnum.

xtol
Input: the accuracy in x to which the solution is required.
Suggested value: the square root of the machine precision.
Constraint: xtol ≥ 0.0.

comm
Input/Output: pointer to a structure of type Nag User with the following member:

p - Pointer
Input/Output: the pointer p, of type Pointer, allows the user to communicate
information to and from the user-defined function f(). An object of the required type
should be declared by the user, e.g. a structure, and its address assigned to the pointer
p by means of a cast to Pointer in the calling program, e.g. comm.p = (Pointer)&s.
The type pointer will be void * with a C compiler that defines void * and char *
otherwise.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LE
On entry, n must not be less than or equal to 0: n = 〈value〉.

NE REAL ARG LT
On entry, xtol must not be less than 0.0: xtol = 〈value〉.

NE 2 INT ARG LT
On entry tdfjac = 〈value〉 while n = 〈value〉. These parameters must satisfy tdfjac ≥ n.

3.c05ubc.2 [NP3275/5/pdf]

c05 – Roots of One or More Transcendental Equations c05ubc

NE ALLOC FAIL
Memory allocation failed.

NE USER STOP
User requested termination, user flag value = 〈value〉.

NE TOO MANY FUNC EVAL
There have been at least 100 ∗ (n+1) evaluations of f().

Consider restarting the calculation from the point held in x.

NE XTOL TOO SMALL
No further improvement in the solution is possible. xtol is too small: xtol = 〈value〉.

NE NO IMPROVEMENT
The iteration is not making good progress.

This failure exit may indicate that the system does not have a zero, or that the solution is
very close to the origin (see Section 6.1). Otherwise, rerunning nag zero nonlin eqns deriv 1
from a different starting point may avoid the region of difficulty.

6. Further Comments

The time required by nag zero nonlin eqns deriv 1 to solve a given problem depends on n, the
behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic
operations executed by nag zero nonlin eqns deriv 1 is about 11.5 × n2 to process each evaluation
of the functions and about 1.3 × n3 to process each evaluation of the Jacobian. Unless f can be
evaluated quickly, the timing of nag zero nonlin eqns deriv 1 will be strongly influenced by the time
spent in f.

Ideally the problem should be scaled so that, at the solution, the function values are of comparable
magnitude.

6.1. Accuracy

If x̂ is the true solution, nag zero nonlin eqns deriv 1 tries to ensure that

‖x − x̂‖ ≤ xtol × ‖x̂‖.

If this condition is satisfied with xtol = 10−k, then the larger components of x have k significant
decimal digits. There is a danger that the smaller components of x may have large relative errors,
but the fast rate of convergence of nag zero nonlin eqns deriv 1 usually avoids the possibility.

If xtol is less than machine precision and the above test is satisfied with the machine precision
in place of xtol, then the routine exits with NE XTOL TOO SMALL.

Note: this convergence test is based purely on relative error, and may not indicate convergence if
the solution is very close to the origin.

The test assumes that the functions and Jacobian are coded consistently and that the functions are
reasonably well behaved. If these conditions are not satisfied then nag zero nonlin eqns deriv 1 may
incorrectly indicate convergence. The coding of the Jacobian can be checked using nag check deriv 1
(c05zcc). If the Jacobian is coded correctly, then the validity of the answer can be checked by
rerunning nag zero nonlin eqns deriv 1 with a tighter tolerance.

6.2. References

Moré J J, Garbow B S and Hillstrom K E (1980) User Guide for MINPACK-1 Argonne National
Laboratory, ANL-80-74.

Powell M J D (1970) A Hybrid Method for Nonlinear Algebraic Equations Numerical Methods for
Nonlinear Algebraic Equations P Rabinowitz (ed) Gordon and Breach.

7. See Also

nag zero nonlin eqns 1 (c05tbc)
nag check deriv 1 (c05zcc)

[NP3275/5/pdf] 3.c05ubc.3

nag zero nonlin eqns deriv 1 NAG C Library Manual

8. Example

To determine the values x1, . . . , x9 which satisfy the tridiagonal equations:

(3 − 2x1)x1 − 2x2 = −1
−xi−1 + (3 − 2xi)xi − 2xi+1 = −1, i = 2, 3, . . . , 8

−x8 + (3 − 2x9)x9 = −1.

8.1. Program Text

/* nag_zero_nonlin_eqns_deriv_1(c05ubc) Example Program
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagc05.h>
#include <nagx02.h>

#ifdef NAG_PROTO
static void f(Integer n, double x[], double fvec[], double fjac[],

Integer tdfjac, Integer *userflag, Nag_User *comm);
#else
static void f();
#endif

#define NMAX 9
#define TDFJAC NMAX

main()
{

double fjac[NMAX*NMAX], fvec[NMAX], x[NMAX];
Integer j;
double xtol;
static NagError fail;
Nag_User comm;
Integer n = NMAX;

Vprintf("c05ubc Example Program Results\n");
/* The following starting values provide a rough solution. */
for (j=0; j<n; j++)

x[j] = -1.0;
xtol = sqrt(X02AJC);
c05ubc(n, x, fvec, fjac, (Integer)TDFJAC, f, xtol, &comm, &fail);
if (fail.code == NE_NOERROR)

{
Vprintf("Final approximate solution\n\n");
for (j=0; j<n; j++)
Vprintf("%12.4f%s",x[j], (j%3==2 || j==n-1) ? "\n" : " ");

exit(EXIT_SUCCESS);
}

else
{
Vprintf("%s\n", fail.message);
if (fail.code == NE_TOO_MANY_FUNC_EVAL ||

fail.code == NE_XTOL_TOO_SMALL ||
fail.code == NE_NO_IMPROVEMENT)

{
Vprintf("Approximate solution\n\n");
for (j=0; j<n; j++)
Vprintf("%12.4f%s",x[j], (j%3==2 || j==n-1) ? "\n" : " ");

}
exit(EXIT_FAILURE);

}

3.c05ubc.4 [NP3275/5/pdf]

c05 – Roots of One or More Transcendental Equations c05ubc

}

#ifdef NAG_PROTO
static void f(Integer n, double x[], double fvec[], double fjac[],

Integer tdfjac, Integer *userflag, Nag_User *comm)
#else

static void f(n, x, fvec, fjac,tdfjac, userflag, comm)
Integer n;
double x[], fvec[], fjac[];
Integer tdfjac;
Integer *userflag;
Nag_User *comm;

#endif
{
#define FJAC(I,J) fjac[((I))*tdfjac+(J)]
Integer j, k;

if (*userflag != 2)
{
for (k=0; k<n; k++)
{
fvec[k] = (3.0-x[k]*2.0) * x[k] + 1.0;
if (k>0) fvec[k] -= x[k-1];
if (k<n-1) fvec[k] -= x[k+1] * 2.0;

}
}

else
{
for (k=0; k<n; k++)
{
for (j=0; j<n; j++)
FJAC(k,j)=0.0;

FJAC(k,k) = 3.0 - x[k] * 4.0;
if (k>0)
FJAC(k,k-1) = -1.0;

if (k<n-1)
FJAC(k,k+1)= -2.0;

}
}

}

8.2. Program Data

None.

8.3. Program Results

c05ubc Example Program Results
Final approximate solution

-0.5707 -0.6816 -0.7017
-0.7042 -0.7014 -0.6919
-0.6658 -0.5960 -0.4164

[NP3275/5/pdf] 3.c05ubc.5

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

