
NAG C Library Function Document

nag_1d_cheb_fit_constr (e02agc)

1 Purpose

nag_1d_cheb_fit_constr (e02agc) computes constrained weighted least-squares polynomial approximations
in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any
number of their derivatives can be specified at selected points.

2 Specification

void nag_1d_cheb_fit_constr (Nag_OrderType order, Integer m, Integer k,
double xmin, double xmax, const double x[], const double y[],
const double w[], Integer mf, const double xf[], const double yf[],
const Integer p[], double a[], double s[], Integer *n, double resid[],
NagError *fail)

3 Description

nag_1d_cheb_fit_constr (e02agc) determines least-squares polynomial approximations of degrees up to k to
the set of data points ðxr; yrÞ with weights wr, for r ¼ 1; 2; . . . ;m. The value of k, the maximum degree
required, is prescribed by the user. At each of the values xfr, for r ¼ 1; 2; . . . ;mf, of the independent
variable x, the approximations and their derivatives up to order pr are constrained to have one of the user-

specified values yfs, for s ¼ 1; 2; . . . ; n, where n ¼ mf þ
Pmf

r¼0 pr.

The approximation of degree i has the property that, subject to the imposed constraints, it minimizes �i,
the sum of the squares of the weighted residuals �r for r ¼ 1; 2; . . . ;m where

�r ¼ wrðyr � fiðxrÞÞ
and fiðxrÞ is the value of the polynomial approximation of degree i at the rth data point.

Each polynomial is represented in Chebyshev-series form with normalised argument �xx. This argument lies
in the range �1 to þ1 and is related to the original variable x by the linear transformation

�xx ¼ 2x� ðxmax þ xminÞ
ðxmax � xminÞ

where xmin and xmax, specified by the user, are respectively the lower and upper end-points of the interval
of x over which the polynomials are to be defined.

The polynomial approximation of degree i can be written as

1
2
ai;0 þ ai;1T 1ð�xxÞ þ � � � þ aijT jð�xxÞ þ � � � þ aiiT ið�xxÞ

where Tjð�xxÞ is the Chebyshev polynomial of the first kind of degree j with argument �xx. For

i ¼ n; nþ 1; . . . ; k, the function produces the values of the coefficients aij, for j ¼ 0; 1; . . . ; i, together
with the value of the root mean square residual, si, defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðm0 þ n� i� 1Þ

vuuut
;

where m0 is the number of data points with non-zero weight.

Values of the approximations may subsequently be computed using nag_1d_cheb_eval (e02aec) or
nag_1d_cheb_eval2 (e02akc).

First nag_1d_cheb_fit_constr (e02agc) determines a polynomial �ð�xxÞ, of degree n� 1, which satisfies the
given constraints, and a polynomial �ð�xxÞ, of degree n, which has value (or derivative) zero wherever a
constrained value (or derivative) is specified. It then fits yr � �ðxrÞ, for r ¼ 1; 2; . . . ;m with polynomials
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of the required degree in �xx each with factor �ð�xxÞ. Finally the coefficients of �ð�xxÞ are added to the
coefficients of these fits to give the coefficients of the constrained polynomial approximations to the data
points ðxr; yrÞ, for r ¼ 1; 2; . . . ;m. The method employed is given in Hayes (1970): it is an extension of
Forsythe’s orthogonal polynomials method (Forsythe (1957)) as modified by Clenshaw (Clenshaw (1960)).

4 References

Clenshaw C W (1960) Curve fitting with a digital computer Comput. J. 2 170–173

Forsythe G E (1957) Generation and use of orthogonal polynomials for data fitting with a digital computer
J. Soc. Indust. Appl. Math. 5 74–88

Hayes J G (ed.) (1970) Numerical Approximation to Functions and Data Athlone Press, London

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: m – Integer Input

On entry: the number m of data points to be fitted.

Constraint: m � 1.

3: k – Integer Input

On entry: k, the maximum degree required.

Constraint: n � k � m00 þ n� 1 , where n is the total number of constraints, and m00 is the number
of data points with non-zero weights and distinct abscissae which do not coincide with any of the
xfr.

4: xmin – double Input

5: xmax – double Input

On entry: the lower and upper end-points, respectively, of the interval ½xmin; xmax�. Unless there are
specific reasons to the contrary, it is recommended that xmin and xmax be set respectively to the
lowest and highest value among the xr and xfr. This avoids the danger of extrapolation provided
there is a constraint point or data point with non-zero weight at each end-point.

Constraint: xmax > xmin.

6: x½m� – const double Input

On entry: x½r� 1� must contain the value xr of the independent variable at the rth data point, for
r ¼ 1; 2; . . . ;m.

Constraint: the x½r� must be in non-decreasing order and satisfy xmin � x½r� � xmax.

7: y½m� – const double Input

On entry: y½r� 1� must contain yr, the value of the dependent variable at the rth data point, for
r ¼ 1; 2; . . . ;m.

8: w½m� – const double Input

On entry: w½r� 1� must contain the weight wr to be applied to the data point xr, for r ¼ 1; 2 . . . ;m.
For advice on the choice of weights see the e02 Chapter Introduction. Negative weights are treated
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as positive. A zero weight causes the corresponding data point to be ignored. Zero weight should
be given to any data point whose x and y values both coincide with those of a constraint (otherwise
the denominators involved in the root-mean-square residuals si will be slightly in error).

9: mf – Integer Input

On entry: the number, mf , of values of the independent variable at which a constraint is specified.

Constraint: mf � 1.

10: xf½mf � – const double Input

On entry: xf ½r� 1� must contain the rth value of the independent variable at which a constraint is
specified, for r ¼ 1; 2; . . . ;mf.

Constraint: these values need not be ordered but must be distinct and satisfy xmin � xf ½r� � xmax.

11: yf½dim� – const double Input

Note: the dimension, dim, of the array yf must be at least mf þ
Pmf�1

i¼0 p½i�.
On entry: the values which the approximating polynomials and their derivatives are required to take
at the points specified in xf. For each value of xf ½r� 1�, yf contains in successive elements the
required value of the approximation, its first derivative, second derivative, . . . ; prth derivative, for
r ¼ 1; 2; . . . ;mf . Thus the value which the kth derivative of each approximation (k ¼ 0 referring
to the approximation itself) is required to take at the point xf ½r� 1� must be contained in yf ½s� 1�,
where

s ¼ rþ kþ p1 þ p2 þ � � � þ pr�1;

for k ¼ 0; 1; . . . ; pr and r ¼ 1; 2; . . . ;mf . The derivatives are with respect to the user’s variable x.

12: p½mf � – const Integer Input

On entry: p½r� 1� must contain pr, the order of the highest-order derivative specified at xf ½r� 1�,
for r ¼ 1; 2; . . . ;mf. pr ¼ 0 implies that the value of the approximation at xf ½r� 1� is specified,
but not that of any derivative.

Constraint: p½r� 1� � 0 for r ¼ 1; 2; . . . ;mf.

13: a½dim� – double Output

Note: the dimension, dim, of the array a must be at least ðk þ 1Þ � ðk þ 1Þ.
Where Aði; jÞ appears in this document, it refers to the array element

if order ¼ Nag ColMajor, a½ðj� 1Þ � ðk þ 1Þ þ i� 1�;
if order ¼ Nag RowMajor, a½ði� 1Þ � ðk þ 1Þ þ j� 1�.

On exit: Aðiþ 1; jþ 1Þ contains the coefficient aij in the approximating polynomial of degree i, for
i ¼ n; nþ 1; . . . ; k; j ¼ 0; 1; . . . ; i.

14: s½k þ 1� – double Output

On exit: s½i� contains si, for i ¼ n; nþ 1; . . . ; k, the root-mean-square residual corresponding to the
approximating polynomial of degree i. In the case where the number of data points with non-zero
weight is equal to kþ 1� n, si is indeterminate: the function sets it to zero. For the interpretation
of the values of si and their use in selecting an appropriate degree, see Section 3.1 of the e02
Chapter Introduction.

15: n – Integer * Output

On exit: n contains the total number of constraint conditions imposed:
n ¼ mf þ p1 þ p2 þ � � � þ pmf .
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16: resid½m� – double Output

On exit: resid contains weighted residuals of the highest degree of fit determined ðkÞ. The residual
at xr is in element resid½r� 1�, for r ¼ 1; 2; . . . ;m.

17: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 1.

On entry, mf = hvaluei.
Constraint: mf � 1.

NE_INT_3

On entry, k þ 1 > mdistþ n, where mdist is the number of data points with non-zero weight and
distinct abscissae different from all the xf, and n is the total number of constraints: k þ 1 ¼ hvaluei,
mdist = hvaluei, n = hvaluei.

NE_INT_ARRAY

On entry, p½r� 1� ¼ hvaluei.
Constraint: p½r� 1� � 0 for r ¼ 1; . . . ;mf.

NE_ILL_CONDITIONED

The polynomials muðxÞ and/or nuðxÞ cannot be found. The problem is too ill-conditioned.

NE_NOT_MONOTONIC

On entry, x½i� 1� < x½i� 2�: i ¼ hvaluei, x½i� 1� ¼ hvaluei, x½i� 2� ¼ hvaluei.

NE_REAL_2

On entry, xmin � xmax: xmin ¼ hvaluei, xmax ¼ hvaluei.

NE_REAL_ARRAY

On entry, xf ½i� 1� lies outside interval ½xmin; xmax�: i ¼ hvaluei, xf ½i� 1� ¼ hvaluei
xmin ¼ hvaluei, xmax ¼ hvaluei.
On entry, x½i� 1� lies outside interval ½xmin; xmax� for some i.

On entry, x½i� 1� lies outside interval ½xmin; xmax�: i ¼ hvaluei, x½i� 1� ¼ hvaluei
xmin ¼ hvaluei, xmax ¼ hvaluei.
On entry, xf ½i� 1� ¼ xf ½j� 1�: i ¼ hvaluei, xf ½i� 1� ¼ hvaluei j ¼ hvaluei, xf ½j� 1� ¼ hvaluei.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.
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7 Accuracy

No complete error analysis exists for either the interpolating algorithm or the approximating algorithm.
However, considerable experience with the approximating algorithm shows that it is generally extremely
satisfactory. Also the moderate number of constraints, of low-order, which are typical of data fitting
applications, are unlikely to cause difficulty with the interpolating routine.

8 Further Comments

The time taken to form the interpolating polynomial is approximately proportional to n3, and that to form
the approximating polynomials is very approximately proportional to mðkþ 1Þðkþ 1� nÞ.
To carry out a least-squares polynomial fit without constraints, use nag_1d_cheb_fit (e02adc). To carry out
polynomial interpolation only, use nag_1d_cheb_interp (e01aec).

9 Example

The example program reads data in the following order, using the notation of the parameter list above:

mf

p½i� 1�, xf ½i� 1�, Y-value and derivative values (if any) at xf ½i� 1�, for i ¼ 1; 2; . . . ;mf

m

x½i� 1�, y½i� 1�, w½i� 1�, for i ¼ 1; 2; . . . ;m

k, xmin, xmax

The output is:

the root-mean-square residual for each degree from n to k;

the Chebyshev coefficients for the fit of degree k;

the data points, and the fitted values and residuals for the fit of degree k.

The program is written in a generalized form which will read any number of data sets.

The data set supplied specifies 5 data points in the interval [0.0,4.0] with unit weights, to which are to be
fitted polynomials, p, of degrees up to 4, subject to the 3 constraints:

pð0:0Þ ¼ 1:0; p0ð0:0Þ ¼ �2:0; pð4:0Þ ¼ 9:0:

9.1 Program Text

/* nag_1d_cheb_fit_constr (e02agc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{

/* Scalars */
double fiti, xmax, xmin;
Integer exit_status, i, iy, j, k, h, m, mf, n, pda, stride;
NagError fail;
Nag_OrderType order;

/* Arrays */
double *a = 0, *s = 0, *w = 0, *resid = 0,

*x = 0, *xf = 0, *y = 0, *yf = 0;
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Integer *p = 0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
exit_status = 0;
Vprintf("e02agc Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");

while (scanf("%ld%*[^\n] ", &mf) != EOF)
{

if (mf > 0)
{

/* Allocate memory for p and xf. */
if (!(p = NAG_ALLOC(mf, Integer)) ||

!(xf = NAG_ALLOC(mf, double)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read p, xf and yf arrays */
iy = 1;
n = mf;
for (i = 0; i < mf; ++i)

{
Vscanf("%ld%lf", &p[i], &xf[i]);
h = iy + p[i] + 1;
/* We need to extend array yf as we go along */
if (!(yf = NAG_REALLOC(yf, h - 1, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
for (j = iy-1; j < h - 1; ++j)

Vscanf("%lf", &yf[j]);
Vscanf("%*[^\n] ");
n += p[i];
iy = h;

}
Vscanf("%ld%*[^\n] ", &m);

if (m > 0)
{

/* Allocate memory for x, y and w. */
if (!(x = NAG_ALLOC(m, double)) ||

!(y = NAG_ALLOC(m, double)) ||
!(w = NAG_ALLOC(m, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
for (i = 0; i < m; ++i)

Vscanf("%lf%lf%lf", &x[i], &y[i], &w[i]);
Vscanf("%*[^\n] ");

Vscanf("%ld%lf%lf%*[^\n] ", &k, &xmin, &xmax);
pda = k + 1;

/* Allocate arrays a, s and resid */
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if ( !(a = NAG_ALLOC((k + 1) * (k + 1), double)) ||
!(s = NAG_ALLOC((k + 1), double)) ||
!(resid = NAG_ALLOC(m, double)) )

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

e02agc(order, m, k, xmin, xmax, x, y, w, mf, xf, yf,
p, a, s, &n, resid, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from e02agc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf("\n");
Vprintf("Degree RMS residual\n");
for (i = n; i <= k; ++i)

Vprintf("%4ld%15.2e\n", i, s[i]);
Vprintf("\n");

Vprintf("Details of the fit of degree %2ld\n", k);
Vprintf("\n");
Vprintf(" Index Coefficient\n");
for (i = 0; i < k + 1; ++i)

Vprintf("%6ld%11.4f\n", i, A(k+1, i+1));
Vprintf("\n");

Vprintf(" i x(i) y(i) Fit Residual\n");
for (i = 0; i < m; ++i)

{
/* Note that the coefficients of polynomial are stored in the
* rows of A hence when the storage is in Nag_ColMajor order
* then stride is the first dimension of A, k + 1.
* When the storage is in Nag_RowMajor order then stride is 1.
*/

#ifdef NAG_COLUMN_MAJOR
stride = k + 1;

#else
stride = 1;

#endif
e02akc(k, xmin, xmax, &A(k+1, 1), stride, x[i], &fiti, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from e02akc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("%6ld%11.4f%11.4f%11.4f", i, x[i], y[i], fiti);
Vprintf("%11.2e\n", fiti - y[i]);

}
}

}
}

END:
if (a) NAG_FREE(a);
if (s) NAG_FREE(s);
if (w) NAG_FREE(w);
if (resid) NAG_FREE(resid);
if (x) NAG_FREE(x);
if (xf) NAG_FREE(xf);
if (y) NAG_FREE(y);
if (yf) NAG_FREE(yf);
if (p) NAG_FREE(p);

return exit_status;
}
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9.2 Program Data

e02agc Example Program Data
2
1 0.0 1.0 -2.0
0 4.0 9.0
5

0.5 0.03 1.0
1.0 -0.75 1.0
2.0 -1.0 1.0
2.5 -0.1 1.0
3.0 1.75 1.0

4 0.0 4.0

9.3 Program Results

e02agc Example Program Results

Degree RMS residual
3 2.55e-03
4 2.94e-03

Details of the fit of degree 4

Index Coefficient
0 3.9980
1 3.4995
2 3.0010
3 0.5005
4 -0.0000

i x(i) y(i) Fit Residual
0 0.5000 0.0300 0.0310 1.02e-03
1 1.0000 -0.7500 -0.7508 -7.81e-04
2 2.0000 -1.0000 -1.0020 -2.00e-03
3 2.5000 -0.1000 -0.0961 3.95e-03
4 3.0000 1.7500 1.7478 -2.17e-03
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