
c06 – Fourier Transforms c06eac

nag fft real (c06eac)

1. Purpose

nag fft real (c06eac) calculates the discrete Fourier transform of a sequence of n real data values.

2. Specification

#include <nag.h>
#include <nagc06.h>

void nag_fft_real(Integer n, double x[], NagError *fail)

3. Description

Given a sequence of n real data values xj , for j = 0, 1, . . . , n − 1, this function calculates their
discrete Fourier transform defined by

ẑk =
1√
n

n−1∑
j=0

xj exp
(
−i

2πjk

n

)
, for k = 0, 1, . . . , n − 1.

(Note the scale factor of 1/
√

n in this definition.) The transformed values ẑk are complex, but
they form a Hermitian sequence (i.e., ẑn−k is the complex conjugate of ẑk), so they are completely
determined by n real numbers.

The function nag multiple hermitian to complex (c06gsc) may be used to convert a Hermitian
sequence to the corresponding complex sequence.

To compute the inverse discrete Fourier transform defined by

ŵk =
1√
n

n−1∑
j=0

xj exp
(

+i
2πjk

n

)
, for k = 0, 1, . . . , n − 1,

this function should be followed by a call of nag conjugate hermitian (c06gbc) to form the complex
conjugates of the ẑk.

The function uses the Fast Fourier Transform algorithm (Brigham 1974). There are some
restrictions on the value of n (see Section 4).

4. Parameters

n
Input: the number of data values, n.
Constraint: n > 1. The largest prime factor of n must not exceed 19, and the total number
of prime factors of n, counting repetitions, must not exceed 20.

x[n]
Input: x[j] must contain xj , for j = 0, 1, . . . , n − 1.
Output: the discrete Fourier transform stored in Hermitian form. If the components of the
transform ẑk are written as ak + ibk, then for 0 ≤ k ≤ n/2, ak is contained in x[k], and
for 1 ≤ k ≤ (n − 1)/2, bk is contained in x[n − k]. Elements of the sequence which are not
explicitly stored are given by an−k = ak, bn−k = −bk, bo = 0 and, if n is even, bn/2 = 0. (See
also the Example Program.)

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE C06 FACTOR GT
At least one of the prime factors of n is greater than 19.

[NP3275/5/pdf] 3.c06eac.1



nag fft real NAG C Library Manual

NE C06 TOO MANY FACTORS
n has more than 20 prime factors.

NE INT ARG LE
On entry, n must not be less than or equal to 1: n = 〈value〉.

6. Further Comments

The time taken by the function is approximately proportional to n log n, but also depends on the
factorization of n. The function is somewhat faster than average if the only prime factors of n are
2, 3 or 5; and fastest of all if n is a power of 2.

On the other hand, the function is particularly slow if n has several unpaired prime factors, i.e., if
the ‘square-free’ part of n has several factors.

6.1. Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

6.2. References

Brigham E O (1974) The Fast Fourier Transform Prentice-Hall.

7. See Also

nag conjugate hermitian (c06gbc)
nag multiple hermitian to complex (c06gsc)

8. Example

This program reads in a sequence of real data values, and prints their discrete Fourier transform
(as computed by nag fft real), after expanding it from Hermitian form into a full complex sequence.

It then performs an inverse transform using nag conjugate hermitian (c06gbc) and nag fft hermitian
(c06ebc), and prints the sequence so obtained alongside the original data values.

8.1. Program Text

/* nag_fft_real(c06eac) Example Program
*
* Copyright 1990 Numerical Algorithms Group.
*
* Mark 1, 1990.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>

#define NMAX 20

main()
{
Integer j, n, n2, nj;
double a[NMAX], b[NMAX], x[NMAX], xx[NMAX];

Vprintf("c06eac Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^\n]");
while (scanf("%ld", &n)!=EOF)

if (n>1 && n<=NMAX)
{
for (j = 0; j<n; j++)
{
Vscanf("%lf", &x[j]);
xx[j] = x[j];

3.c06eac.2 [NP3275/5/pdf]



c06 – Fourier Transforms c06eac

}
/* Calculate transform */
c06eac(n, x, NAGERR_DEFAULT);
/* Calculate full complex form of Hermitian result */
a[0] = x[0];
b[0] = 0.0;
n2 = (n-1)/2;
for (j = 1; j<=n2; j++)
{
nj = n - j;
a[j] = x[j];
a[nj] = x[j];
b[j] = x[nj];
b[nj] = -x[nj];

}
if (n % 2==0)
{
a[n2+1] = x[n2+1];
b[n2+1] = 0.0;

}
Vprintf("\nComponents of discrete Fourier transform\n");
Vprintf("\n Real Imag \n\n");
for (j = 0; j<n; j++)
Vprintf("%3ld %10.5f %10.5f\n", j, a[j], b[j]);

/* Calculate inverse transform */
c06gbc(n, x, NAGERR_DEFAULT);
c06ebc(n, x, NAGERR_DEFAULT);
Vprintf("\nOriginal sequence as restored by inverse transform\n");
Vprintf("\n Original Restored\n\n");
for (j = 0; j<n; j++)
Vprintf("%3ld %10.5f %10.5f\n", j, xx[j], x[j]);

}
else
{
Vfprintf(stderr,"Invalid value of n\n");
exit(EXIT_FAILURE);

}
exit(EXIT_SUCCESS);

}

8.2. Program Data

c06eac Example Program Data
7

0.34907
0.54890
0.74776
0.94459
1.13850
1.32850
1.51370

8.3. Program Results

c06eac Example Program Results

Components of discrete Fourier transform

Real Imag

0 2.48361 0.00000
1 -0.26599 0.53090
2 -0.25768 0.20298
3 -0.25636 0.05806
4 -0.25636 -0.05806
5 -0.25768 -0.20298
6 -0.26599 -0.53090

[NP3275/5/pdf] 3.c06eac.3



nag fft real NAG C Library Manual

Original sequence as restored by inverse transform

Original Restored

0 0.34907 0.34907
1 0.54890 0.54890
2 0.74776 0.74776
3 0.94459 0.94459
4 1.13850 1.13850
5 1.32850 1.32850
6 1.51370 1.51370

3.c06eac.4 [NP3275/5/pdf]


	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities


