
e02 – Curve and Surface Fitting e02bbc

nag 1d spline evaluate (e02bbc)

1. Purpose

nag 1d spline evaluate (e02bbc) evaluates a cubic spline from its B-spline representation.

2. Specification

#include <nag.h>
#include <nage02.h>

void nag_1d_spline_evaluate(double x, double *s, Nag_Spline *spline,
NagError *fail)

3. Description

This function evaluates the cubic spline s(x) at a prescribed argument x from its augmented knot
set λi, for i = 1, 2, . . . , n̄ + 7, (see nag 1d spline fit knots (e02bac)) and from the coefficients ci, for
i = 1, 2, . . . , q in its B-spline representation

s(x) =
q∑

i=1

ciNi(x)

Here q = n̄ + 3, where n̄ is the number of intervals of the spline, and Ni(x) denotes the normalised
B-spline of degree 3 defined upon the knots λi, λi+1, . . . , λi+4. The prescribed argument x must
satisfy λ4 ≤ x ≤ λn̄+4.
It is assumed that λj ≥ λj−1, for j = 2, 3, . . . , n̄ + 7, and λn̄+4 > λ4.
The method employed is that of evaluation by taking convex combinations due to de Boor (1972).
For further details of the algorithm and its use see Cox (1972) and Cox (1978).
It is expected that a common use of nag 1d spline evaluate (e02bbc) will be the evaluation of
the cubic spline approximations produced by nag 1d spline fit knots (e02bac). A generalization
of nag 1d spline evaluate which also forms the derivative of s(x) is nag 1d spline deriv (e02bcc).
nag 1d spline deriv (e02bcc) takes about 50% longer than nag 1d spline evaluate.

4. Parameters

x
Input: the argument x at which the cubic spline is to be evaluated.
Constraint: spline.lamda[3] ≤ x ≤ spline.lamda[spline.n−4].

s
Output: the value of the spline, s(x).

spline
Input: Pointer to structure of type Nag Spline with the following members:

n - Integer
Input: n̄ + 7, where n̄ is the number of intervals (one greater than the number of
interior knots, i.e., the knots strictly within the range λ4 to λn̄+4) over which the spline
is defined.
Constraint: spline.n ≥ 8.

lamda - double *
Input: a pointer to which memory of size spline.n must be allocated. spline.lamda[j−1]
must be set to the value of the jth member of the complete set of knots, λj for
j = 1, 2, . . . , n̄ + 7.
Constraint: the λj must be in non-decreasing order with spline.lamda[spline.n−4] >
spline.lamda[3].

c - double *
Input: a pointer to which memory of size spline.n−4 must be allocated. spline.c holds
the coefficient ci of the B-spline Ni(x), for i = 1, 2, . . . , n̄ + 3.

[NP3275/5/pdf] 3.e02bbc.1

nag 1d spline evaluate NAG C Library Manual

Under normal usage, the call to nag 1d spline evaluate will follow a call to nag 1d spline fit knots
(e02bac), nag 1d spline fit knots (e02bac)or nag 1d spline fit (e02bec). In that case, the structure
spline will have been set up correctly for input to nag 1d spline evaluate.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LT
On entry, spline.n must not be less than 8: spline.n = 〈value〉.

NE ABSCI OUTSIDE KNOT INTVL
On entry, x must satisfy spline.lamda[3] ≤ x ≤ spline.lamda[spline.n−4]:
spline.lamda[3] = 〈value〉, x = 〈value〉, spline.lamda[〈value〉] = 〈value〉.
In this case s is set arbitrarily to zero.

6. Further Comments
The time taken by the function is approximately C ×(1 + 0.1 × log(n̄ + 7)) seconds, where C is a
machine-dependent constant.

Note: the function does not test all the conditions on the knots given in the description of
spline.lamda in Section 4, since to do this would result in a computation time approximately linear
in n̄ + 7 instead of log(n̄ + 7). All the conditions are tested in nag 1d spline fit knots (e02bac),
however, and the knots returned by nag 1d spline interpolant (e01bac) or nag 1d spline fit (e02bec)
will satisfy the conditions.

6.1. Accuracy

The computed value of s(x) has negligible error in most practical situations. Specifically, this value
has an absolute error bounded in modulus by 18 × cmax× machine precision, where cmax is the
largest in modulus of cj , cj+1, cj+2 and cj+3, and j is an integer such that λj+3 ≤ x ≤ λj+4. If
cj , cj+1, cj+2 and cj+3 are all of the same sign, then the computed value of s(x) has a relative error
not exceeding 20× machine precision in modulus. For further details see Cox (1978).

6.2. References

Cox M G (1972) The Numerical Evaluation of B-splines J. Inst. Math. Appl. 10 134-149.
Cox M G (1978) The Numerical Evaluation of a Spline from its B-spline Representation J. Inst.

Math. Appl. 21 135-143.
Cox M G and Hayes J G (1973) Curve Fitting: A Guide and Suite of Algorithms for the Non-

specialist User Report NAC26, National Physical Laboratory, Teddington, Middlesex.
De Boor C (1972) On Calculating with B-splines J. Approx. Theory 6 50–62.

7. See Also

nag 1d spline interpolant (e01bac)
nag 1d spline fit knots (e02bac)
nag 1d spline deriv (e02bcc)
nag 1d spline fit (e02bec)

8. Example

Evaluate at 9 equally-spaced points in the interval 1.0 ≤ x ≤ 9.0 the cubic spline with (augmented)
knots 1.0, 1.0, 1.0, 1.0, 3.0, 6.0, 8.0, 9.0, 9.0, 9.0, 9.0 and normalised cubic B-spline coefficients 1.0,
2.0, 4.0, 7.0, 6.0, 4.0, 3.0.

The example program is written in a general form that will enable a cubic spline with n̄ intervals,
in its normalised cubic B-spline form, to be evaluated at m equally-spaced points in the interval
spline.lamda[3] ≤ x ≤ spline.lamda[n̄+3]. The program is self-starting in that any number of data
sets may be supplied.

3.e02bbc.2 [NP3275/5/pdf]

e02 – Curve and Surface Fitting e02bbc

8.1. Program Text

Nag_Spline spline;

Vprintf("e02bbc Example Program Results\n");
Vscanf("%*[^\n]"); /* Skip heading in data file */
while(scanf("%ld",&m) !=EOF)

{
if (m>0)
{
Vscanf("%ld",&ncap);
ncap7 = ncap+7;
if (ncap>0)
{
spline.n = ncap7;
spline.c = NAG_ALLOC(ncap7, double);
spline.lamda = NAG_ALLOC(ncap7, double);
if (spline.c != (double *)0 && spline.lamda != (double *)0)

{
for (j=0; j<ncap7; j++)
Vscanf("%lf",&(spline.lamda[j]));

for (j=0; j<ncap+3; j++)
Vscanf("%lf",&(spline.c[j]));

a = spline.lamda[3];
b = spline.lamda[ncap+3];
Vprintf("Augmented set of knots stored in spline.lamda:\n");
for (j=0; j<ncap7; j++)
Vprintf("%10.4f%s",spline.lamda[j],

(j%6==5 || j==ncap7-1) ? "\n" : " ");
Vprintf("\nB-spline coefficients stored in spline.c\n\n");
for (j=0; j<ncap+3; j++)
Vprintf("%10.4f%s",spline.c[j],

(j%6==5 || j==ncap+2) ? "\n" : " ");
Vprintf("\n x Value of cubic spline\n\n");
for (r=1; r<=m; ++r)
{
x = ((double)(m-r) * a + (double)(r-1) * b) / (double)(m-1);
e02bbc(x, &s, &spline, NAGERR_DEFAULT);
Vprintf("%10.4f%15.4f\n",x,s);

}
NAG_FREE(spline.c);
NAG_FREE(spline.lamda);

}
else

{
Vfprintf(stderr,"Storage allocation failed. Reduce the \

size of spline.n\n");
exit(EXIT_FAILURE);

}
}

else
{
Vfprintf(stderr,"ncap is negative or zero : ncap = %ld\n",ncap);
exit(EXIT_FAILURE);

}
}

else
{
Vfprintf(stderr,"m is negative or zero : m = %ld\n",m);
exit(EXIT_FAILURE);

}
}

exit(EXIT_SUCCESS);
}

8.2. Program Data

e02bbc Example Program Data
9
4

[NP3275/5/pdf] 3.e02bbc.3

nag 1d spline evaluate NAG C Library Manual

1.00
1.00
1.00
1.00
3.00
6.00
8.00
9.00
9.00
9.00
9.00
1.00
2.00
4.00
7.00
6.00
4.00
3.00

8.3. Program Results

e02bbc Example Program Results
Augmented set of knots stored in spline.lamda:

1.0000 1.0000 1.0000 1.0000 3.0000 6.0000
8.0000 9.0000 9.0000 9.0000 9.0000

B-spline coefficients stored in spline.c

1.0000 2.0000 4.0000 7.0000 6.0000 4.0000
3.0000

x Value of cubic spline

1.0000 1.0000
2.0000 2.3779
3.0000 3.6229
4.0000 4.8327
5.0000 5.8273
6.0000 6.3571
7.0000 6.1905
8.0000 5.1667
9.0000 3.0000

3.e02bbc.4 [NP3275/5/pdf]

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

