
e02 – Curve and Surface Fitting e02dfc

nag 2d spline eval rect (e02dfc)

1. Purpose

nag 2d spline eval rect (e02dfc) calculates values of a bicubic spline from its B-spline representation.
The spline is evaluated at all points on a rectangular grid.

2. Specification

#include <nag.h>
#include <nage02.h>

void nag_2d_spline_eval_rect(Integer mx, Integer my, double x[], double y[],
double ff[], Nag_2dSpline *spline, NagError *fail)

3. Description

This function calculates values of the bicubic spline s(x, y) on a rectangular grid of points in
the x-y plane, from its augmented knot sets {λ} and {µ} and from the coefficients cij , for
i = 1, 2, . . . ,spline.nx−4; j = 1, 2, . . . ,spline.ny−4, in its B-spline representation

s(x, y) =
∑

i,j

cijMi(x)Nj(y).

Here Mi(x) and Nj(y) denote normalised cubic B-splines, the former defined on the knots λi to
λi+4 and the latter on the knots µj to µj+4.
The points in the grid are defined by co-ordinates xq, for q = 1, 2, . . . , mx, along the x axis, and
co-ordinates yr, for r = 1, 2, . . . , my along the y axis.
This function may be used to calculate values of a bicubic spline given in the form produced
by nag 2d spline interpolant (e01dac), nag 2d spline fit grid (e02dcc) and nag 2d spline fit scat
(e02ddc). It is derived from the routine B2VRE in Anthony et al (1982).

4. Parameters

mx
my

Input: mx and my must specify mx and my respectively, the number of points along the x
and y axes that define the rectangular grid.
Constraint: mx ≥ 1 and my ≥ 1.

x[mx]
y[my]

Input: x and y must contain xq, for q = 1, 2, . . . , mx, and yr, for r = 1, 2, . . . , my, respectively.
These are the x and y co-ordinates that define the rectangular grid of points at which values
of the spline are required.
Constraints: x and y must satisfy
spline.lamda[3] ≤ x[q−1] < x[q] ≤ spline.lamda[spline.nx−4], for q = 1, 2, . . . , mx−1,
and
spline.mu[3] ≤ y[r − 1] < y[r] ≤ spline.mu[spline.ny−4], for r = 1, 2, . . . , my − 1.
The spline representation is not valid outside these intervals.

ff[mx∗my]
Output: ff[my × (q − 1) + r − 1] contains the value of the spline at the point (xq , yr), for
q = 1, 2, . . . , mx; r = 1, 2, . . . , my.

spline
Input: Pointer to structure of type Nag 2dSpline with the following members:

nx - Integer
Input: spline.nx must specify the total number of knots associated with the variable x.
It is such that spline.nx−8 is the number of interior knots.

[NP3275/5/pdf] 3.e02dfc.1

nag 2d spline eval rect NAG C Library Manual

Constraint: spline.nx ≥ 8.

lamda - double *
Input: a pointer to which memory of size spline.nx must be allocated. spline.lamda
must contain the complete sets of knots {λ} associated with the x variable.
Constraint: the knots must be in non-decreasing order, with
spline.lamda[spline.nx − 4] > spline.lamda[3].

ny - Integer
Input: spline.ny must specify the total number of knots associated with the variable y.
It is such that spline.ny − 8 is the number of interior knots.
Constraint: spline.ny ≥ 8.

mu - double *
Input: a pointer to which memory of size spline.ny must be allocated. spline.mu must
contain the complete sets of knots {µ} associated with the y variable.
Constraint: the knots must be in non-decreasing order, with
spline.mu[spline.ny − 4] > spline.mu[3].

c - double *
Input: a pointer to which memory of size (spline.nx − 4) × (spline.ny − 4) must be
allocated. spline.c[(spline.ny − 4) × (i − 1) + j − 1] must contain the coefficient cij

described in Section 3, for i = 1, 2, . . . , spline.nx − 4; j = 1, 2, . . . , spline.ny − 4.

In normal usage, the call to nag 2d spline eval rect follows a call to nag 2d spline interpolant
(e01dac), nag 2d spline fit grid (e02dcc) or nag 2d spline fit scat (e02ddc), in which case, members
of the structure spline will have been set up correctly for input to nag 2d spline eval rect.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LT
On entry, mx must not be less than 1: mx = 〈value〉.
On entry, my must not be less than 1: my = 〈value〉.
On entry, spline.nx must not be less than 8: spline.nx = 〈value〉.
On entry, spline.ny must not be less than 8: spline.ny = 〈value〉.

NE ALLOC FAIL
Memory allocation failed.

NE END KNOTS CONS
On entry, the end knots must satisfy 〈value〉, 〈value〉 = 〈value〉, 〈value〉 = 〈value〉.

NE NOT INCREASING
The sequence spline.lamda is not increasing: spline.lamda[〈value〉] = 〈value〉, spline.lamda
[〈value〉] = 〈value〉.
The sequence spline.mu is not increasing: spline.mu[〈value〉] = 〈value〉, spline.mu[〈value〉] =
〈value〉.

NE KNOTS COORD CONS
On entry, the end knots and coordinates must satisfy spline.lamda[3] ≤ x[0] and x[mx]−1]
≤ spline.lamda[spline.nx−4]. spline.lamda[3] = 〈value〉, x[0] = 〈value〉, x[〈value〉] = 〈value〉,
spline.lamda[〈value〉] = 〈value〉.
On entry, the end knots and coordinates must satisfy spline.mu[3] ≤ y[0] and y[my−1]
≤ spline.mu[spline.ny−4]. spline.mu[3] = 〈value〉, y[0] = 〈value〉, y[〈value〉] = 〈value〉,
spline.mu[〈value〉] = 〈value〉.

NE NOT STRICTLY INCREASING
The sequence x is not strictly increasing: x[〈value〉] = 〈value〉, x[〈value〉] = 〈value〉.
The sequence y is not strictly increasing: y[〈value〉] = 〈value〉, y[〈value〉] = 〈value〉.

6. Further Comments

Computation time is approximately proportional to mxmy + 4(mx + my).

3.e02dfc.2 [NP3275/5/pdf]

e02 – Curve and Surface Fitting e02dfc

6.1. Accuracy

The method used to evaluate the B-splines is numerically stable, in the sense that each computed
value of s(xr, yr) can be regarded as the value that would have been obtained in exact arithmetic
from slightly perturbed B-spline coefficients. See Cox (1978) for details.

6.2. References

Anthony G T, Cox M G and Hayes J G (1982) DASL - Data Approximation Subroutine Library
National Physical Laboratory.

Cox M G (1978) The Numerical Evaluation of a Spline from its B-spline Representation J. Inst.
Math. Appl. 21 135–143.

7. See Also

nag 2d spline interpolant (e01dac)
nag 2d spline fit grid (e02dcc)
nag 2d spline fit scat (e02ddc)
nag 2d spline eval (e02dec)

8. Example

This program reads in knot sets spline.lamda[0],. . . ,spline.lamda[spline.nx−1]andspline.mu[0],. . .,
spline.mu[spline.ny−1], and a set of bicubic spline coefficients cij . Following these are values for
mx and the x co-ordinates xq, for q = 1, 2, . . . , mx, and values for my and the y co-ordinates yr,
for r = 1, 2, . . . , my, defining the grid of points on which the spline is to be evaluated.

8.1. Program Text

/* nag_2d_spline_eval_rect(e02dfc) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage02.h>

#define MXMAX 20
#define MYMAX 20
#define FF(I,J) ff[my*(I)+(J)]

main()
{
Integer i, j, mx, my;
double x[MXMAX], y[MYMAX], ff[MXMAX*MYMAX];
Nag_2dSpline spline;

Vprintf("e02dfc Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^\n]");
/* Read mx and my, the number of grid points in the x and y
* directions respectively.
*/

Vscanf("%ld%ld",&mx,&my);
if (mx<=MXMAX && my<=MYMAX)

{
/* Read spline.nx and spline.ny, the number of knots
* in the x and y directions.
*/
Vscanf("%ld%ld",&(spline.nx),&(spline.ny));
spline.c = NAG_ALLOC((spline.nx-4)*(spline.ny-4), double);
spline.lamda = NAG_ALLOC(spline.nx, double);
spline.mu = NAG_ALLOC(spline.ny,double);
if (spline.c != (double *)0 && spline.lamda != (double *)0

[NP3275/5/pdf] 3.e02dfc.3

nag 2d spline eval rect NAG C Library Manual

&& spline.mu != (double *)0)
{

/* Read the knots spline.lamda[0]...spline.lamda[nx-1]
* and spline.mu[0]...spline.mu[ny-1].
*/

for (i=0; i<spline.nx; i++)
Vscanf("%lf",&(spline.lamda[i]));

for (i=0; i<spline.ny; i++)
Vscanf("%lf",&(spline.mu[i]));

/* Read spline.c, the bicubic spline coefficients. */
for (i=0; i<(spline.nx-4)*(spline.ny-4); i++)
Vscanf("%lf",&(spline.c[i]));

/* Read the x and y co-ordinates defining the evaluation grid. */
for (i=0; i<mx; i++)
Vscanf("%lf",&x[i]);

for (i=0; i<my; i++)
Vscanf("%lf",&y[i]);

/* Evaluate the spline at the mx by my points. */
e02dfc(mx, my, x, y, ff, &spline, NAGERR_DEFAULT);
/* Print the result array. */
Vprintf("Spline evaluated on x-y grid (x across, y down):\n ");
for (i=0; i<mx; i++)
Vprintf("%2.1f ",x[i]);

Vprintf("\n");
for (j=0; j<my; j++)
{
Vprintf("%2.1f",y[j]);
for (i=0; i<mx; i++)

Vprintf("%8.3f%s",FF(i,j), (i%7==6 || i==mx-1) ? "\n" : " ");
}

NAG_FREE(spline.c);
NAG_FREE(spline.lamda);
NAG_FREE(spline.mu);
exit(EXIT_SUCCESS);

}
else
{
Vfprintf(stderr,"Storage allocation failed.\n");
exit(EXIT_FAILURE);

}
}

else
{
Vfprintf(stderr, "mx or my is out of range: mx = %5ld, my = %5ld\n",

mx,my);
exit(EXIT_FAILURE);

}
}

8.2. Program Data

e02dfc Example Program Data
7 6
11 10
1.0 1.0 1.0 1.0 1.3 1.5 1.6 2.0 2.0 2.0 2.0
0.0 0.0 0.0 0.0 0.4 0.7 1.0 1.0 1.0 1.0
1.0000 1.1333 1.3667 1.7000 1.9000 2.0000
1.2000 1.3333 1.5667 1.9000 2.1000 2.2000
1.5833 1.7167 1.9500 2.2833 2.4833 2.5833
2.1433 2.2767 2.5100 2.8433 3.0433 3.1433
2.8667 3.0000 3.2333 3.5667 3.7667 3.8667
3.4667 3.6000 3.8333 4.1667 4.3667 4.4667
4.0000 4.1333 4.3667 4.7000 4.9000 5.0000
1.0 1.1 1.3 1.4 1.5 1.7 2.0
0.0 0.2 0.4 0.6 0.8 1.0

3.e02dfc.4 [NP3275/5/pdf]

e02 – Curve and Surface Fitting e02dfc

8.3. Program Results

e02dfc Example Program Results
Spline evaluated on x-y grid (x across, y down):

1.0 1.1 1.3 1.4 1.5 1.7 2.0
0.0 1.000 1.210 1.690 1.960 2.250 2.890 4.000
0.2 1.200 1.410 1.890 2.160 2.450 3.090 4.200
0.4 1.400 1.610 2.090 2.360 2.650 3.290 4.400
0.6 1.600 1.810 2.290 2.560 2.850 3.490 4.600
0.8 1.800 2.010 2.490 2.760 3.050 3.690 4.800
1.0 2.000 2.210 2.690 2.960 3.250 3.890 5.000

[NP3275/5/pdf] 3.e02dfc.5

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

