NAG C Library Function Document

nag 2d cheb eval (e02cbc)

1 Purpose

nag_2d_cheb_eval (e02cbc) evaluates a bivariate polynomial from the rectangular array of coefficients in its double Chebyshev-series representation.

2 Specification

3 Description

This function evaluates a bivariate polynomial (represented in double Chebyshev form) of degree k in one variable, \bar{x} , and degree l in the other, \bar{y} . The range of both variables is -1 to +1. However, these normalised variables will usually have been derived (as when the polynomial has been computed by nag_2d_cheb_fit_lines (e02cac), for example) from the user's original variables x and y by the transformations

$$\bar{x} = \frac{2x - (x_{\text{max}} + x_{\text{min}})}{(x_{\text{max}} - x_{\text{min}})} \quad \text{and} \quad \bar{y} = \frac{2y - (y_{\text{max}} + y_{\text{min}})}{(y_{\text{max}} - y_{\text{min}})}.$$

(Here x_{\min} and x_{\max} are the ends of the range of x which has been transformed to the range -1 to +1 of \bar{x} . y_{\min} and y_{\max} are correspondingly for y. See Section 8). For this reason, the function has been designed to accept values of x and y rather than \bar{x} and \bar{y} , and so requires values of x_{\min} , etc. to be supplied by the user. In fact, for the sake of efficiency in appropriate cases, the function evaluates the polynomial for a sequence of values of x, all associated with the same value of y.

The double Chebyshev-series can be written as

$$\sum_{i=0}^{k} \sum_{j=0}^{l} a_{ij} T_{i}(\bar{x}) T_{j}(\bar{y}),$$

where $T_i(\bar{x})$ is the Chebyshev polynomial of the first kind of degree i and argument \bar{x} , and $T_j(\bar{y})$ is similarly defined. However the standard convention, followed in this function, is that coefficients in the above expression which have either i or j zero are written $\frac{1}{2}a_{ij}$, instead of simply a_{ij} , and the coefficient with both i and j zero is written $\frac{1}{4}a_{0,0}$.

The function first forms $c_i = \sum_{i=0}^l a_{ij} T_j(\bar{y})$, with $a_{i,0}$ replaced by $\frac{1}{2} a_{i,0}$, for each of $i=0,1,\ldots,k$. The

value of the double series is then obtained for each value of x, by summing $c_i \times T_i(\bar{x})$, with c_0 replaced by $\frac{1}{2}c_0$, over $i=0,1,\ldots,k$. The Clenshaw three term recurrence (Clenshaw (1955)) with modifications due to Reinsch and Gentleman (1969) is used to form the sums.

4 References

Clenshaw C W (1955) A note on the summation of Chebyshev series *Math. Tables Aids Comput.* **9** 118–120

Gentleman W M (1969) An error analysis of Goertzel's (Watt's) method for computing Fourier coefficients *Comput. J.* **12** 160–165

[NP3645/7] e02cbc.1

2:

5 Parameters

1: **mfirst** – Integer

mlast - Integer

Input Input

On entry: the index of the first and last x value in the array x at which the evaluation is required respectively (see Section 8).

Constraint: $mlast \ge mfirst$.

3: \mathbf{k} – Integer

Input

4: **l** − Integer

Input

On entry: the degree k of x and l of y, respectively, in the polynomial.

Constraint: $\mathbf{k} \geq 0$ and $\mathbf{l} \geq 0$.

5: $\mathbf{x}[\mathbf{mlast}]$ – const double

Input

On entry: $\mathbf{x}[i-1]$, for $i = \mathbf{mfirst}, \mathbf{mfirst} + 1, \dots, \mathbf{mlast}$, must contain the x values at which the evaluation is required.

Constraint: $xmin \le x[i-1] \le xmax$, for all i.

6: **xmin** – double

Input

7: **xmax** – double

Input

On entry: the lower and upper ends, x_{\min} and x_{\max} , of the range of the variable x (see Section 3).

The values of **xmin** and **xmax** may depend on the value of y (e.g., when the polynomial has been derived using nag 2d cheb fit lines (e02cac)).

Constraint: xmax > xmin.

8: \mathbf{v} – double

Input

On entry: the value of the y co-ordinate of all the points at which the evaluation is required.

Constraint: $ymin \le y \le ymax$.

9: **ymin** – double

Input

10: **ymax** – double

Input

On entry: the lower and upper ends, y_{\min} and y_{\max} , of the range of the variable y (see Section 3). Constraint: $y_{\max} > y_{\min}$.

11: **ff**[**mlast**] – double

Output

On exit: $\mathbf{ff}[i-1]$ gives the value of the polynomial at the point (x_i, y) , for $i = \mathbf{mfirst}, \mathbf{mfirst} + 1, \dots, \mathbf{mlast}$.

12: $\mathbf{a}[dim]$ – const double

Input

Note: the dimension, dim, of the array **a** must be at least $(\mathbf{k} + 1) \times (\mathbf{l} + 1)$.

On entry: the Chebyshev coefficients of the polynomial. The coefficient a_{ij} defined according to the standard convention (see Section 3) must be in $\mathbf{a}[i \times (l+1) + j]$.

13: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

e02cbc.2 [NP3645/7]

6 Error Indicators and Warnings

NE_INT_2

```
On entry, \mathbf{k} = \langle value \rangle, \mathbf{l} = \langle value \rangle.
Constraint: \mathbf{k} \geq 0 and \mathbf{l} \geq 0.
On entry, mfirst > mlast: mfirst = \langle value \rangle, mlast = \langle value \rangle.
```

NE INTERNAL ERROR

Unexpected failure in internal call to nag 1d cheb eval (e02aec).

NE_REAL_2

```
On entry, \mathbf{xmin} \ge \mathbf{xmax}: \mathbf{xmin} = \langle value \rangle, \mathbf{xmax} = \langle value \rangle.
On entry, \mathbf{y} > \mathbf{ymax}: \mathbf{y} = \langle value \rangle, \mathbf{ymax} = \langle value \rangle.
On entry, \mathbf{y} < \mathbf{ymin}: \mathbf{y} = \langle value \rangle, \mathbf{ymin} = \langle value \rangle.
On entry, \mathbf{ymin} \ge \mathbf{ymax}: \mathbf{ymin} = \langle value \rangle, \mathbf{ymax} = \langle value \rangle.
```

NE REAL ARRAY

```
On entry, \mathbf{x}[i-1] < \mathbf{xmin}: i = \langle value \rangle, \mathbf{x}[i-1] = \langle value \rangle, \mathbf{xmin} = \langle value \rangle.
On entry, \mathbf{x}[i-1] > \mathbf{xmax}: i = \langle value \rangle, \mathbf{x}[i-1] = \langle value \rangle, \mathbf{xmax} = \langle value \rangle.
```

NE ALLOC FAIL

Memory allocation failed.

NE BAD PARAM

On entry, parameter (value) had an illegal value.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The method is numerically stable in the sense that the computed values of the polynomial are exact for a set of coefficients which differ from those supplied by only a modest multiple of *machine precision*.

8 Further Comments

The time taken is approximately proportional to $(k+1) \times (m+l+1)$, where m = mlast - mfirst + 1, the number of points at which the evaluation is required.

This function is suitable for evaluating the polynomial surface fits produced by the function nag_2d_cheb_fit_lines (e02cac), which provides the array ${\bf a}$ in the required form. For this use, the values of y_{\min} and y_{\max} supplied to the present function must be the same as those supplied to nag_2d_cheb_fit_lines (e02cac). The same applies to x_{\min} and x_{\max} if they are independent of y. If they vary with y, their values must be consistent with those supplied to nag_2d_cheb_fit_lines (e02cac) (see Section 8 of the document for nag_2d_cheb_fit_lines (e02cac)).

The parameters **mfirst** and **mlast** are intended to permit the selection of a segment of the array \mathbf{x} which is to be associated with a particular value of y, when, for example, other segments of \mathbf{x} are associated with other values of y. Such a case arises when, after using nag_2d_cheb_fit_lines (e02cac) to fit a set of data, the user wishes to evaluate the resulting polynomial at all the data values. In this case, if the parameters \mathbf{x} , \mathbf{y} , **mfirst** and **mlast** of the present routine are set respectively (in terms of parameters of

[NP3645/7] e02cbc.3

nag_2d_cheb_fit_lines (e02cac)) to \mathbf{x} , $\mathbf{y}(s)$, $1 + \sum_{i=1}^{s-1} \mathbf{m}(i)$ and $\sum_{i=1}^{s} \mathbf{m}(i)$, the function will compute values of the polynomial surface at all data points which have y[s-1] as their y co-ordinate (from which values the residuals of the fit may be derived).

9 Example

The example program reads data in the following order, using the notation of the parameter list above:

```
n k l a[i-1], for i=1,2,\ldots,(k+1)\times(l+1) ymin ymax y[i-1] m(i-1) xmin[i-1] xmax[i-1] x1(i) xm(i), for i=1,2,\ldots,n.
```

For each line $\mathbf{y} = \mathbf{y}[i-1]$ the polynomial is evaluated at m(i) equispaced points between x1(i) and xm(i) inclusive.

9.1 Program Text

```
/* nag_2d_cheb_eval (e02cbc) Example Program.
 * Copyright 2001 Numerical Algorithms Group.
 * Mark 7, 2001.
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage02.h>
int main(void)
  /* Scalars */
  double x1, xm, xmax, xmin, y, ymax, ymin;
  Integer exit_status, i, ifail, j, k, l, m, n, ncoef, one;
  NagError fail;
  /* Arrays */
  double *a = 0, *ff = 0, *x = 0;
  INIT_FAIL(fail);
  exit_status = 0;
  Vprintf("e02cbc Example Program Results\n");
  /* Skip heading in data file */
Vscanf("%*[^\n] ");
  while (scanf("%ld%ld%ld%*[^\n] ", &n, &k, &l) != EOF)
      /* Allocate array a */
      ncoef = (k + 1) * (1 + 1);
      if ( !(a = NAG_ALLOC(ncoef, double)))
          Vprintf("Allocation failure\n");
          exit_status = -1;
          goto END;
      for (i = 0; i < ncoef; ++i)
      Vscanf("%lf", &a[i]);
Vscanf("%*[^\n] ");
      Vscanf("%lf%lf%*[^\n] ", &ymin, &ymax);
      for (i = 0; i < n; ++i)
          Vscanf("%lf%ld%lf%lf%lf%lf%*[^\n] ",
```

e02cbc.4 [NP3645/7]

```
&y, &m, &xmin, &xmax, &x1, &xm);
          /* Allocate arrays x and ff */
          if (!(x = NAG\_ALLOC(m, double))||
               !(ff = NAG_ALLOC(m, double)) )
              Vprintf("Allocation failure\n");
              exit_status = -1;
              goto END;
            }
          for (j = 0; j < m; ++j)
           x[j] = x1 + (xm - x1) * (double)j / (double)(m - 1);
          one = 1;
          ifail = 0;
          e02cbc(one, m, k, 1, x, xmin, xmax, y, ymin, ymax,
                 ff, a, &fail);
          if (fail.code != NE_NOERROR)
              Vprintf("Error from e02cbc.\n%s\n", fail.message);
              exit_status = 1;
              goto END;
            }
          Vprintf("\n");
          Vprintf("y = %13.4e\n", y);
         Vprintf("\n");
          Vprintf(" i
                          x(i)
                                    Poly(x(i),y)\n");
          for (j = 0; j < m; ++j)
            Vprintf("%3ld%13.4e%13.4e\n", j, x[j], ff[j]);
         if (ff) NAG_FREE(ff);
         if (x) NAG_FREE(x);
     if (a) NAG_FREE(a);
END:
 if (a) NAG_FREE(a);
 if (ff) NAG_FREE(ff);
 if (x) NAG_FREE(x);
 return exit_status;
}
```

9.2 Program Data

```
e02cbc Example Program Data
  3 3
15.34820
5.15073
0.10140
1.14719
0.14419
-0.10464
0.04901
-0.00314
-0.00699
0.00153
-0.00033
-0.00022
              4.0
  0.0
  1.0
              9 0.1
                               4.5
                                          0.5
                                                       4.5
              8 0.225
  1.5
                              4.25
                                           0.5
                                                       4.0
  2.0
             8 0.4
                               4.0
                                           0.5
                                                        4.0
```

[NP3645/7] e02cbc.5

9.3 Program Results

```
e02cbc Example Program Results
```

```
1.0000e+00
  i
                  Poly(x(i),y)
        x(i)
      5.0000e-01
                   2.0812e+00
                    2.1888e+00
  1
      1.0000e+00
                    2.3018e+00
  2
      1.5000e+00
  3
      2.0000e+00
                    2.4204e+00
  4
      2.5000e+00
                    2.5450e+00
  5
      3.0000e+00
                    2.6758e+00
  6
      3.5000e+00
                    2.8131e+00
      4.0000e+00
                    2.9572e+00
  8
      4.5000e+00
                    3.1084e+00
       1.5000e+00
y =
                  Poly(x(i),y)
  i
        x(i)
      5.0000e-01
                    2.6211e+00
  0
  1
      1.0000e+00
                    2.7553e+00
      1.5000e+00
                    2.8963e+00
  2
  3
      2.0000e+00
                    3.0444e+00
      2.5000e+00
                    3.2002e+00
  4
  5
      3.0000e+00
                    3.3639e+00
  6
      3.5000e+00
                    3.5359e+00
      4.0000e+00
                   3.7166e+00
у =
       2.0000e+00
  i
        x(i)
                  Poly(x(i),y)
      5.0000e-01
  0
                   3.1700e+00
      1.0000e+00
                    3.3315e+00
  1
      1.5000e+00
                    3.5015e+00
  3
      2.0000e+00
                    3.6806e+00
      2.5000e+00
                    3.8692e+00
  5
      3.0000e+00
                    4.0678e+00
  6
      3.5000e+00
                    4.2769e+00
      4.0000e+00
                    4.4971e+00
```

e02cbc.6 (last) [NP3645/7]