
c05 – Roots of One or More Transcendental Equations c05zcc

nag check deriv 1 (c05zcc)

1. Purpose

nag check deriv 1 (c05zcc) checks that a user-supplied C function for evaluating a vector of functions
and the matrix of their first derivatives produces derivative values which are consistent with the
function values calculated.

2. Specification

#include <nag.h>
#include <nagc05.h>

void nag_check_deriv_1(Integer n, double x[], double fvec[], double fjac[],
Integer tdfjac,
void (*f)(Integer n, double x[],double fvec[],

double fjac[], Integer tdfjac, Integer *userflag),
Nag_User *comm, NagError *fail)

3. Description

nag check deriv 1 checks the derivatives calculated by user-supplied C functions, e.g. functions of
the form required for nag zero nonlin eqns deriv 1 (c05ubc). As well as the C function to be checked
f, the user must supply a point x = (x1, x2, . . . , xn)T at which the check will be made.

nag check deriv 1 first calls f to evaluate both the fi(x) and their first derivatives, and uses these
to calculate the sum of squares

F (x) =
n∑

i=1

[fi(x)]2,

and its first derivatives

gj =
∂F

∂xj

∣∣∣∣
x

, for j = 1, 2, . . . , n.

The components of g along two orthogonal directions (defined by unit vectors p1 and p2, say) are
then calculated; these will be gT p1 and gT p2 respectively. The same components are also estimated
by finite differences, giving quantities

vk =
F (x + hpk) − F (x)

h
, k = 1, 2

where h is a small positive scalar. If the relative difference between v1 and gT p1 or between v2 and
gT p2 is judged too large, an error indicator is set.

4. Parameters

n
Input: the number n of variables, xj , for use with nag zero nonlin eqns deriv 1 (c05ubc).
Constraint: n > 0.

x[n]
Input: x[j− 1], for j = 1, 2, . . . , n must be set to the co-ordinates of a suitable point at which
to check the derivatives calculated by f. ‘Obvious’ settings, such as 0 or 1, should not be used
since, at such particular points, incorrect terms may take correct values (particularly zero),
so that errors can go undetected. For a similar reason, it is preferable that no two elements
of x should have the same value.

fvec[n]
Output: unless userflag is set negative when evaluating fi at the point given in x, fvec[i− 1]
contains the value of fi at the point given by the user in x, for i = 1, 2, . . . , n.

[NP3275/5/pdf] 3.c05zcc.1



nag check deriv 1 NAG C Library Manual

fjac[n][tdfjac]
Output: unless userflag is set negative when evaluating the Jacobian at the point given in x,
fjac[i − 1][j − 1] contains the value of the first derivative ∂fi/∂xj at the point given in x, as
calculated by f, for i = 1, 2, . . . , n; j = 1, 2, . . . , n.

tdfjac
Input: the last dimension of array fjac as declared in the function from which
nag check deriv 1 is called.
Constraint: tdfjac ≥ n.

f
f must calculate the values of the functions at a point x or return the Jacobian at x.
nag zero nonlin eqns deriv 1 (c05ubc) gives the user the option of resetting a parameter to
terminate immediately. nag check deriv 1 will also terminate immediately, without finishing
the checking process, if the parameter in question is reset.
The specification of f is:

void f(Integer n, double x[], double fvec[], double fjac[],
Integer tdfjac, Integer *userflag)

n
Input: the number of equations, n

x[n]
Input: the components of the point x at which the functions or the Jacobian
must be evaluated.

fvec[n]
Output: if userflag = 1 on entry, fvec must contain the function values fi(x)
(unless userflag is set to a negative value by f).
If userflag = 2 on entry, fvec must not be changed.

fjac[n∗tdfjac]
Output: if userflag = 2 on entry, fjac[(i−1)∗tdfjac+j−1] must contain the value
of ∂fi/∂xj at the point x, for i = 1, 2, . . . , n; j = 1, 2, . . . , n (unless userflag is
set to a negative value by f).
If userflag = 1 on entry, fjac must not be changed.

tdfjac
Input: the last dimension of array fjac as declared in the function from which
nag check deriv 1 is called.

userflag
Input: userflag = 1 or 2.
If userflag = 1, fvec is to be updated.
If userflag = 2, fjac is to be updated.

Output: in general, userflag should not be reset by f. If, however, the user wishes
to terminate execution (perhaps because some illegal point x has been reached),
then userflag should be set to a negative integer. This value will be returned
through fail.errnum.

comm
Input/Output: pointer to a structure of type Nag User with the following member:

p - Pointer
Input/Output: the pointer p, of type Pointer, allows the user to communicate
information to and from the user-defined function f(). An object of the required type
should be declared by the user, e.g. a structure, and its address assigned to the pointer
p by means of a cast to Pointer in the calling program, e.g. comm.p = (Pointer)&s.
The type pointer will be void * with a C compiler that defines void * and char *
otherwise.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

3.c05zcc.2 [NP3275/5/pdf]



c05 – Roots of One or More Transcendental Equations c05zcc

5. Error Indications and Warnings

NE INT ARG LE
On entry, n must not be less or equal to 0: n = 〈value〉.

NE 2 INT ARG LT
On entry tdfjac = 〈value〉 while n = 〈value〉. These parameters must satisfy tdfjac ≥ n.

NE ALLOC FAIL
Memory allocation failed.

NE DERIV ERRORS
Large errors were found in the derivatives of the objective function.

The user should check carefully the derivation and programming of expressions for the
∂fi/∂xj, because it is very unlikely that f is calculating them correctly.

NE USER STOP
User requested termination, user flag value = 〈value〉.

6. Further Comments

Before using nag check deriv 1 to check the calculation of the first derivatives, the user should be
confident that f is evaluating the functions correctly.

6.1. Accuracy

fail.code is set to NE DERIV ERRORS if

(vk − gT pk)
2 ≥ h × ((gT pk)

2
+ 1)

for k = 1 or 2. (See Section 3 for definitions of the quantities involved.) The scalar h is set equal
to

√
ε, where ε is the machine precision.

7. See Also

nag zero nonlin eqns deriv 1 (c05ubc)

8. Example

This example checks the Jacobian matrix for the problem solved in the example program for
nag zero nonlin eqns deriv 1 (c05ubc).

8.1. Program Text

/* nag_check_deriv_1(c05zcc) Example Program
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc05.h>

#ifdef NAG_PROTO
static void f(Integer n, double xc[], double fvecc[],

double fjacc[], Integer tdj, Integer *userflag, Nag_User *comm);
#else
static void f();
#endif

main()
{
#define NMAX 5

[NP3275/5/pdf] 3.c05zcc.3



nag check deriv 1 NAG C Library Manual

double fjac[NMAX][NMAX], fvec[NMAX], x[NMAX];
Integer i, j, n, tdfjac;
static NagError fail;
Nag_User comm;

fail.print = TRUE;
Vprintf("c05zcc Example Program Results\n");
n = 3;
tdfjac = NMAX;

/* Set up an arbitrary point at which to check the 1st derivatives */
x[0] = 9.2e-01;
x[1] = 1.3e-01;
x[2] = 5.4e-01;
Vprintf("The test point is ");
for (j=0; j<n; ++j)

Vprintf("%13.3e", x[j]);
Vprintf("\n\n");
c05zcc(n, x, fvec, (double *)fjac, tdfjac, f, &comm, &fail);
if (fail.code != NE_NOERROR) exit(EXIT_FAILURE);
Vprintf("1st derivatives are consistent with residual values.\n\n");
Vprintf("At the test point, f() gives\n\n");
Vprintf(" Residuals 1st derivatives\n\n");
for (i=0; i<n; ++i)

{
Vprintf("%13.3e", fvec[i]);
for (j=0; j<n; ++j)
Vprintf("%13.3e", fjac[i][j]);

Vprintf("\n");
}

exit(EXIT_SUCCESS);
}

#ifdef NAG_PROTO
static void f(Integer n, double x[], double fvec[], double fjac[],

Integer tdfjac, Integer *userflag, Nag_User *comm)
#else

static void f(n, x, fvec, fjac, tdfjac, userflag, comm)
Integer n;
double x[], fvec[], fjac[];
Integer tdfjac;
Integer *userflag;
Nag_User *comm;

#endif
{
#define FJAC(I,J) fjac[((I))*tdfjac+(J)]
Integer j, k;

if (*userflag != 2)
{
/* Calculate the function values */
for (k=0; k<n; k++)
{
fvec[k] = (3.0-x[k]*2.0) * x[k] + 1.0;
if (k>0) fvec[k] -= x[k-1];
if (k<n-1) fvec[k] -= x[k+1] * 2.0;

}
}

else
{
/* Calculate the corresponding first derivatives */
for (k=0; k<n; k++)
{
for (j=0; j<n; j++)
FJAC(k,j)=0.0;

FJAC(k,k) = 3.0 - x[k] * 4.0;
if (k>0)
FJAC(k,k-1) = -1.0;

if (k<n-1)

3.c05zcc.4 [NP3275/5/pdf]



c05 – Roots of One or More Transcendental Equations c05zcc

FJAC(k,k+1)= -2.0;
}

}
}

8.2. Program Data

None.

8.3. Program Results

c05zcc Example Program Results
The test point is 9.200e-01 1.300e-01 5.400e-01

1st derivatives are consistent with residual values.

At the test point, f() gives

Residuals 1st derivatives

1.807e+00 -6.800e-01 -2.000e+00 0.000e+00
-6.438e-01 -1.000e+00 2.480e+00 -2.000e+00
1.907e+00 0.000e+00 -1.000e+00 8.400e-01

[NP3275/5/pdf] 3.c05zcc.5


	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities


