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1 Scope of the Chapter

This chapter is concerned with the following tasks.

(a) Calculating the discrete Fourier transform of a sequence of real or complex data values.

(b) Calculating the discrete convolution or the discrete correlation of two sequences of real data values
using discrete Fourier transforms.

2 Background to the Problems

2.1 Discrete Fourier Transforms

2.1.1 Complex transforms

Most of the functions in this chapter calculate the finite discrete Fourier transform (DFT) of a sequence
of n complex numbers zj, for j ¼ 0; 1; . . . ; n� 1. The transform is defined by

ẑzk ¼
1ffiffiffi
n

p
Xn�1

j¼0

zj exp �i
2�jk

n

��
ð1Þ

for k ¼ 0; 1; . . . ; n� 1. Note that equation (1) makes sense for all integral k and with this extension ẑzk is

periodic with period n, i.e., ẑzk ¼ ẑzk�n, and in particular ẑz�k ¼ ẑzn�k. Note also that the scale-factor of
1ffiffiffi
n

p

may be omitted in the definition of the DFT, and replaced by
1

n
in the definition of the inverse.

If we write zj ¼ xj þ iyj and ẑzk ¼ ak þ ibk, then the definition of ẑzk may be written in terms of sines and

cosines as

ak ¼
1ffiffiffi
n

p
Xn�1

j¼0

xj cos
2�jk

n

��
þ yj sin

2�jk

n

�� ��

bk ¼
1ffiffiffi
n

p
Xn�1

j¼0

yj cos
2�jk

n

��
� xj sin

2�jk

n

�� ��
:

The original data values zj may conversely be recovered from the transform ẑzk by an inverse discrete

Fourier transform:

zj ¼
1ffiffiffi
n

p
Xn�1

k¼0

ẑzk exp þi
2�jk

n

��
ð2Þ

for j ¼ 0; 1; . . . ; n� 1. If we take the complex conjugate of (2), we find that the sequence �zzj is the DFT

of the sequence �̂zẑzzk. Hence the inverse DFT of the sequence ẑzk may be obtained by taking the complex
conjugates of the ẑzk; performing a DFT, and taking the complex conjugates of the result. (Note that the
terms forward transform and backward transform are also used to mean the direct and inverse transforms
respectively.)

The definition (1) of a one-dimensional transform can easily be extended to multi-dimensional transforms.
For example, in two dimensions we have

ẑzk1k2 ¼
1ffiffiffiffiffiffiffiffiffiffi
n1n2

p
Xn1�1

j1¼0

Xn2�1

j2¼0

zj1j2 exp �i
2�j1k1
n1

��
exp �i

2�j2k2
n2

��
:

Note: definitions of the discrete Fourier transform vary. Sometimes (2) is used as the definition of the
DFT, and (1) as the definition of the inverse.
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2.1.2 Real transforms

If the original sequence is purely real valued, i.e., zj ¼ xj, then

ẑzk ¼ ak þ ibk ¼
1ffiffiffi
n

p
Xn�1

j¼0

xj exp �i
2�jk

n

��

and ẑzn�k is the complex conjugate of ẑzk. Thus the DFT of a real sequence is a particular type of complex
sequence, called a Hermitian sequence, or half-complex or conjugate symmetric, with the properties

an�k ¼ ak bn�k ¼ �bk b0 ¼ 0

and, if n is even, bn=2 ¼ 0.

Thus a Hermitian sequence of n complex data values can be represented by only n, rather than 2n,
independent real values. This can obviously lead to economies in storage, with one scheme being used in
this chapter. In this scheme, which will be referred to as the real storage format for Hermitian sequences,
the real parts ak for 0 � k � n=2 are stored in normal order in the first n=2þ 1 locations of an array x of
length n; the corresponding non-zero imaginary parts are stored in reverse order in the remaining locations
of x. To clarify, if x is declared with bounds ð0:n� 1Þ in your calling function, the following two tables
illustrate the storage of the real and imaginary parts of ẑzk for the two cases: n even and n odd.

If n is even then the sequence has two purely real elements and is stored as follows:

Index of x 0 1 2 . . . n=2 . . . n� 2 n� 1

Sequence a0 a1 þ {b1 a2 þ {b2 . . . an=2 . . . a2 � {b2 a1 � {b1

Stored values a0 a1 a2 . . . an=2 . . . b2 b1

x½k� ¼ ak, for k ¼ 0; 1; . . . ; n=2, and
x½n� k� ¼ bk, for k ¼ 1; 2; . . . ; n=2� 1.

If n is odd then the sequence has one purely real element and, letting n ¼ 2sþ 1, is stored as follows:

Index of x 0 1 2 . . . s sþ 1 . . . n� 2 n� 1

Sequence a0 a1 þ {b1 a2 þ {b2 . . . as þ {bs as � {bs . . . a2 � {b2 a1 � {b1

Stored values a0 a1 a2 . . . as bs . . . b2 b1

x½k� ¼ ak, for k ¼ 0; 1; . . . ; s, and
x½n� k� ¼ bk, for k ¼ 1; 2; . . . ; s.

Also, given a Hermitian sequence, the inverse (or backward) discrete transform produces a real sequence.
That is,

xj ¼
1ffiffiffi
n

p a0 þ 2
Xn=2�1

k¼1

ak cos
2�jk

n

��
� bk sin

2�jk

n

�� ��
þ an=2

! 

where an=2 ¼ 0 if n is odd.

2.1.3 Real symmetric transforms

In many applications the sequence xj will not only be real, but may also possess additional symmetries

which we may exploit to reduce further the computing time and storage requirements. For example, if the
sequence xj is odd, ðxj ¼ �xn�jÞ, then the discrete Fourier transform of xj contains only sine terms.

Rather than compute the transform of an odd sequence, we define the sine transform of a real sequence
by
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x̂xk ¼
ffiffiffi
2

n

r Xn�1

j¼1

xj sin
�jk

n

��
;

which could have been computed using the Fourier transform of a real odd sequence of length 2n. In this
case the xj are arbitrary, and the symmetry only becomes apparent when the sequence is extended.

Similarly we define the cosine transform of a real sequence by

x̂xk ¼
ffiffiffi
2

n

r
1
2
x0 þ

Xn�1

j¼1

xj cos
�jk

n

��
þ 1

2
ð�1Þkxn

! 

which could have been computed using the Fourier transform of a real even sequence of length 2n.

In addition to these ‘half-wave’ symmetries described above, sequences arise in practice with ‘quarter-
wave’ symmetries. We define the quarter-wave sine transform by

x̂xk ¼
1ffiffiffi
n

p
Xn�1

j¼1

xj sin
�jð2k� 1Þ

2n

��
þ 1

2
ð�1Þk�1xn

! 

which could have been computed using the Fourier transform of a real sequence of length 4n of the form

ð0; x1; . . . ; xn; xn�1; . . . ; x1; 0;�x1; . . . ;�xn;�xn�1; . . . ;�x1Þ:
Similarly we may define the quarter-wave cosine transform by

x̂xk ¼
1ffiffiffi
n

p 1
2
x0 þ

Xn�1

j¼1

xj cos
�jð2k� 1Þ

2n

�� ! 

which could have been computed using the Fourier transform of a real sequence of length 4n of the form

ðx0; x1; . . . ; xn�1; 0;�xn�1; . . . ;�x0;�x1; . . . ;�xn�1; 0; xn�1; . . . ; x1Þ:

2.1.4 Fourier integral transforms

The usual application of the discrete Fourier transform is that of obtaining an approximation of the Fourier
integral transform

fðsÞ ¼
Z 1

�1
fðtÞ expð�i2�stÞ dt

when fðtÞ is negligible outside some region ð0; cÞ. Dividing the region into n equal intervals we have

fðsÞ ffi c

n

Xn�1

j¼0

fj expð�i2�sjc=nÞ

and so

fk ffi
c

n

Xn�1

j¼0

fj expð�i2�jk=nÞ

for k ¼ 0; 1; . . . ; n� 1, where fj ¼ fðjc=nÞ and fk ¼ fðk=cÞ.

Hence the discrete Fourier transform gives an approximation to the Fourier integral transform in the region
s ¼ 0 to s ¼ n=c.

If the function fðtÞ is defined over some more general interval ða; bÞ, then the integral transform can still
be approximated by the discrete transform provided a shift is applied to move the point a to the origin.

2.1.5 Convolutions and correlations

One of the most important applications of the discrete Fourier transform is to the computation of the
discrete convolution or correlation of two vectors x and y defined (as in Brigham (1974)) by
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convolution: zk ¼
Xn�1

j¼0

xjyk�j

correlation: wk ¼
Xn�1

j¼0

�xxjykþj

(Here x and y are assumed to be periodic with period n.)

Under certain circumstances (see Brigham (1974)) these can be used as approximations to the convolution
or correlation integrals defined by

zðsÞ ¼
Z 1

�1
xðtÞyðs� tÞ dt

and

wðsÞ ¼
Z 1

�1
�xxðtÞyðsþ tÞ dt; �1 < s < 1:

For more general advice on the use of Fourier transforms, see Hamming (1962); more detailed information
on the fast Fourier transform algorithm can be found in Gentleman and Sande (1966) and Brigham (1974).

2.1.6 Applications to solving partial differential equations (PDEs)

A further application of the fast Fourier transform, and in particular of the Fourier transforms of symmetric
sequences, is in the solution of elliptic PDEs. If an equation is discretised using finite differences, then it
is possible to reduce the problem of solving the resulting large system of linear equations to that of solving
a number of tridiagonal systems of linear equations. This is accomplished by uncoupling the equations
using Fourier transforms, where the nature of the boundary conditions determines the choice of transforms
– see Section 3.3. Full details of the Fourier method for the solution of PDEs may be found in
Swarztrauber (1977) and Swarztrauber (1984).

3 Recommendations on Choice and Use of Available Functions

3.1 One-dimensional Fourier Transforms

The choice of function is determined first of all by whether the data values constitute a real, Hermitian or
general complex sequence. It is wasteful of time and storage to use an inappropriate function.

Two groups, each of three functions, are provided in real storage format.

Group 1 Group 2
Real sequences nag_fft_real (c06eac) nag_fft_multiple_real (c06fpc)
Hermitian sequences nag_fft_hermitian (c06ebc) nag_fft_multiple_hermitian (c06fqc)
General complex sequences nag_fft_complex (c06ecc) nag_fft_multiple_complex (c06frc)

Group 1 functions each compute a single transform of length n, without requiring any extra working
storage. The Group 1 functions impose some restrictions on the value of n, namely that no prime factor of
n may exceed 19 and the total number of prime factors (including repetitions) may not exceed 20 (though

the latter restriction only becomes relevant when n > 106).

Group 2 functions are all designed to perform several transforms in a single call, all with the same value of
n. They are designed to be much faster than the Group 1 functions on vector-processing machines. They
do however require more working storage. Even on scalar processors, they may be somewhat faster than
repeated calls to Group 1 functions because of reduced overheads and because they pre-compute and store
the required values of trigonometric functions. Group 2 functions impose no practical restrictions on the
value of n; however, the fast Fourier transform algorithm ceases to be ‘fast’ if applied to values of n which
cannot be expressed as a product of small prime factors. All the above functions are particularly efficient
if the only prime factors of n are 2, 3 or 5.

If extensive use is to be made of these functions, users who are concerned about efficiency are advised to
conduct their own timing tests.
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To compute inverse (backward) discrete Fourier transforms the functions should be used in conjunction
with the utility functions nag_conjugate_hermitian (c06gbc), nag_conjugate_complex (c06gcc) and
nag_multiple_conjugate_hermitian (c06gqc) which form the complex conjugate of a Hermitian or general
sequence of complex data values.

3.2 Half- and Quarter-wave Transforms

Four functions are provided for computing fast Fourier transforms (FFTs) of real symmetric sequences.
nag_fft_multiple_sine (c06hac) computes multiple Fourier sine transforms, nag_fft_multiple_cosine
(c06hbc) computes multiple Fourier cosine transforms, nag_fft_multiple_qtr_sine (c06hcc) computes
multiple quarter-wave Fourier sine transforms, and nag_fft_multiple_qtr_cosine (c06hdc) computes
multiple quarter-wave Fourier cosine transforms.

3.3 Application to Elliptic Partial Differential Equations

As described in Section 2.1, Fourier transforms may be used in the solution of elliptic PDEs.

nag_fft_multiple_sine (c06hac) may be used to solve equations where the solution is specified along the
boundary.

nag_fft_multiple_cosine (c06hbc) may be used to solve equations where the derivative of the solution is
specified along the boundary.

nag_fft_multiple_qtr_sine (c06hcc) may be used to solve equations where the solution is specified on the
lower boundary, and the derivative of the solution is specified on the upper boundary.

nag_fft_multiple_qtr_cosine (c06hdc) may be used to solve equations where the derivative of the solution
is specified on the lower boundary, and the solution is specified on the upper boundary.

For equations with periodic boundary conditions the full-range Fourier transforms computed by
nag_fft_multiple_real (c06fpc) and nag_fft_multiple_hermitian (c06fqc) are appropriate.

3.4 Multi-dimensional Fourier Transforms

The following functions compute multi-dimensional discrete Fourier transforms of complex data:

Real storage Complex storage
2 dimensions nag_fft_2d_complex (c06fuc)
3 dimensions nag_fft_3d (c06pxc)
any number of dimensions nag_fft_multid_full (c06pjc)

The real storage format functions store sequences of complex data in two real arrays containing the real
and imaginary parts of the sequence respectively. The complex storage format functions store the
sequences in complex arrays.

Note that complex storage format functions have a reduced parameter list, having no INIT or TRIG
parameters.

nag_fft_2d_complex (c06fuc) and nag_fft_3d (c06pxc) should be used in preference to nag_fft_multid_full
(c06pjc) for two- and three-dimensional transforms, as they are easier to use and are likely to be more
efficient, especially on vector processors.

3.5 Convolution and Correlation

nag_convolution_real (c06ekc) computes either the discrete convolution or the discrete correlation of two
real vectors.

4 Index

Complex conjugate,
complex sequence ........................................................................ nag_conjugate_complex (c06gcc)
Hermitian sequence .................................................................. nag_conjugate_hermitian (c06gbc)
multiple Hermitian sequences .............................. nag_multiple_conjugate_hermitian (c06gqc)

Complex sequence from Hermitian sequences ........ nag_multiple_hermitian_to_complex (c06gsc)
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Compute trigonometric functions .............................................................. nag_fft_init_trig (c06gzc)
Convolution or Correlation

real vectors,
space-saving .............................................................................. nag_convolution_real (c06ekc)

Discrete Fourier Transform
half- and quarter-wave transforms

multiple Fourier cosine transforms .................................... nag_fft_multiple_cosine (c06hbc)
multiple Fourier sine transforms ............................................ nag_fft_multiple_sine (c06hac)
multiple quarter-wave cosine transforms .................. nag_fft_multiple_qtr_cosine (c06hdc)
multiple quarter-wave sine transforms ........................... nag_fft_multiple_qtr_sine (c06hcc)

multi-dimensional
complex sequence,

complex storage ..................................................................... nag_fft_multid_full (c06pjc)
one-dimensional,

multi-variable
complex sequence,

complex storage ........................................................... nag_fft_multid_single (c06pfc)
multiple transforms

complex sequence,
real storage by rows .............................................. nag_fft_multiple_complex (c06frc)

Hermitian sequence,
real storage by rows .......................................... nag_fft_multiple_hermitian (c06fqc)

real sequence,
real storage by rows .................................................... nag_fft_multiple_real (c06fpc)

single transforms
complex sequence,

space saving,
real storage .......................................................................... nag_fft_complex (c06ecc)

Hermitian sequence,
space-saving,

real storage ...................................................................... nag_fft_hermitian (c06ebc)
real sequence,

space-saving,
real storage ................................................................................ nag_fft_real (c06eac)

three-dimensional
complex sequence,

complex storage ....................................................................................... nag_fft_3d (c06pxc)
two-dimensional

complex sequence,
real storage ............................................................................... nag_fft_2d_complex (c06fuc)

5 Functions Withdrawn or Scheduled for Withdrawal

None.
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