
d02 – Ordinary Differential Equations Introduction – d02

Chapter d02 – Ordinary Differential Equations

1. Scope of the Chapter

This chapter provides functions for the numerical solution of ordinary differential equations. There
are two main types of problem: initial-value problems where all boundary conditions are specified
at one point, and boundary-value problems where the boundary conditions are distributed between
two or more points.

2. Background

For the functions in this chapter a system of ordinary differential equations must be written in the
form

y′
1 = f1(x, y1, y2, . . . , yn),

y′
2 = f2(x, y1, y2, . . . , yn),

...
y′

n = fn(x, y1, y2, . . . , yn),

that is the system must be given in first-order form. The n dependent variables (also, the
solution) y1, y2, . . . , yn are functions of the independent variable x, and the differential equations

give expressions for the first derivatives y′
i = dyi

dx
in terms of x and y1, y2, . . . , yn. For a system of

n first-order ordinary differential equations, n associated boundary conditions are usually required
to define the solution.
A more general system may contain derivatives of higher order, but such systems can almost always
be reduced to the first-order form by introducing new variables. For example, taking the third-order
equation

z′′′ + zz′′ + k(l − z′2) = 0

and writing y1 = z, y2 = z′ and y3 = z′′ we can obtain the first-order system

y′
1 =y2

y′
2 =y3

y′
3 = − y1y3 − k(l − y2

2)

For this system n = 3 and we require 3 boundary conditions. These conditions must specify values
of the dependent variables at certain points. For example, we have an initial-value problem if the
conditions are:

y1 = 0 at x = 0
y2 = 0 at x = 0
y3 = 2 at x = 0

These conditions would enable us to integrate the equations numerically from the point x = 0 to
some specified end-point. We have a boundary-value problem if the conditions are:

y1 = 0 at x = 0
y2 = 0 at x = 0
y2 = 1 at x = 90

These conditions could be sufficient to define a solution in the range 0 ≤ x ≤ 90 if it exists (see
Section 2.2).

2.1. Initial-value Problems

To solve first-order systems, initial values of the dependent variables y1, y2, . . . , yn must be supplied
at a given point a. Also a point b, at which the dependent variables are required, must be specified.
The numerical solution is obtained by a step-by-step calculation which approximates the variables

[NP3275/5/pdf] 3.intro-d02.1



Introduction – d02 NAG C Library Manual

over the range [a, b]. The step-length is adjusted automatically to meet specified accuracy tolerances.
The accuracy tests are reliable over each individual step but cannot generally be guaranteed over
a long range. For many problems there may be no serious accumulation of error, but for unstable
systems small perturbations of the solution may lead to rapid divergence of the calculated values
from the true values. A simple check is to carry out trial calculations with different tolerances; if
the results differ appreciably then the system is probably unstable.

A special class of initial-value problems are those for which the solutions contain rapidly decaying
transient terms. Such problems are called stiff and require special methods for efficient numerical
solution; the methods designed for non-stiff problems when applied to stiff problems tend to be
very slow because they need small step-lengths to avoid numerical instability.

In general, for non-stiff first order systems, Runge–Kutta (RK) methods should be used.
For the usual requirement of integrating across a range the appropriate functions are
nag ode ivp rk setup (d02pvc) and nag ode ivp rk range (d02pcc); nag ode ivp rk setup (d02pvc)
is a set up function for nag ode ivp rk range (d02pcc). For more complex tasks there
a further four functions nag ode ivp rk onestep (d02pdc), nag ode ivp rk reset tend (d02pwc),
nag ode ivp rk interp (d02pxc) and nag ode ivp rk errass (d02pzc). These respectively integrate
one step, reset the end of the integration range, perform interpolation and finally supply information
concerning error assessment.

When a system is to be integrated over a long range or with relatively high accuracy requirements
the variable-order, variable-step Adams method may be more efficient. There is an easy-to-use
function nag ode ivp adams gen (d02cjc) to perform integration over a range; intermediate output
in the range can be obtained and the first position where a single function of the solution is
first zero can be computed. There is a more flexible function nag ode ivp adams roots (d02qfc)
for general integration purposes; all the positions of zeros of functions of the solution can be
computed. An initialisation function nag ode ivp adams setup (d02qwc) and an interpolation
function nag ode ivp adams interp (d02qzc) to compute the solution at non-step points are provided
for use with nag ode ivp adams roots (d02qfc).

For stiff systems a Backward Differentiation Formula (BDF) variable-order, variable step method
should be used. The function nag ode ivp bdf gen (d02ejc) performs integration over an interval
until a user-specified function (g(x, y)), if supplied, is zero. The routine also permits the user
to define an output routine in order to return the solution at specific points. Its argument list
is similar to nag ode ivp adams gen (d02cjc) except that to solve the equations arising in the

BDF method an approximation to the Jacobian
(

∂Fi
∂yj

)
is required. This approximation can be

calculated internally but the user may supply an analytic expression. In most cases supplying a
correct analytic expression will reduce the amount of computer time used.

2.2. Boundary-value Problems

In general, a system of nonlinear differential equations with boundary conditions given at two or
more points cannot be guaranteed to have a solution. The solution has to be determined iteratively
if it exists. The functions available in this chapter for this type of problem use finite difference
methods. Finite difference equations are set up on a mesh of points and estimated values for the
solution on the grid points are chosen. These estimates are used as starting values for a Newton
iteration to solve the finite difference equations. The accuracy of the solution is then improved
by deferred corrections or the addition of points to the mesh or a combination of both. In some
cases the method may require good initial estimates of the solution. The method is unlikely to be
successful when the solution varies rapidly over short ranges.

There is an easy-to-use function nag ode bvp fd nonlin fixedbc (d02gac) for simple boundary-
value problems with assigned boundary values. However, users may find convergence difficult to
achieve with nag ode bvp fd nonlin fixedbc (d02gac) and instead use the more general purpose
function nag ode bvp fd nonlin gen (d02rac). nag ode bvp fd nonlin gen (d02rac) permits an
initial estimate of the solution at all mesh points, caters for more general nonlinear boundary
conditions, provides for analytically supplied Jacobians and allows the calculation to be influenced
in other ways too. There is also the function nag ode bvp fd lin gen (d02gbc) for the general linear
two-point boundary-value problem written in standard ‘textbook’ form. The user is advised to
employ interpolation functions from the e01 Chapter to obtain solution values at points not on the
final mesh.

3.intro-d02.2 [NP3275/5/pdf]



d02 – Ordinary Differential Equations Introduction – d02

3. Available Functions
Integrate system over a range, possibly with intermediate output and root-finding
for a single function of the solution, Adams method d02cjc
Integrate a stiff system (using BDF) over a range, with optimal intermediate output
and root-finding d02ejc
Solve a system of equations with boundary conditions for simple nonlinear problem d02gac
Solve a system of equations with boundary conditions for general linear problem d02gbc
Integrate a system of equations over a range, using the Runge–Kutta method d02pcc
Integrate a system of equations over single integration step d02pdc
Memory deallocation function for the Runge–Kutta method d02ppc
Set-up function for d02pcc or d02pdc d02pvc
Reset the end-point in an integration performed by d02pdc d02pwc
Computes the solution of a system of ODE using interpolation on an integration
step taken by d02pdc d02pxc
Computes details of global error assessment when using d02pcc or d02pdc d02pzc
Integrate a system over a range, possibly determining all the positions where
functions of the solution are zero, Adams method d02qfc
Set-up function for d02qfc d02qwc
Memory deallocation function for the Adams method d02qyc
Interpolation function for d02qfc d02qzc
Solve a system of equations with boundary conditions for the general
nonlinear problem with a continuation facility d02rac

[NP3275/5/pdf] 3.intro-d02.3


	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities


