1. Purpose

nag_fft_hermitian (c06ebc) calculates the discrete Fourier transform of a Hermitian sequence of n complex data values.

2. Specification

#include <nag.h>
#include <nagc06.h>

void nag_fft_hermitian(Integer n, double x[], NagError *fail)

3. Description

Given a Hermitian sequence of n complex data values z_j (i.e., a sequence such that z_0 is real and z_{n-j} is the complex conjugate of z_j , for j = 1, 2, ..., n-1) this function calculates their discrete Fourier transform defined by

$$\hat{x}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \exp\left(-i\frac{2\pi jk}{n}\right), \quad \text{for } k = 0, 1, \dots, n-1.$$

(Note the scale factor of $1/\sqrt{n}$ in this definition.) The transformed values \hat{x}_k are purely real.

To compute the inverse discrete Fourier transform defined by

$$\hat{y}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \exp\left(+i\frac{2\pi jk}{n}\right), \quad \text{for } k = 0, 1, \dots, n-1,$$

this function should be preceded by a call of nag_conjugate_hermitian (c06gbc) to form the complex conjugates of the $z_i.$

The function uses the Fast Fourier Transform algorithm (Brigham 1974). There are some restrictions on the value of n (see Section 4).

4. Parameters

 \mathbf{n}

Input: the number of data values, n.

Constraint: n > 1. The largest prime factor of n must not exceed 19, and the total number of prime factors of n, counting repetitions, must not exceed 20.

$\mathbf{x}[\mathbf{n}]$

Input: the sequence to be transformed stored in Hermitian form. If the data values z_j are written as $x_j + iy_j$, then for $0 \le j \le n/2$, x_j is contained in $\mathbf{x}[j]$, and for $1 \le j \le (n-1)/2$, y_j is contained in $\mathbf{x}[n-j]$. It is not necessary for other elements of the sequence to be explicitly stored. (See also the Example Program.)

Output: the components of the discrete Fourier transform \hat{x}_k . \hat{x}_k is stored in $\mathbf{x}[k]$, for $k = 0, 1, \dots, n-1$.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_C06_FACTOR_GT

At least one of the prime factors of ${\bf n}$ is greater than 19.

NE_C06_TOO_MANY_FACTORS

 ${\bf n}$ has more than 20 prime factors.

NE_INT_ARG_LE

On entry, **n** must not be less than or equal to 1: $\mathbf{n} = \langle value \rangle$.

6. Further Comments

The time taken by the function is approximately proportional to $n \log n$, but also depends on the factorization of n. The function is somewhat faster than average if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

On the other hand, the function is particularly slow if n has several unpaired prime factors, i.e., if the 'square-free' part of n has several factors.

6.1. Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

6.2. References

Brigham E O (1974) The Fast Fourier Transform Prentice-Hall.

7. See Also

nag_fft_complex (c06ecc) nag_conjugate_hermitian (c06gbc)

8. Example

This program reads in a sequence of real data values which is assumed to be a Hermitian sequence of complex data values stored in Hermitian form. The input sequence is expanded into a full complex sequence and printed alongside the original sequence. The discrete Fourier transform (as computed by nag_fft_hermitian) is printed out.

The program then performs an inverse transform using nag_fft_real (c06eac) and nag_conjugate_hermitian (c06gbc), and prints the sequence so obtained alongside the original data values.

8.1. Program Text

```
* Mark 1. 1990.
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>
#define NMAX 20
main()
{
  Integer j, n, n2, nj;
  double u[NMAX], v[NMAX], x[NMAX], xx[NMAX];
  Vprintf("c06ebc Example Program Results\n");
  /* Skip heading in data file */
Vscanf("%*[^\n]");
  while (scanf("%ld", &n)!=EOF)
    if (n>1 \&\& n \le NMAX)
      ſ
         for (j = 0; j<n; j++)</pre>
           Ł
             Vscanf("%lf", &x[j]);
             xx[j] = x[j];
           }
         /* Calculate full complex form of Hermitian sequence */
        u[0] = x[0];
```

```
v[0] = 0.0;
n2 = (n-1)/2;
        for (j = 1; j<=n2; j++)
           {
              nj = n - j;
              u[j] = x[j];
              u[nj] = x[j];
              v[j] = x[nj];
              v[nj] = -x[nj];
           }
        if (n % 2==0)
           {
              u[n2+1] = x[n2+1];
              v[n2+1] = 0.0;
           }
        Vprintf("\nOriginal and corresponding complex sequence\n");
Vprintf("\n Data Real Imag \n\n");
        for (j = 0; j<n; j++)
    Vprintf("%31d %10.5f %10.5f %10.5f\n", j, x[j], u[j], v[j]);</pre>
        /* Calculate transform */
        c06ebc(n, x, NAGERR_DEFAULT);
        Vprintf("\nComponents of discrete Fourier transform\n\n");
        for (j = 0; j<n; j++)
Vprintf("%3ld %10.5f\n", j, x[j]);
/* Calculate inverse transform */</pre>
        c06eac(n, x, NAGERR_DEFAULT);
        c06gbc(n, x, NAGERR_DEFAULT);
Vprintf("\nOriginal sequence as restored by inverse transform\n");
        Vprint( \noriginal sequence as restored by invers
Vprintf("\n Original Restored\n\n");
for (j = 0; j<n; j++)
    Vprintf("%3ld %10.5f %10.5f\n", j, xx[j], x[j]);</pre>
     }
   else
      {
        Vfprintf(stderr,"Invalid value of n\n");
        exit(EXIT_FAILURE);
      }
exit(EXIT_SUCCESS);
```

}

8.2. Program Data

c06ebc Example Program Data 7 0.34907 0.54890 0.74776

0.94459 1.13850 1.32850 1.51370

8.3. Program Results

cO6ebc Example Program Results

Original and corresponding complex sequence

	Data	Real	Imag
0	0.34907	0.34907	0.00000
1	0.54890	0.54890	1.51370
2	0.74776	0.74776	1.32850
3	0.94459	0.94459	1.13850
4	1.13850	0.94459	-1.13850
5	1.32850	0.74776	-1.32850
6	1.51370	0.54890	-1.51370

Components of discrete Fourier transform

0	1.82616
1	1.86862
2	-0.01750
3	0.50200
4	-0.59873
5	-0.03144
6	-2.62557

Original sequence as restored by inverse transform

OriginalRestored00.349070.3490710.548900.5489020.747760.7477630.944590.9445941.138501.1385051.328501.3285061.513701.51370