
d02 – Ordinary Differential Equations d02pxc

nag ode ivp rk interp (d02pxc)

1. Purpose

nag ode ivp rk interp (d02pxc) is a function to compute the solution of a system of
ordinary differential equations using interpolation anywhere on an integration step taken by
nag ode ivp rk onestep (d02pdc).

2. Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_rk_interp(Integer neq, double twant, Nag_SolDeriv request, Integer
nwant,

double ywant[], double ypwant[],
void (*f) (Integer neq, double t, double y[], double yp[],

Nag_User *comm),
Nag_ODE_RK *opt, Nag_User *comm, NagError *fail)

3. Description

This function and its associated functions (nag ode ivp rk setup (d02pvc), nag ode ivp rk onestep
(d02pdc), nag ode ivp rk reset tend (d02pwc), nag ode ivp rk errass (d02pzc)) solve the initial
value problem for a first order system of ordinary differential equations. The functions, based
on Runge-Kutta methods and derived from RKSUITE (Brankin et al , 1991) integrate

y′ = f(t, y) given y(t0) = y0

where y is the vector of neq solution components and t is the independent variable.

nag ode ivp rk onestep (d02pdc) computes the solution at the end of an integration step. Using the
information computed on that step nag ode ivp rk interp computes the solution by interpolation
at any point on that step. It cannot be used if method = Nag RK 7 8 was specified in the call to
set-up function nag ode ivp rk setup (d02pvc).

4. Parameters

neq
Input: the number of ordinary differential equations in the system.
Constraint: neq ≥ 1.

twant
Input: the value of the independent variable, t, where a solution is desired.

request
Input: determines whether the solution and/or its first derivative are computed as follows:
request = Nag Sol - compute approximate solution only
request = Nag Der - compute approximate first derivative of the solution only
request = Nag SolDer - compute both approximate solution and first derivative.
Constraint: request = Nag Sol or Nag Der or Nag SolDer.

nwant
Input: the number of components of the solution to be computed. The first nwant components
are evaluated.
Constraint: 1 ≤ nwant ≤ neq.

ywant[nwant]
Output: an approximation to the first nwant components of the solution at twant when
specified by request.

[NP3275/5/pdf] 3.d02pxc.1

nag ode ivp rk interp NAG C Library Manual

ypwant[nwant]
Output: an approximation to the first nwant components of the first derivative of the solution
at twant when specified by request.

f
This function must evaluate the functions fi (that is the first derivatives y′

i) for given values
of the arguments t, yi. It must be the same procedure as supplied to nag ode ivp rk onestep
(d02pdc).

void f (Integer neq, double t, double y[], double yp[], Nag_User *comm)

neq
Input: the number of differential equations.

t
Input: the current value of the independent variable, t.

y[neq]
Input: the current values of the dependent variables, yi for i = 1, 2, . . . , neq.

yp[neq]
Output: the values of fi for i = 1, 2, . . . , neq.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

opt
Input: the structure of type Nag ODE RK as output from nag ode ivp rk onestep (d02pdc).
This structure must not be changed by the user.
Output: some members of opt are changed internally.

comm
Input/Output: pointer to a structure of type Nag User with the following member:

p - Pointer
Input/Output: the pointer p, of type Pointer, allows the user to communicate
information to and from the user-defined function f(). An object of the required type
should be declared by the user, e.g. a structure, and its address assigned to the pointer
p by means of a cast to Pointer in the calling program, e.g. comm.p = (Pointer)&s.
The type pointer will be void * with a C compiler that defines void * and char *
otherwise.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE PREV CALL
The previous call to a function had resulted in a severe error. You must call
nag ode ivp rk setup (d02pvc) to start another problem.

NE RK INVALID CALL
The function to be called as specified in the setup function nag ode ivp rk setup (d02pvc) was
nag ode ivp rk range (d02pcc). However the actual call was made to nag ode ivp rk interp.
This is not permitted.

NE MISSING CALL
Previous call to nag ode ivp rk onestep (d02pdc) has not been made, hence nag ode ivp rk interp
must not be called.

3.d02pxc.2 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02pxc

NE PREV CALL INI
The previous call to the function nag ode ivp rk onestep (d02pdc) resulted in a severe error.
You must call nag ode ivp rk setup (d02pvc) to start another problem.

NE NEQ
The value of neq supplied is not the same as that given to the setup function
nag ode ivp rk setup (d02pvc). neq = 〈value〉 but the value given to nag ode ivp rk setup
(d02pvc) was 〈value〉.

NE BAD PARAM
On entry parameter request had an illegal value.

NE 2 INT ARG GT
On entry nwant = 〈value〉 while neq = 〈value〉. These parameters must satisfy neq ≤ nwant.

NE INT ARG LT
On entry, nwant must not be less than 1: nwant = 〈value〉.

NE ALLOC FAIL
Memory allocation failed.

NE RK PX METHOD
Interpolation is not available with method = Nag RK 7 8. Either use method =
Nag RK 2 3 or Nag RK 4 5 for which interpolation is available. Alternatively use
nag ode ivp rk reset tend (d02pwc) to make nag ode ivp rk onestep (d02pdc) step exactly
to the points where you want output.

NE MEMORY FREED
Internally allocated memory has been freed by a call to nag ode ivp rk free (d02ppc) without
a subsequent call to the set up function nag ode ivp rk setup (d02pvc).

6. Further Comments

None.

6.1. Accuracy

The computed values will be of a similar accuracy to that computed by nag ode ivp rk onestep
(d02pdc).

6.2. References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: a suite of Runge-Kutta codes for
the initial value problem for ODEs SoftReport 91-S1, Department of Mathematics, Southern
Methodist University, Dallas, TX 75275, U.S.A.

7. See Also

nag ode ivp rk onestep (d02pdc)
nag ode ivp rk setup (d02pvc)
nag ode ivp rk reset tend (d02pwc)
nag ode ivp rk errass (d02pzc)

8. Example

We solve the equation
y′′ = −y, y(0) = 0, y′(0) = 1

reposed as
y′
1 = y2 y′

2 = −y1

over the range [0, 2π] with initial conditions y1 = 0.0 and y2 = 1.0. We use relative error control
with threshold values of 1.0e−8 for each solution component. nag ode ivp rk onestep (d02pdc) is
used to integrate the problem one step at a time and nag ode ivp rk interp is used to compute
the first component of the solution and its derivative at intervals of length π/8 across the range
whenever these points lie in one of those integration steps. We use a moderate order Runge-Kutta
method (method = Nag RK 4 5) with tolerances tol = 1.0e−3 and tol = 1.0e−4 in turn so that
we may compare the solutions. The value of π is obtained by using X01AAC.

[NP3275/5/pdf] 3.d02pxc.3

nag ode ivp rk interp NAG C Library Manual

8.1. Program Text

/* nag_ode_ivp_rk_interp(d02pxc) Example Program
*
* Copyright 1994 Numerical Algorithms Group.
*
* Mark 3, 1994.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd02.h>
#include <nagx01.h>

#ifdef NAG_PROTO
static void f(Integer neq, double t1, double y[], double yp[], Nag_User *comm);
#else
static void f();
#endif

#define NEQ 2
#define NWANT 1
#define ZERO 0.0
#define ONE 1.0
#define TWO 2.0
#define FOUR 4.0

main()
{
Integer neq, nwant;
double hstart, pi, tnow, tend, tol, tstart, tinc, twant;
Integer i, j, nout;
double thres[NEQ], ynow[NEQ], ypnow[NEQ], ystart[NEQ], ywant[NWANT];
double ypwant[NWANT];
Nag_RK_method method;
Nag_ErrorAssess errass;
Nag_ODE_RK opt;
Nag_User comm;

Vprintf("d02pxc Example Program Results\n");

/* Set initial conditions and input for d02pvc */
neq = NEQ;
method = Nag_RK_4_5;
pi = X01AAC;
tstart = ZERO;
ystart[0] = ZERO;
ystart[1] = ONE;
tend = TWO*pi;
for (i=0; i<neq; i++)

thres[i] = 1.0e-8;
errass = Nag_ErrorAssess_off;
hstart = ZERO;

/*
* Set control for output
*/

nwant = NWANT;
nout = 16;
tinc = tend/nout;
for (i=1; i<=2; i++)

{
if (i==1) tol = 1.0e-3;
if (i==2) tol = 1.0e-4;
d02pvc(neq, tstart, ystart, tend, tol, thres, method,

Nag_RK_onestep, errass, hstart, &opt, NAGERR_DEFAULT);

3.d02pxc.4 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02pxc

Vprintf("\nCalculation with tol = %8.1e\n\n",tol);
Vprintf (" t y1 y2\n\n");
Vprintf("%8.3f %8.4f %8.4f\n", tstart, ystart[0], ystart[1]);
j = nout - 1;
twant = tend - j*tinc;

do
{
d02pdc(neq, f, &tnow, ynow, ypnow, &opt, &comm, NAGERR_DEFAULT);
while (twant<=tnow)
{
d02pxc(neq, twant, Nag_SolDer, nwant, ywant, ypwant, f,

&opt, &comm, NAGERR_DEFAULT);
Vprintf("%8.3f %8.4f %8.4f\n", twant, ywant[0],

ypwant[0]);
j = j - 1;
twant = tend - j*tinc;

}
} while (tnow<tend);

Vprintf("\nCost of the integration in evaluations of f is %ld\n\n",
opt.totfcn);

d02ppc(&opt);
}

exit(EXIT_SUCCESS);
}
#ifdef NAG_PROTO
static void f(Integer neq, double t, double y[], double yp[], Nag_User *comm)
#else

static void f(neq, t, y, yp, comm)
Integer neq;
double t;
double y[], yp[];
Nag_User *comm;

#endif

{
yp[0] = y[1];
yp[1] = -y[0];

}

8.2. Program Data

None.

8.3. Program Results

d02pxc Example Program Results

Calculation with tol = 1.0e-03

t y1 y2

0.000 0.0000 1.0000
0.393 0.3827 0.9239
0.785 0.7071 0.7071
1.178 0.9239 0.3826
1.571 1.0000 -0.0001
1.963 0.9238 -0.3828
2.356 0.7070 -0.7073
2.749 0.3825 -0.9240
3.142 -0.0002 -0.9999
3.534 -0.3829 -0.9238
3.927 -0.7072 -0.7069
4.320 -0.9239 -0.3823
4.712 -0.9999 0.0004
5.105 -0.9236 0.3830
5.498 -0.7068 0.7073
5.890 -0.3823 0.9239
6.283 0.0004 0.9998

[NP3275/5/pdf] 3.d02pxc.5

nag ode ivp rk interp NAG C Library Manual

Cost of the integration in evaluations of f is 68

Calculation with tol = 1.0e-04

t y1 y2

0.000 0.0000 1.0000
0.393 0.3827 0.9239
0.785 0.7071 0.7071
1.178 0.9239 0.3827
1.571 1.0000 0.0000
1.963 0.9239 -0.3827
2.356 0.7071 -0.7071
2.749 0.3827 -0.9239
3.142 0.0000 -1.0000
3.534 -0.3827 -0.9239
3.927 -0.7071 -0.7071
4.320 -0.9239 -0.3827
4.712 -1.0000 0.0000
5.105 -0.9238 0.3827
5.498 -0.7071 0.7071
5.890 -0.3826 0.9239
6.283 0.0000 1.0000

Cost of the integration in evaluations of f is 105

3.d02pxc.6 [NP3275/5/pdf]

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

