
c06 – Fourier Transforms c06ebc

nag fft hermitian (c06ebc)

1. Purpose

nag fft hermitian (c06ebc) calculates the discrete Fourier transform of a Hermitian sequence of n
complex data values.

2. Specification

#include <nag.h>
#include <nagc06.h>

void nag_fft_hermitian(Integer n, double x[], NagError *fail)

3. Description

Given a Hermitian sequence of n complex data values zj (i.e., a sequence such that z0 is real and
zn−j is the complex conjugate of zj , for j = 1, 2, . . . , n − 1) this function calculates their discrete
Fourier transform defined by

x̂k =
1√
n

n−1∑
j=0

zj exp
(
−i

2πjk

n

)
, for k = 0, 1, . . . , n − 1.

(Note the scale factor of 1/
√

n in this definition.) The transformed values x̂k are purely real.

To compute the inverse discrete Fourier transform defined by

ŷk =
1√
n

n−1∑
j=0

zj exp
(

+i
2πjk

n

)
, for k = 0, 1, . . . , n − 1,

this function should be preceded by a call of nag conjugate hermitian (c06gbc) to form the complex
conjugates of the zj .

The function uses the Fast Fourier Transform algorithm (Brigham 1974). There are some
restrictions on the value of n (see Section 4).

4. Parameters

n
Input: the number of data values, n.
Constraint: n > 1. The largest prime factor of n must not exceed 19, and the total number
of prime factors of n, counting repetitions, must not exceed 20.

x[n]
Input: the sequence to be transformed stored in Hermitian form. If the data values zj are
written as xj + iyj, then for 0 ≤ j ≤ n/2, xj is contained in x[j], and for 1 ≤ j ≤ (n−1)/2, yj

is contained in x[n− j]. It is not necessary for other elements of the sequence to be explicitly
stored. (See also the Example Program.)
Output: the components of the discrete Fourier transform x̂k. x̂k is stored in x[k], for
k = 0, 1, . . . , n − 1.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE C06 FACTOR GT
At least one of the prime factors of n is greater than 19.

NE C06 TOO MANY FACTORS
n has more than 20 prime factors.

[NP3275/5/pdf] 3.c06ebc.1



nag fft hermitian NAG C Library Manual

NE INT ARG LE
On entry, n must not be less than or equal to 1: n = 〈value〉.

6. Further Comments
The time taken by the function is approximately proportional to n log n, but also depends on the
factorization of n. The function is somewhat faster than average if the only prime factors of n are
2, 3 or 5; and fastest of all if n is a power of 2.

On the other hand, the function is particularly slow if n has several unpaired prime factors, i.e., if
the ‘square-free’ part of n has several factors.

6.1. Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

6.2. References

Brigham E O (1974) The Fast Fourier Transform Prentice-Hall.

7. See Also

nag fft complex (c06ecc)
nag conjugate hermitian (c06gbc)

8. Example

This program reads in a sequence of real data values which is assumed to be a Hermitian sequence of
complex data values stored in Hermitian form. The input sequence is expanded into a full complex
sequence and printed alongside the original sequence. The discrete Fourier transform (as computed
by nag fft hermitian) is printed out.

The program then performs an inverse transform using nag fft real (c06eac) and
nag conjugate hermitian (c06gbc), and prints the sequence so obtained alongside the original data
values.

8.1. Program Text

*
* Mark 1, 1990.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>

#define NMAX 20

main()
{
Integer j, n, n2, nj;
double u[NMAX], v[NMAX], x[NMAX], xx[NMAX];

Vprintf("c06ebc Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^\n]");
while (scanf("%ld", &n)!=EOF)

if (n>1 && n<=NMAX)
{
for (j = 0; j<n; j++)
{
Vscanf("%lf", &x[j]);
xx[j] = x[j];

}
/* Calculate full complex form of Hermitian sequence */
u[0] = x[0];

3.c06ebc.2 [NP3275/5/pdf]



c06 – Fourier Transforms c06ebc

v[0] = 0.0;
n2 = (n-1)/2;
for (j = 1; j<=n2; j++)
{
nj = n - j;
u[j] = x[j];
u[nj] = x[j];
v[j] = x[nj];
v[nj] = -x[nj];

}
if (n % 2==0)
{
u[n2+1] = x[n2+1];
v[n2+1] = 0.0;

}
Vprintf("\nOriginal and corresponding complex sequence\n");
Vprintf("\n Data Real Imag \n\n");
for (j = 0; j<n; j++)
Vprintf("%3ld %10.5f %10.5f %10.5f\n", j, x[j], u[j], v[j]);

/* Calculate transform */
c06ebc(n, x, NAGERR_DEFAULT);
Vprintf("\nComponents of discrete Fourier transform\n\n");
for (j = 0; j<n; j++)
Vprintf("%3ld %10.5f\n", j, x[j]);

/* Calculate inverse transform */
c06eac(n, x, NAGERR_DEFAULT);
c06gbc(n, x, NAGERR_DEFAULT);
Vprintf("\nOriginal sequence as restored by inverse transform\n");
Vprintf("\n Original Restored\n\n");
for (j = 0; j<n; j++)
Vprintf("%3ld %10.5f %10.5f\n", j, xx[j], x[j]);

}
else
{
Vfprintf(stderr,"Invalid value of n\n");
exit(EXIT_FAILURE);

}
exit(EXIT_SUCCESS);

}

8.2. Program Data

c06ebc Example Program Data
7

0.34907
0.54890
0.74776
0.94459
1.13850
1.32850
1.51370

8.3. Program Results

c06ebc Example Program Results

Original and corresponding complex sequence

Data Real Imag

0 0.34907 0.34907 0.00000
1 0.54890 0.54890 1.51370
2 0.74776 0.74776 1.32850
3 0.94459 0.94459 1.13850
4 1.13850 0.94459 -1.13850
5 1.32850 0.74776 -1.32850
6 1.51370 0.54890 -1.51370

[NP3275/5/pdf] 3.c06ebc.3



nag fft hermitian NAG C Library Manual

Components of discrete Fourier transform

0 1.82616
1 1.86862
2 -0.01750
3 0.50200
4 -0.59873
5 -0.03144
6 -2.62557

Original sequence as restored by inverse transform

Original Restored

0 0.34907 0.34907
1 0.54890 0.54890
2 0.74776 0.74776
3 0.94459 0.94459
4 1.13850 1.13850
5 1.32850 1.32850
6 1.51370 1.51370

3.c06ebc.4 [NP3275/5/pdf]


	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities


