d06 — Mesh Generation d06dac

NAG C Library Function Document
nag mesh2d_trans (d06dac)

1 Purpose

nag _mesh2d trans (d06dac) is a utility which performs an affine transformation of a given mesh.

2 Specification

void nag_mesh2d_trans (Integer mode, Integer nv, Integer nedge, Integer nelt,
Integer ntrans, const Integer itype[], const double trans[], double cooril],
Integer edgei[], Integer connil], double cooro[], Integer edgeol],
Integer conno[], Integer itrace, const char *outfile, NagError *fail)

3 Description

nag_mesh2d trans (d06dac) generates a mesh (coordinates, triangle/vertex connectivities and edge/vertex
connectivities) resulting from an affine transformation of a given mesh. This transformation is of the form
y=A x x+b, where

y, * and b are in]Rz, and
A is a real 2 by 2 matrix.

Such a transformation includes a translation, a rotation, a scale reduction or increase, a symmetric
transformation with respect to a user-supplied line, a user-supplied analytic transformation, or a
composition of several transformations.

This function is partly derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

None.

5 Parameters

1: mode — Integer Input
On entry: if mode = 1 the arguments coori, edgei and conni are overwritten on exit by the output
values described in cooro, edgeo and conno respectively. In this case cooro, edgeo and conno are
not referenced, and the user can save storage space. If mode # 1 no such aliasing is assumed.

2: nv — Integer Input
On entry: the total number of vertices in the input mesh.

Constraint: nv > 3.

3: nedge — Integer Input
On entry: the number of the boundary or interface edges in the input mesh.

Constraint: nedge > 1.

4: nelt — Integer Input
On entry: the number of triangles in the input mesh.

Constraint: nelt <2 x nv — 1.

[NP3645/7] d06dac. 1

d06dac NAG C Library Manual

5: ntrans — Integer Input
On entry: the number of transformations of the input mesh.

Constraint: ntrans > 1.

6: itype[ntrans] — const Integer Input
On entry: itype[i — 1], for ¢ = 1,..., ntrans, indicates the type of each transformation as follows:
itype[i — 1] =0

Identity transformation.
itype[i — 1] =1
Translation.
itype[i — 1] =2
Symmetric transformation with respect to a user-supplied line.
itype[i — 1] =3
Rotation.
itype[i — 1] = 4
Scaling.
itype[i — 1] =10
User-supplied analytic transformation.
Note that the transformations are applied in the order described in itype.

Constraint: itype[i — 1] =0,1,2,3,4 or 10 for i = 1,2,..., ntrans.

7: trans[6 x ntrans| — const double Input

Note: where TRANS(7,j) appears in this document it refers to the array element
trans[6 x (j—1)+i—1]. We recommend using a #define to make the same definition in your
calling program.

On entry: the parameters for each transformation. For i =1,... ntrans, TRANS(1,7) to
TRANS(6,¢) contain the parameters of the ith transformation:

if itype[i — 1] = 0, then elements TRANS(1,¢) to TRANS(6,4) are not referenced;

if itype[i — 1] = 1, then the translation vector is @ =

b
b = TRANS(2,i), while elements TRANS(3,47) to TRANS(6,4) are not referenced;

a), where a = TRANS(1,) and

if itype[i — 1] =2, then the user-supplied line is the curve {(x,y) € R%* such that
ax + by + ¢ = 0}, where a = TRANS(1,7), b = TRANS(2,?) and ¢ = TRANS(3,4), while
elements TRANS(4,7) to TRANS(6,4) are not referenced,

if itype[i — 1] = 3, then the centre of the rotation is (zy,y,) where xy = TRANS(1,¢) and
yo = TRANS(2,17), § = TRANS(3,1) is its angle in degrees, while elements TRANS(4,7) to
TRANS(6,) are not referenced,;

if itype[i — 1] =4, then a = TRANS(1,i) is the scaling coefficient in the z-direction,
b= TRANS(2,7) is the scaling coefficient in the y-direction, and (z¢,vy,) are the scaling

centre coordinates, with xy = TRANS(3,7) and y, = TRANS(4,7); while elements
TRANS(5,7) to TRANS(6,7) are not referenced,

if itype[i — 1] = 10, then the user-supplied analytic affine transformation y = A x x 4+ b is
such that A = (ay);<;,<; and b= (b;)<;<, Where ay; = TRANS(2 x (k— 1) +1,4), and
b, = TRANS(4 + k, i) with k.1 =1,2.

d06dac.2 [NP3645/7]

d06 — Mesh Generation d06dac

8:

11:

12:

coori]2 x nv| — double Input/Output

Note: where COORI(i,j) appears in this document it refers to the array element
coori[2 x (j— 1)+ — 1]. We recommend using a #define to make the same definition in your calling
program.

On entry: COORI(1,7) contains the z-coordinate of the ith vertex of the input mesh, for
i =1,...,nv; while COORI(2,%) contains the corresponding y-coordinate.

On exit: if mode = 1, coori is assumed to hold the values of cooro.

edgei[3 x nedge] — Integer Input/Output

Note: where EDGEI(i,j) appears in this document it refers to the array element
edgei[3 x (j—1)+i—1]. We recommend using a #define to make the same definition in your
calling program.

On entry: the specification of the boundary or interface edges. EDGEI(1,j) and EDGEI(2, j)
contain the vertex numbers of the two end-points of the jth boundary edge. EDGEI(3,) is a user-
supplied tag for the jth boundary edge. Note that the edge vertices are numbered from 1 to nv.

On exit: if mode = 1, edgei holds the output values described in edgeo.

Constraint: 1 < EDGEI(i,j) <nv and EDGEI(1,j) # EDGEI(2,5) for i=1,2 and
J=1,2,... nedge.

conni[3 x nelt] — Integer Input/Output

Note: where CONNI(4,j) appears in this document it refers to the array element
connif3 x (j—1)+4—1]. We recommend using a #define to make the same definition in your
calling program.

On entry: the connectivity of the input mesh between triangles and vertices. For each triangle j,
CONNI(i, j) gives the indices of its three vertices (in anticlockwise order), for ¢ = 1,2,3 and
j=1,...,nelt. Note that the mesh vertices are numbered from 1 to nv.

On exit: if mode = 1, conni holds the ouptut values described in conno.
Constraints:

1 < CONNI(7, j) < nv;
CONNI(1, j) # CONNI(2,
CONNI(1, j) # CONNI(3,
j=12,... nelt.

)
j) and CONNI(2,j) # CONNI(3,5) for ¢=1,2,3 and

cooro[dim] — double Output

Note: where COORO(i,j) appears in this document it refers to the array element
cooro2 X (j—1)4+i—1]. We recommend using a #define to make the same definition in your
calling program.

The dimension, dim, of the array cooro must be at least nv when mode # 1 and at least 1
otherwise.

On exit: COORO(1,17) will contain the xz-coordinate of the ith vertex of the transformed mesh, for
i =1,...,nv; while COORO(2,%) will contain the corresponding y-coordinate. If mode = 1 the
results are instead overwritten in coori.

edgeo[dim| — Integer Output

Note: where EDGEO(i,j) appears in this document it refers to the array element
edgeo[3 x (j—1)+¢—1]. We recommend using a #define to make the same definition in your
calling program.

The dimension, dim, of the array edgeo must be at least nedge when mode # 1 and at least 1
otherwise.

[NP3645/7] d06dac.3

d06dac NAG C Library Manual

On exit: the specification of the boundary or interface edges of the transformed mesh. If the number
of symmetric transformations is even or zero then EDGEO(i, j) = EDGEI(3, j) for i = 1,2,3 and
j=1,...,nedge; otherwiss EDGEO(1,j) = EDGEI(2,j), EDGEO(2,;) = EDGEI(1,;) and
EDGEO(3,j) = EDGEI(3,j) for j=1,...,nedge. If mode =1 the results are overwritten in
edgei.

13: conno[dim| — Integer Output
Note: where CONNO(i,j) appears in this document it refers to the array element
connof3 x (j—1)4+i—1]. We recommend using a #define to make the same definition in your
calling program.

The dimension, dim, of the array conno must be at least nelt when mode # 1 and at least 1
otherwise.

On exit: the connectivity of the transformed mesh between triangles and vertices. If the number of
symmetric transformations is even or zero then CONNO(¢,j) = CONNI(:,) for ¢ =1,2,3 and
j=1,...,nelt; otherwise CONNO(1,j) = CONNI(1,j), CONNO(2,j) = CONNI(3,j) and
CONNO(3,j) = CONNI(2, j), for j=1,...,nelt. Note that the mesh vertices are numbered
from 1 to nv. If mode = 1 the results are instead overwritten in conni.

14: itrace — Integer Input
On entry: the level of trace information required from nag _mesh2d trans (d06dac) as follows:

if itrace < 0, no output is generated;
if itrace > 1, then details of each transformation, the matrix A and the vector b of the final
transformation, which is the composition of all the ntrans transformations, are printed.

15: outfile — char * Input
On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

16: fail — NagError * Input/Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
On entry, ntrans = (value)

Constraint: ntrans > 0.

On entry, nv = (value).

Constraint: nv > 3.

On entry, nedge = (value).

Constraint: nedge > 1.
NE_INT 2

On entry, nelt = (value), nv = (value).
Constraint: nelt <2 x nv — 1.

On entry, the endpoints of the edge j have the same index i: j = (value), i = (value).

On entry, itype[i — 1] is not equal to 0, 1, 2, 3, 4, 10, itype[i — 1] = (value), i = (value).
On entry, vertices 2 and 3 of the triangle k& have the same index i: k = (value), i = (value).
On entry, vertices 1 and 3 of the triangle &k have the same index i: k = (value), i = (value).

On entry, vertices 1 and 2 of the triangle &k have the same index i: k = (value), i = (value).

d06dac.4 [NP3645/7]

d06 — Mesh Generation d06dac

NE_INT 4

On entry, edgei(,j) < 1 or edgei(i,j) > nv, where edgei(i, j) denotes edgei[3 x (j — 1) + i — 1]:
edgei(i, j) = (value), i = (value), j = (value), nv = (value).

)
On entry, conni(¢, j) < 1 or conni(¢, j) > nv, where conni(7, j) denotes conni3 x (j — 1)+ —1]:
conni(i, j) = (value), i = (value), j = (value), nv = (value).

NE_INTERNAL_ERROR

A serious error has occurred in an internal call to an auxiliary routine. Check the input mesh
especially the connectivities and the details of each transformations.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_NOT_WRITE_FILE

Cannot open file (value) for writing.

NE_NOT_CLOSE_FILE

Cannot close file (value).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Not applicable.

8 Further Comments

None.

9 Example
For an example of the use of this utility function, see nag_mesh2d join (d06dbc).

[NP3645/7] d06dac.5 (last)

	d06dac
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	mode
	nv
	nedge
	nelt
	ntrans
	itype
	trans
	coori
	edgei
	conni
	cooro
	edgeo
	conno
	itrace
	outfile
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_4
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_NOT_WRITE_FILE
	NE_NOT_CLOSE_FILE
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

